
FLORIDA INSTITUTE OF TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE

TECHNICAL REPORT: CS-2013-01

A

Minimizing N-Points Interpolation Curvature, Heuristics for Solutions
Using Arcs and Lines

Rahul Vishen, Florida Institute of Technology
Marius C. Silaghi, Florida Institute of Technology

Knowing a set of points on a curve, the interpolation problem is to hypothesize the location of the inter-
mediary ones. A large set of interpolation techniques are known. We address the problem of generating a
path with minimal maximum curvature, passing through N ordered points and joining the two end-points at
predefined directions. This is related to R-geodesics, which have been used to generate paths with minimum
average curvature between two given points that have to be joined at predefined directions and curvature.

For example, when interpolating GPS points to reconstruct a vehicle’s trajectory, we may know that
the centripetal acceleration is upper bounded due to physical constraints, hence adding constraints on the
trajectory curvature. Among two interpolations with the same maximum curvature, we prefer the one with
shorter trajectory.

We compare experimentally several interpolations techniques, and propose heuristics to generate paths
based on concatenated arc and line segments (also known as R-geodesics) inferred based on tuples of three
consecutive points. Benchmarks with over 1000 simulated and real scenarios show that this algorithm is
73% percent better then the next candidate method we propose and which is based on bi-arcs with hill-
climbing. A remaining open question is whether a global optima can be achieved and proven.

1. INTRODUCTION
Interpolation is a very common problem occurring in various fields ranging from
graphics design and art to learning models in artificial intelligence, and path plan-
ning in robotics. Interpolation is the problem of fitting a curve to a set X of N given
data points, described by a parametric function CX(t). The points may be defined in an
n-dimensional space, as common in learning models for artificial intelligence, but we
mainly focus on the 2-dimensional cases occurring in graphics and vehicle movements.

While common interpolation techniques focus on optimizing length, or on guaran-
teeing smoothness, we want to guarantee an upper bound on the trajectory curvature
while traversing all the N points. We propose and analyze variations of methods gen-
erating such interpolations by concatenating path segments built from two or three
points at a time, and compare them with more straightforward adaptations of general
interpolation algorithms.

The guarantee of an upper bound on curvature is particularly important when the
curve represents the recorded or planned trajectory of a vehicle or robot. Most vehicles
are subject to a limit on the maximum supported acceleration. For example, we know
that human beings found in such vehicles can only sustain an acceleration of some
4.0g [Voshell 2004]. Robots can suffer damage if subjected to accelerations above their
designed limits. Additional practical limits on the changes in this acceleration are
often handled separately using Euler Spirals (clothoids) [Makino 1988; Yao and Joneja
2007].

We first analyze interpolated trajectories obtained using cubic Bézier curves, splines,
and bi-arcs:

— The Bézier interpolation is generated by creating two control points between each
pair of original data points. The two control points next to each data point are chosen
on the line passing through the data point and parallel to the segment joining the
two neighboring data points.

— As an example of spline interpolation we use the variation described in [Yu et al.
2004], which was proposed in the past for the reconstruction of vehicle trajectories
from sparse GPS locations.

Florida Institute of Technology Technical Report, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2 R. Vishen, M. Silaghi

— A C1 continuous curve is a curve whose first derivative is continuous [Bartels et al.
1987]. A Bi-arc is a C1 continuous piecewise curve between two end-points with pre-
defined direction tangents, that is composed of two consecutive arcs. We implement
the two versions of bi-arc algorithms described in [Rossignac and Requicha 1987]
and [Koc et al. 2000a].

Second, we design an interpolation technique tuned to return a C1 class curve with
a small maximal curvature wherever the curvature is defined. Ideally, we want to
approach:

argmin
CX

max
t

curvature (CX(t))

The algorithm constructs a curve by concatenating a set of line and arc segments that
pass through the given data points while maintaining continuity and smoothness of
first order (first derivative of the curve is continuous). An initial and a final direction
can be specified. Unlike the related technique used in Dubins curves [Dubins 1957]
where directions at each point are predefined, we have to compute the directions at
the intermediary points. An arc segment is associated with each data point and each
two consecutive arc segments are joined via a common tangent segment. Each arc or
line segment can be of zero length.

The proposed interpolation techniques proceed sequentially from the first to the last
data point (hierarchically iterating a greedy algorithm). At each point, the arc segment
is selected first by considering the previous arc segment and the next data point. A set
of constraints on the arc segment and its supporting circle are defined for various possi-
ble configurations (relative positions of the previous arc and next data point/direction).

The variations studied for the proposed algorithms are evaluated both: using bench-
marks of GPS point sequences recorded from a vehicle, as well as on benchmarks of
randomly generated points. For randomly generated points, each point is generated
either independently of the previous position, or relative to the previous point. The
benchmarks used in the evaluation as well as the implementation of best proposed
version of the new interpolation software is made available at [Vishen and Silaghi
2013].

In the next section we describe some existing interpolation techniques. Next we in-
troduce the concepts involved in the newly proposed methods based on arc and line
segments. Subsequent sections detail the constraints used for selecting arc segments
for 2-dimensional. We conclude with experimental evaluations.

2. BACKGROUND
In the absence of a tightly constrained model, curves are fitted to data points by tech-
niques such as: linear interpolation [Evans and Kim 1998; Blu et al. 2004], Bézier in-
terpolation [Shao and Zhou 1996; Piegl 1987; Forrest 1972], splines [Unser et al. 1991;
Schumaker 1983] and Dubbin curves [Dubins 1957]. We adopt as metrics of interest
the maximum curvature and path length [Dubins 1957].

Linear interpolation (see Figure 1) is the shortest curve traversing each data point.
The main drawback from our perspective is that obtained paths can have infinite cur-
vature at connection points, being unrealistic for applications such as vehicle trajectory
modeling.

Bézier interpolation was developed at Renault for designing smooth surfaces for
automobiles. While they are easy to manipulate by designers using control points, their
curvature is more difficult to limit, specially when interpolating automatically a large
number of data points. Points on a Bézier interpolation are constructed by weighting
the involved control points with variable weights (see Figure 2). The control points give
the initial and final direction of the curve. A variation weights corresponding points

Florida Institute of Technology Technical Report, Vol. V, No. N, Article A, Publication date: January YYYY.

Minimizing N-Points Interpolation Curvature, Heuristics for Solutions Using Arcs and Lines A:3

Fig. 1. Linear Interpolation

Fig. 2. Bézier curve based interpolation.

Fig. 3. Bi-arc based interpolation.

on a set of circles [Sequin et al. 2005]. The circles give initial and final curvatures but
cannot control intermediary curvature.

Fig. 4. Splines based interpolation.

Spline interpolation is used to fit a polynomial (or a different function) to pass
through a set of points (Figure 4). Some of them can put bounds on the second deriva-
tives, avoiding the need of adjustments based on clothoids [McCrae and Singh 2009;
Bianco and Piazzi 2001; Meek and Walton 1992; Shin and Singh 1990].

Kalman filters have been commonly used to interpolate vehicle trajectory under as-
sumptions of linearity. These assumptions are stronger than our assumptions for the
problem. The Kalman filters are easily used to estimate points at given instants, but

Florida Institute of Technology Technical Report, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4 R. Vishen, M. Silaghi

do not yield C1 continuous curves, presenting discontinuities when new information is
integrated.

A problem that is related to interpolation is the design of a path joining two given
points at specified direction and curvature, and having a bounded average curvature.
This problem appears when joining two highways, and is studied in [Dubins 1957;
Boissonnat et al. 1992; Rossignac and Requicha 1987]. Such a path of minimal length
is called an R-geodesic. Several R-geodesics can be concatenated into a single continu-
ous path to interpolate N points with given direction and curvature at each point, and
the result is called a Dubins curve [LaValle 2006]. Such paths do not have a curva-
ture at each point, and the techniques minimize the average curvature [Dubins 1957]
computed over the points where curvature is defined. Dubins curves have been used
befor to plan paths for robotic vehicles [Barraquand and Latombe 1989; Mirtich and
Canny 1992; Laumond et al. 1994; Svestka and Overmars 1995]. To use Dubins curves
for the interpolation of N points, first one has to find the optimal directions at inter-
mediary points. Bi-arcs are a common member of the family of Dubbin’s curves where
interpolation is done by concatenating only arc segments, being less general but easier
to create [Rossignac and Requicha 1987] (Figure 3). Bi-arcs have been used for data
approximation [Piegl and Tiller 2002] and interpolation [Lee et al. 2007; Koc et al.
2000b; Schönherr 1993]

3. NOTATIONS
Here we provide a summary of the notations introduced in more detail in the subse-
quent sections. The reader can return here for reference.

— 〈xk, yk〉: A point Pk at coordinates xk and yk.
— ||UV ||: The Euclidean distance between point U and point V .
— Ki: The maximum curvature of a path segment [PiPi+1].
— P: A parabola.
—~j: A direction is represented using a vector, e.g., ~j.
— |PiPj |: A line segment between points Pi and Pj .
— |PiPj |: A directed line segment for |PiPj | starting at Pi and ending at Pj .
— ÂC: The directed arc from A to C.
— Ci, Oi, 〈xC

i , y
C
i 〉, Ri: A center of a circle Ci is denoted by Oi = 〈xC

i , y
C
i 〉, and its radius

by Ri.
— Ok

i : The kth candidate for Oi.
— di: A circle Ci has an associated direction.
— tCi

Cj
, T s

j , T e
i : By tCi

Cj
we denote the unique common tangent segment of circles Ci and

Cj , that leaves from circle Ci with the direction di in point T e
i and joins the circle Cj

with direction dj at point T s
j .

— tPi

Cj
: A tangent from point Pi to circle Cj , joining the circle with its direction dj .

— tCi

Pj
, Ti: By tCi

Pj
we denote a tangent from circle Ci to point Pj , leaving the circle with

its direction di at point Ti.
— θsi ,θei : We denote by θsi the angle on Ci where T s

i is found, and with θei the angle on
Ci where we find T e

i .
Si the support line of the tangent segment tPi

Ci−1
from point Pi to circle Ci−1,

— αi: The angle between the support line Si and the segment |PiOi|.
iff if and only if.

Florida Institute of Technology Technical Report, Vol. V, No. N, Article A, Publication date: January YYYY.

Minimizing N-Points Interpolation Curvature, Heuristics for Solutions Using Arcs and Lines A:5

4. INTERPOLATION USING ARCS AND TANGENTS
In this section we introduce the main concepts and techniques we use to interpolate N
points with bounded maximal curvature.

4.1. Formal problem definition
We are given a set of N + 1 points: P0, ..., PN . Each point Pi = 〈xi, yi〉. The problem is
to generate a C1 continuous trajectory passing through each of these points in order
and having a upper bound Ki on the curvature at each point Pi. The curvature on each
trajectory segment [PiPi+1] has to be upper bounded by max(Ki,Ki+1). The trajectory
has to start in P0 according to a given direction vector ~j, and has to reach PN along a
given direction vector ~o.

4.2. Concepts
In the solution proposed here, each given point Pi, i ∈ {0, ..., N} is associated with
a circle Ci of center Oi of coordinates 〈xC

i , y
C
i 〉. Each point Pi belongs to the circle

Ci. The final trajectory consists of a sequence of tangents to these circles together

P1

P2

P3

P

C2

C3

Fig. 5. Basic idea.

with the arcs connecting the points of tangency (see Figure 5). Each arc i contains the
corresponding point Pi, and is connected to the next arc using a common tangent. We
achieve a trajectory of curvature Ki from Pi to Pi+1 iff circle Ci and Ci+1 satisfy the
condition:

min(Ri, Ri+1) ≥
1

Ki
.

We associate each circle Ci with a direction.

Definition 4.1 (Directed Circle). A directed circle is a circle associated with a direc-
tion di ∈ {1,−1} where (1) stands for clockwise, and (-1) stands for counterclockwise.

We also associate line segments |AB| with a direction obtaining a directed segment
|AB| (a vector with the point of application in A) [Larson et al. 2012]. We say of a
directed line segment |AB| that it leaves a circle iff it is tangent to that circle at A. We
say that it joins a circle iff it is tangent to that circle at B.

A directed line segment has, with reference to a directed circle, a direction defined as
follows. A directed line segment |AB| joins or leaves a directed circle Ci with direction 1
iff the center of Ci is on the right-hand side of |AB|. A directed line segment |AB| joins
or leaves a directed circle Ci with direction −1 iff the center of Ci is on the left-hand
side of |AB|. Tangent line segments are considered to be directed:

Definition 4.2 (Directed Tangent). By tCi

Cj
we denote the unique common tangent

segment of circles Ci and Cj , that leaves from circle Ci with the direction di in point T e
i

and joins the circle Cj with direction dj at point T s
j . By tPi

Cj
we denote a tangent from

Florida Institute of Technology Technical Report, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 R. Vishen, M. Silaghi

point Pi to circle Cj , joining the circle with its direction dj . By tCi

Pj
we denote a tangent

from circle Ci to point Pj , leaving the circle with its direction di at point Ti.

LEMMA 4.3. For any given pair of distinct directed circles there exists at most one
directed common tangent leaving from the first circle and joining the second circle.

PROOF. Of the 8 possible directed tangents, only 2 are compatible with each combi-
nation of possible directions for the two circles. Of the 2 compatible tangents, only one
starts from the first circle.

Arcs on circles. Denoting with step() the common step function, the angle where Pi

is positioned on Ci (between −π
2 and 3π

2) is in Equation 1.

θi = arctg

(
yi − yCi
xi − xC

i

)
+ π ∗ step(xC

i − xi). (1)

Pi

i

Fig. 6. Computing θi.

We denote by θsi the angle on Ci where T s
i is found, and with θei the angle on Ci where

we find T e
i . Angles are measured counter-clockwise with respect to the abscissa axis

(See Figure 6).

Definition 4.4. If A, B, and C are three points on a directed circle Ci, we say that
B ∈ ÂC iff B is between A and C when traveling on the circle in its direction from A to
C.

Remark 4.5 (Self Intersecting Arc). A trajectory does not traverse a circle com-
pletely only if Pi is on the arc between the point where the trajectory joins Ci, T s

i ,
and the point where it leaves Ci, T e

i i.e., Pi ∈ T̂ s
i T

e
i . Computationally, Pi ∈ T̂ s

i T
e
i holds

iff:

di ∗ θi ∈ [di ∗ θsi , di ∗ θei] ∨
(
di ∗ θsi ≥ di ∗ θei ∧ di ∗ θi 6∈ (di ∗ θei , di ∗ θsi)

)
,

where di stands for −di.

4.3. General Idea
In order to build a trajectory that passes through the points P0, ..., PN and has a curva-
ture upper bounded by Ki in Pi and by max(Ki,Ki+1) on each segment PiPi+1 one can
draw a set of N + 1 circles, C0,...,CN , each Ci having radius Ri ≥ 1

Ki
such that Pi ∈ Ci.

This is unlike previous approaches to building R-geodesics [Dubins 1957; Rossignac
and Requicha 1987] where each segment is taken separately, and original data points
end up being the connection points of circles.

While in the rest of the paper we discuss heuristics for selecting circles Ci, first
we present the equations for the components of the paths, namely tangent segments
and points of tangency, once the circles are decided. We start with the simpler case of
identical radii (occurring when the bound on the curvature is constant throughout the
interpolation), followed by the general case.

Florida Institute of Technology Technical Report, Vol. V, No. N, Article A, Publication date: January YYYY.

Minimizing N-Points Interpolation Curvature, Heuristics for Solutions Using Arcs and Lines A:7

Identical Radius. Each ordered sequence two distinct directed circles Ci−1 and Ci of
identical radius R and identical direction d are joined by exactly one common directed
tangent of equation:

y − yCi−1 − δi

∆yi

=
x− xC

i−1

∆xi

where
∆yi = yCi − yCi−1

∆xi = xC
i − xC

i−1

∆i =
√
∆2

yi
+∆2

xi

δi = d ∗ R ∗ ∆i

∆xi

The corresponding points of tangency are:

T e
i−1 = 〈xC

i−1 +R ∗ ∆yi

∆i
, yCi−1 +R ∗ ∆xi

∆i
〉

T s
i = 〈xC

i +R ∗ ∆yi

∆i
, yCi +R ∗ ∆xi

∆i
〉

Different Radii. For circles of different radii and directions, the points of tangency
are [Krasilnikov 2010]:

T e
i−1 = Oi−1 +Ri−1 ∗ ~n
T s
i = Oi + di ∗ di−1 ∗Ri ∗ ~n

where ~n is the solution of:
−−−−→
Oi−1Oi ∗ ~n = Ri−1 − di ∗ di−1 ∗Ri (2)

Out of the two possible solutions of Equation 2, we select one such that:

sign(
−−−−→
Oi−1Oi × ~n) = di−1 (3)

where × is the cross-product of the vectors.

Assembling the trajectory from circles. The final trajectory is built according to the
steps in Algorithm 1.

procedure TrajectoryFromCircles(P0,...,PN ,C0,...,CN) do
start with P0;
forever do

stop when you are in PN ;
when you are in Pi go on Ci to T e

i ;
when you are in T e

i go on tCi
Ci+1

to T s
i+1;

when you are in T s
i go on Ci to Pi;

ALGORITHM 1: Algorithm to follow a path given N+1 points on N+1 circles

Remark 4.6 (Directed endpoints). The circles C0 and CN have to be selected such
that they are tangent to the direction vector ~jat P0, and to ~o at PN , respectively.

Florida Institute of Technology Technical Report, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 R. Vishen, M. Silaghi

P1

P2

P3

P4

P5P6

Fig. 7. Same direction circles, with random selection of centers.

Free endpoints. In case there is no constraint to start or end the trajectory according
to vectors ~jor ~o, only points Pi, i ∈ {1, ..., N − 1} are associated with circles Ci. This can
be modeled by setting circles C0 and CN to have radius 0. The trajectory contains a
tangent from point 0 to circle C1 and from circle CN−1 to point PN .

5. HEURISTICS FOR ASSOCIATING CIRCLES TO POINTS
We introduce the studied heuristics sequentially, starting from the simpler ones.

5.1. Circles of same direction
First we cover increasingly sophisticated heuristics for selecting circles where these
circles have identical direction. The notation is kept general from the beginning, (e.g.
the direction of the circle Ci is still denoted di) since the equations will be referred in
subsequent sections.

Centers at constant translation. A first simple heuristic to select the circles is to
select each center Oi as a translation of Pi along the negative direction of the ordinate
axis. Therefore, Ci can be defined as the clockwise1 directed circle:

(x− xC
i)

2 + (y − yCi)
2 = R2

i

where xC
i = xi and yCi = yi −Ri.

Circles tangent at the given points. An observation is that the trajectories obtained
using the previous heuristic self-intersect in many cases (as per Remark 4.5). Figure 8
illustrates an example of such self-intersections and of the opportunities to reduce the
obtained path length. One of the reasons for which this happens is that frequently the
point Pi is relatively far from T s

i on Ci. The next discussed strategy is to select the
circles such that Pi = T s

i . This happens if the circles are selected to be tangent in Pi at
t
Ci−1

Pi
.

C1 is built to be tangent to P0P1 at P1. The equation of P0P1 is:

(y − y0)(x1 − x0) = (x− x0)(y1 − y0). (4)

1If the translation is along the negative direction of the ordinate axis then the direction of the circle would
be selected as counter-clockwise.

Florida Institute of Technology Technical Report, Vol. V, No. N, Article A, Publication date: January YYYY.

Minimizing N-Points Interpolation Curvature, Heuristics for Solutions Using Arcs and Lines A:9

P1

P2

P3

P4

P5

P6

Fig. 8. Same direction circles, with centers under the points.

P1

P2

P3

P4

P5

P6

Fig. 9. Same direction circles tangent at the given point.

Pi-1

Pi
Ci-1

Oi-1

Ri-1
h

a

(ax,ay)

Ti-1

Fig. 10. Computing Ti−1.

Florida Institute of Technology Technical Report, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 R. Vishen, M. Silaghi

The equation of tCi−1

Pi
(using Figure 10) is:

a =
R2

i−1

||PiOi−1||

h =
√
R2

i−1 − a2

ax = xC
i−1 +

a

||PiOi−1||
∗ (xi − xC

i−1)

ay = yCi−1 +
a

||PiOi−1||
∗ (yi − yCi−1).

Ti−1 = 〈ax −
di ∗ h ∗ (yi − yCi−1)

||PiOi−1||
, ay +

di ∗ h ∗ (xi − xC
i−1)

||PiOi−1||
〉

(y − Ti−1(y))(xi − Ti−1(x)) = (x− Ti−1(x))(yi − Ti−1(y)) (5)

The perpendicular on t
Ci−1

Pi
in Pi is:

(x− xi) ∗
xi − Ti−1(x)

−||Ti−1Pi||
= (y − yi) ∗

yi − Ti−1(y)

||Ti−1Pi||
(6)

Therefore di = di−1 and:

Oi = 〈xi + di−1 ∗Ri−1 ∗
yi − Ti−1(y)

||Ti−1Pi||
, yi − di−1 ∗Ri−1 ∗

xi − Ti−1(x)

||Ti−1Pi||
〉

5.2. Circles of different directions
In the next improved heuristic we select di based on the position of the center Oi−1 and
the next point Pi+1 with respect to t

Ci−1

Pi
. If the center Oi−1 and point Pi+1 lie on the

same side of the tangent tCi−1

Pi
, then di = di−1, otherwise di = −di−1. In the case when

the they are both on the line supporting t
Ci−1

Pi
then di is set to a default value.

The function sign(U,A,B) returns 1 if U is a point on the left hand side of the vector
−−→
AB, and -1 if it is on its right. If U is a point on the support of the vector −−→

AB then the
function returns a default value (1 or -1). If:

side(U,A,B) = sign((yu − yA)(xB − xA)− (xU − xA)(yB − yA)). (7)

di = side(Oi−1, Ti−1, Pi) ∗ side(Pi+1, Ti−1, Pi) ∗ di−1 (8)

then

Oi = 〈xi + di ∗Ri−1 ∗
yi − Ti−1(y)

||Ti−1Pi||
, yi − di ∗Ri−1 ∗

xi − Ti−1(x)

||Ti−1Pi||
〉 (9)

5.3. Reducing the number of loops
Next we introduce heuristics for selecting circles. These heuristics aim to reduce in-
terpolation length at a given maximum curvature. Some of the evaluated heuristics
are designed to avoid selecting circles that require arc segments larger than 2π (as per
Remark 4.5).

Florida Institute of Technology Technical Report, Vol. V, No. N, Article A, Publication date: January YYYY.

Minimizing N-Points Interpolation Curvature, Heuristics for Solutions Using Arcs and Lines A:11

Remark 5.1. We do not guarantee that we completely avoiding loops on any trajec-
tory segment between two given points, but our procedure reduces their occurrences
to the case where consecutive points are very close to each other (relative to the in-
verse of the curvature), as well as for special starting or terminating directions. This
is illustrated in the experimental section.

The described heuristic is greedy. Circles are defined sequentially starting with circle
C0.

(a) P

(b)

Pi-1

Pi

Pi+1

Ci-1

Oi-1
li
'

li
''

Fig. 11. Selecting the side of the center: (a) Oi−1 and point Pi+1 on the same side of Si, (b) Oi−1 and point
Pi+1 on the opposite sides of Si.

CONDITION 1. At each point Pi, the circle is built to respect the following conditions
(Figure 11):

i) the circle circumference contains point Pi.
ii) the circle’s center is interior to the angle formed by:

a) the support line Si of the tangent tPi

Ci−1
from point Pi to circle Ci−1 (Equation 5), or

of the segment |P0P1| for circle C1, (Equation 4).
b) the perpendicular l′i on Si in the point Pi, found in the half-plane bounded by Si

and containing Pi+1 (see Equation 6 and Section 5.2). In case Pi+1 ∈ Si then either
half-plane may be selected, but the half-plane not containing Pi+2 is preferred (e.g.,
replacing Pi+1 with Pi+2 in Equation 9 and 8).

iii) the circle’s center is also interior to the angle formed by:
a) the semi-line l′i at condition ii.b)
b) the perpendicular l′′i in Pi on PiPi+1 and located in the half-plane bounded by Si

and containing Pi+1.

Florida Institute of Technology Technical Report, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 R. Vishen, M. Silaghi

iv) di is 1 if the center of Ci (or Pi+1) is to the right of directed segment t
Ci−1

Pi
, and -1

otherwise (see Equation 7 and 8).

We have two cases, namely where the current circle has the same direction as the
previous one (di = di−1 shown in Figure 11.a), or when the new circle has opposite
direction (di 6= di−1 as in Figure 11.b). When Pi+1 ∈ Si, one of the other two cases is
picked randomly.

Pi-1

Pi

Pi+1

Ci-1

Oi-1

Si

t
Ci-1

C

li
'

Fig. 12. Conditions for Same Direction Circle

Case I: Same direction circles. When the circles Ci−1 and Ci are on the same side of
Si, we first attempt to ensure that T e

i−1 is in the first half-circle after Pi−1 while T s
i−1

is in the first half-circle prior Pi−1. Whenever these preferences can be accomplished,
then T e

i−1 6∈ ̂T s
i−1Pi−1. We therefore give preference to selections of Ci such that it is

intersected by the common tangent tCi−1

Ci
in its half-circle prior to Pi (see Figure 12).

CONDITION 2. The center Oi is preferably selected on the interior bisector of the
angle formed by Si and |PiPi+1|.

LEMMA 5.2. If circles are always selected according to Condition2, then for any in-
termediary point Pi−1, Pi will be on the side of |Pi−1Oi−1| for which

side(Pi, Pi−1, Oi−1) = di−1

.

PROOF. Based on Conditions 1 and 2, as seen in Figure 12, the condition is satisfied
for both possible cases by selection Oi such that Pi+1 is on the right hand side of vector
PiOi. Also, Pi+1 will be on the same side of Si as Oi, and therefore on the same side of
the tangent in Pi (the angle ∠OiPiPi+1 ≤ 90).

LEMMA 5.3. The fact that the point of tangency with Ci is in the half-circle prior to
Pi is ensured by the paragraph (ii.b) in Condition 1.

PROOF. See Figure 11.

Let us denote with ti the tangent to Ci in point Pi (i.e., ti−1 is the tangent to Ci−1 in
point Pi−1 as in Figure 13). In order to ensure that T e

i−1 is in the half-circle after Pi−1

(in the direction of the trajectory), the circle Ci should not intersect ti−1. This condition
is written as:

Ri ≤ ||Oiti−1|| (10)

Florida Institute of Technology Technical Report, Vol. V, No. N, Article A, Publication date: January YYYY.

Minimizing N-Points Interpolation Curvature, Heuristics for Solutions Using Arcs and Lines A:13

Pi+1

Ci-1

Oi-1

i-1

P

li
'

Fig. 13. Parabola Constraint

where by ||Oiti−1|| we denote the distance from point Oi to line ti−1. Equation 10 states
that the center Oi of the circle Ci has to be found inside the parabola P defined by the
ti−1 as directrix and Pi as its focus (Figure 13).

Let C ′
i be a circle of center Pi and radius Ri. In case circle C ′

i intersects parabola
P, let O1

i and O2
i be the intersections of P with the circle C ′

i. The center Oi can be
anywhere on C ′

i between O1
i and O2

i . We will select any of the two points, O1
i and O2

i ,
that satisfy the Condition 1(ii).

Ri-1

αi

Pi-1

Pi

Pi+1

Ci-1

Ci

T

i
'

Fig. 14. Constraints for opposite direction circles.

Case II: Opposite direction circles. Now let us consider the case where circles Ci−1

and Ci have opposite directions, as in Figure 14. We have to find constraints on the
location of the circle center Oi such that Ci does not intersect or contain Ci−1. This
constraint is needed in order for the two circles to have a common directed tangent in
the context of Condition 1. We will express the constraint in terms of angle αi between
the support line Si and the segment |PiOi|. The triangle ∆Oi−1PiTi−1 is right angle
(see Figure 14), therefore:

||Oi−1Pi|| =
√
||PiTi−1||2 +R2

i−1

In triangle ∆Oi−1OiPi, in order for Ci to not intersect Ci−1 we require that Ri−1 +
Ri ≤ ||Oi−1Oi||. Based on cosine theorem:

(Ri−1 +Ri)
2 ≤ ||Oi−1Oi||2 = ||PiOi−1||2 +R2

i − 2||PiOi−1||Ri cos∠OiPiOi−1

Florida Institute of Technology Technical Report, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 R. Vishen, M. Silaghi

Therefore:

Ri ≤
||PiTi−1||2

2Ri−1 + 2||PiOi−1|| cos∠OiPiOi−1

and

cos∠OiPiOi−1 ≤ ||PiOi−1||2 +R2
i − (Ri−1 +Ri)

2

2||PiOi−1||Ri

cos∠OiPiOi−1 ≤ ||PiTi−1||2 − 2Ri−1Ri

2||PiOi−1||Ri

The center Oi has to be in the semi-plane bounded by Si not containing Oi−1. If we
denote with bi the value of max(−1,min(1, cos∠OiPiOi−1)), we conclude that the center
Oi has to be on the ray (half-line) bounded by Pi and forming with Si an angle:

α′
i ≥ arccos bi − arctg

Ri−1

||PiTi−1||
(11)

To satisfy Condition 1(iii), the center Oi has to be on the ray (half-line) bounded by
Pi and forming with Si an angle

α′′
i ≥ ∠Ti−1PiPi+1 −

π

2
(12)

From Equations 11 and 12, the center Oi has to be on the ray (half-line) bounded by Pi

and forming with Si an angle:
αi ≥ max(α′

i, α
′′
i)

In our experiments we evaluate the cases αi = max(α′
i, α

′′
i) as well as the case where

αi is selected as the bisector of ∠Ti−1PiPi+1. The center Oi is given by:

〈Ti−1(x) +
δx ∗ ki + di ∗ δy ∗ vi)

||Ti−1Pi||
, Ti−1(y) +

δy ∗ ki − di ∗ δx ∗ vi)
||Ti−1Pi||

〉

where δx = xi − Ti−1(x), δy = yi − Ti−1(y), vi =
√
u2
i − k2i , k =

||Ti−1Pi||+u2
i−R2

i

2||Ti−1Pi|| , and

ui =
√
R2

i + ||Ti−1Pi||2 − 2 ∗Ri ∗ ||Ti−1Pi|| ∗ cosαi.

i
'

Pi

Pi+1

Ai

T

Fig. 15. Computing Ri from αi.

Florida Institute of Technology Technical Report, Vol. V, No. N, Article A, Publication date: January YYYY.

Minimizing N-Points Interpolation Curvature, Heuristics for Solutions Using Arcs and Lines A:15

Curvature optimization. When searching for a circle Ci of minimum curvature that
does not intersect or contain Ci−1 and Pi+1, we use the following expression for deriving
Ri given some value for αi. In Figure 15 we build a parallel through Oi−1 to Si and let
Ai be the base of the perpendicular from Oi on it. Oi−1Ai||Si and OiAi ⊥ Si. In the
right triangle ∆OiOi−1Ai:

(Ri +Ri−1)
2 ≤ ||OiOi−1||2 = ||OiAi||2 + ||AiOi||2

i.e.:

(Ri +Ri−1)
2 ≤ (||PiTi−1|| −Ri cosαi)

2 + (Ri−1 +Ri sinαi)
2

And the condition is:

Ri ≤
||PiTi−1||2

2(Ri−1 + ||PiTi−1|| cosαi −Ri−1 sinαi)

6. ADAPTATION OF COMMON TECHNIQUES
In the following subsections we specify our adaptations of several commonly used in-
terpolation techniques.

Fig. 16. Weaknesses with splines

6.1. Splines
The spline algorithm we adapt for our problem is described in [Yu et al. 2004]. The
techniques is used to reconstruct the trajectory of a moving object using sparse data
points(position and velocity) recorded at certain frequency. The technique is intended
for representing a trajectory with high accuracy while storing relatively small amount
of data points. The velocity of the moving object at given points is an input parameter.
Our inputs in this report do not contain velocity and a modification was applied (tuning
a constant parameter in its place). An example is shown in Figure 19. Weaknesses, in
terms of what can go wrong (tight loops of high curvature that are difficult to avoid),
are illustrated in Figure 16. We also specify a direction for this velocity. The direction
vector for each point Pi, except for P0 and PN−1, is parallel to the direction vector
−−−−−−→
Pi−1Pi+1. For P0 the direction vector is parallel to −−−→

P0P1, and for PN−1 the direction
vector is parallel to −−−−−−−→

PN−2PN−1.

6.2. Bézier
We use cubic Bézier curves for our experiments. A cubic Bézier curve between two
given end-points is a curve connecting them and designed to be smooth. Its directions
in the end-points are given by two control points. For our experiments with the Bézier
interpolation we define a heuristic to generate the control points for each pair of data
points. For each point Pi, except P0 and PN−1, two points P i

A and P i
B(See Figure 17) are

Florida Institute of Technology Technical Report, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 R. Vishen, M. Silaghi

defined on a line parallel to |Pi−1Pi+1| passing through Pi, where ||PiP
i
A|| and ||PiP

i
B ||

is some fraction, f , of ||Pi−1Pi|| and ||PiPi+1|| respectively. Points P i
B and P i+1

A are then
used as control points for generating Béziercurve from Pi to Pi+1. For P0 we define
P 0
B=P 1

A, and P 0
A is not defined. Similarly for PN−1 we define PN−1

A to be the same as
PN−2
B , and PN−1

B is not defined.

P0

P1

P2

P3

P4 P5

P6

P1A

P1B

P2A

P2B
P3B

P4B

P5B

P3A

P4A

P5A

Fig. 17. An example of Cubic Bézier based interpolation.

6.3. Bi-arcs
A version of Bi-arcs are described in [Rossignac and Requicha 1987]. The Bi-arcs is a
techniques to connect two points P1 and P2 with defined direction tangents using two
arcs. The joining point P12 of the two arcs is on a common tangent making the curve
between the points continuous. The approach described in [Rossignac and Requicha
1987] uses the ratio, ρ, between ||P1P12|| and ||P12P2|| as a parameter to generate a
bi-arc between the points P1 and P2. In order to minimize the maximum curvature
between the two points we want to minimize the curvature difference of the two arcs.
To achieve this we generate bi-arcs using two different approaches. The first approach
searches for an optimal value of ρ for which the curvature difference is the minimum
possible. The second approach uses an analytical technique proposed in [Koc et al.
2000a] to achieve the minimum curvature difference between the two arcs. The sec-
ond approach is significantly inexpensive(computationally) in comparison to the first
approach. However, as we shall see in the next section, our experiments suggest that
the two approaches yield different solutions.

The direction vector for each point Pi, except for P0 and PN−1, is set parallel to the
direction vector −−−−−−→

Pi−1Pi+1. For P0 the direction vector is parallel to −−−→
P0P1, and for PN−1

the direction vector is parallel to −−−−−−−→
PN−2PN−1. Using the points and their corresponding

direction vectors an initial bi-arc solution is generated and then we perform a hill-
climbing search for a local optima while updating the direction vectors by ±∆ radians
(±∆ can be reduced/halved on convergence up to a minimum value). An optima is
reached when the global maximum curvature cannot be minimized. Each search iter-
ation attempts to minimize the curvature difference between two consecutive bi-arcs
segments of a bi-arc interpolation solution.

7. EXPERIMENTS
We conduct experiments to compare our solutions building on general interpolation
techniques: Bézier, Splines, Bi-arcs (see Section 6) with the new specialized algorithms
based on R-geodesics (Section 4). We use two types of benchmarks:

Type A) Random data points: These experiments are setup to use N random
points, generated sequentially where each point has a random ordinate and follows
the previous point at a positive random displacement along the abscissa axis on an
unbounded Cartesian plane. Pi(y) is uniform within the range of ±50 from Pi−1(y),

Florida Institute of Technology Technical Report, Vol. V, No. N, Article A, Publication date: January YYYY.

Minimizing N-Points Interpolation Curvature, Heuristics for Solutions Using Arcs and Lines A:17

and Pi(x) is uniform within the range of 50 from Pi−1(x). For all our 1200 benchmarks
of this type: N = 10, P0(x)=0 and P0(y)=50.
Type B) GPS points: GPS readings (latitude and longitude) are recorded while
driving a vehicle. These recorded points are then used as input data points. The used
recorded data is based on approximately 1000 GPS points.

(a) IBC
25 where f = 25. (b) IBC

35 where f = 35.

(c) IBC
45 where f = 45. (c) IBC

55 where f = 55.

Fig. 18. Bézier curve based interpolation using different values for f .

Table I.

600 Scenarios Maximum curvature Curve length
Parameter Avg. Relative Diff.(%) Avg. Relative Diff.(%)

f=15 1.79 126.59 436.10 -3.86
f=25 0.93 17.64 443.93 -2.13
f=35 0.79 0.00 453.60 0.00
f=45 0.96 21.40 465.07 2.53
f=55 2.24 184.06 478.42 5.47

Relative comparison of solutions using IBC
f with different values of f .

Bézier(IBC
f):. The adaptation of the Bézier interpolation algorithm, as described in

Section 6.2, requires defining two control points between each pair of input data points.
Previously we specified how to define the control points in terms of the parameter f .
Most experiments presented in this paper employ f = 35, a value that we show to
perform well on Type A benchmark scenarios. Table I presents the statistics of results
obtained using 600 different examples of Type A benchmarks with the values of f
shown in the first column. The second column is the average of the maximum curva-
ture for all examples, and the third column shows the average relative difference in
comparison to results obtained using f = 35.

Florida Institute of Technology Technical Report, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 R. Vishen, M. Silaghi

(a) IS1 where v = 1. (b) IS20 where v = 20.

(c) IS40 where v = 40. (d) IS60 where v = 60.

Fig. 19. ISv interpolation solutions using different values for v.

Table II.

600 Scenarios Maximum curvature Curve length
Parameter Avg. Relative Diff.(%) Avg. Relative Diff.(%)

v=5 12.86 650.38 428.59 -0.73
v=10 3.37 96.83 429.95 -0.42
v=15 1.71 0.00 431.76 0.00
v=20 2.16 26.21 433.93 0.50
v=25 70.96 4040.80 436.45 1.09

Relative comparison of solutions using ISv with different values of v.

Splines(ISv):. For the version of Splines algorithm in Section 6.1 we experiment with
five different values for v (see Table II, Figure 19). Figure 19 shows the ISv interpolation
of an example set of data points. It can be observed that at v = 1, the interpolation is
closer to a linear interpolation. As the value of v is increased the maximum curvature
of the resulting curve may increase. This relationship is strongly dependent on the
input data points. For the scenarios generated in our experiments, ISv reaches its best
performance at v = 15 (see Table II).

Tangent-Arc:. We evaluate three families of heuristics for the techniques based on
R-geodesics (discussed in Section 5):

a) IAT
a : Circle center Oi is placed at constant translation from point Pi and all circles

have the same direction (see Figure 20(a)).
b) IAT

b : Circle center Oi is placed on a perpendicular on the tangent from Ci−1 to the
point Pi and all circles have the same direction (see Figure 20(b)).

c) Circle center Oi is placed as described in Section 5.3. For this heuristics we evaluate
four alternatives ways of choosing the parameter αi:
1) IAT

c1 : Set αi to the low limit of its range (see Figure 21(a)).
2) IAT

c2 : Set αi to the upper limit of ts range (see Figure 21(b)).
3) IAT

c3 : Set αi to the bisector of the angle describing the space of its possible locations
(see Figure 22(a)).

4) IAT
c4 : Initially set αi as per the previous case IAT

c3 and then follow the gradient
searching for a local optima in its neighborhood (see Figure 22(b)).

Florida Institute of Technology Technical Report, Vol. V, No. N, Article A, Publication date: January YYYY.

Minimizing N-Points Interpolation Curvature, Heuristics for Solutions Using Arcs and Lines A:19

(a) IAT
a (b) IAT

b

Fig. 20. Tangent-Arc based interpolation.

(a) IAT
c1 (b) IAT

c2

Fig. 21. αi set to: (a) lower limit, (b) upper limit

(a) IAT
c3 (b) IAT

c4

Fig. 22. αi set to: (a) angle bisector, (b) local optima close to bisector

Table III.

600 Scenarios Maximum curvature Curve length
Algorithm Avg. Relative Diff.(%) Avg. Relative Diff.(%)

IAT
a 0.0517 -21.14 1667.55 214.12

IAT
b 0.0688 5.03 1118.45 110.68

IAT
c1 0.0672 2.53 531.17 0.06

IAT
c2 0.0949 44.89 581.44 9.53

IAT
c3 0.0763 16.42 518.45 -2.34

IAT
c4 0.0655 0.00 530.87 0.00

The comparison of Tangent-Arc algorithms relative to IAT
c4

An interesting property of the algorithm obtained in the case IAT
a is that there is

no lower bound on the maximum curvature of the solution. To comparatively evaluate
the length it can offer for its results, in our experiments we set the upper bound on
the maximum curvature to the smallest value obtained from of the other tangent-arc
algorithms. This allows IAT

a to be the best performing technique with respect to max-
imum curvature. However, there is a trade off between the total length of the curve
and the maximum curvature (see Table III). Its curve length is orders of magnitude
worse. All the other tangent-arc algorithms perform an iterative search for the maxi-

Florida Institute of Technology Technical Report, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20 R. Vishen, M. Silaghi

mum curvature curve that passes through each data point. The search stops when the
maximum curvature cannot be improved without ignoring one or more data points.
Table III shows statistical analysis of the tangent-arc algorithms. The second column
in the table shows the maximum curvature averaged over 600 test cases. The forth
column shows the average curve length. The table also shows average relative dif-
ference in maximum curvature and total length when taking IAT

c4 as reference (IAT
c4

being observed an outstanding method). After IAT
a , IAT

c4 has the best performance in
terms of maximum curvature, among considered candidates. However, it is 2.34% be-
low IAT

c3 with respect to curve length. Since we give higher priority to the maximum
curvature, we conclude that IAT

c4 is the best among the tangent-arc algorithms without
self-intersecting loops. Further we compare IAT

c4 against candidates based on general
interpolation techniques. Table IV shows this comparison. The third and fifth columns
show the relative performance of each algorithm as compared to IAT

c4 , using 600 dif-
ferent Type A test cases. Based on the maximum curvature, IAT

c4 outperforms all the
other algorithms. IBC

35 comes in second with 968.8% relative deterioration on maximum
curvature with respect to IAT

c4 .

Table IV.

600 Scenarios Maximum curvature Curve length
Algorithm Avg. Avg. Relative Diff.(%) Avg. Avg. Relative Diff.(%)

IS
15 1.7192 2524.21 447.89 -15.63

IBC
35 0.7002 968.80 469.22 -11.61

IAT
c4 0.0655 0.00 530.87 0.00

Comparison of general interpolation algorithms relative toIAT
c4

(a) Initial interpolation. (b) Local optima after 6 iterations.

Fig. 23. IBA
ρ interpolation result

(a) Initial interpolation. (b) Local optima after 9 iterations.

Fig. 24. IBA
a interpolation result

Florida Institute of Technology Technical Report, Vol. V, No. N, Article A, Publication date: January YYYY.

Minimizing N-Points Interpolation Curvature, Heuristics for Solutions Using Arcs and Lines A:21

Table V.

Maximum curvature Curve length
Algorithm Avg Avg

IBA
a 0.08 458.5

IBA
ρ 0.10 458.8

Comparison of IBA
a and IBA

ρ based on maximum curvature
and total length using 20 different scenarios.

Table VI.

Comparison based on computation time(seconds).
Algorithms Avg.
IAT
c4 [TT] 0.00121441

IBA
a [TT] 0.00135743

IBA
ρ [TT] 69.75591109

IBA
ρ [FRT] 69.75522075

Comparison of IBA
ρ and IBA

a based on total computation
time using 20 different scenarios. The comparison is with
respect to IAT

c1 . TT: total time to find solution, FRT: find ρ
ratio time, total time spent in finding value for ρ

Bi-arcs(IBA):. As described in Section 6.3 we experiment with two different ap-
proaches to create a bi-arc curve between two given points. The first approach, IBA

ρ ,
requires finding a value for parameter ρ which minimizes the curvature difference
between the two arcs. This is achieved by performing an iterative search for a ratio
between 0 and 1000 while increasing the allowed curvature difference. The algorithm
starts with the curvature difference of 1 and linearly increases the difference while
searching a value for ρ until a bi-arc is found. Figure 23 is an example of interpo-
lation using this approach. The second approach, IBA

a , uses the analytical technique
described in [Koc et al. 2000a] (see Figure 24). We perform Hill-climbing on solutions
from both approaches in search for a local optima. As specified in Section 6.3, for each
iteration the direction vectors are updated by Hill-climbing until convergence with a
resolution of ∆ = 0.1 radians.

Figures 23(a) and 24(a) show the results from both approaches for a given set of data
points, after the first step of Hill-climbing. Figures 23(b) and 24(b) show results after
convergence. For the given example, the two approaches yield close results with re-
spect to maximum curvature. However, in Table V we present statistics that show IBA

a
performs better in comparison to IBA

ρ . While the two techniques performed similar on
the total length, the maximum curvature result for IBA

a was 20% better compared to
IBA
ρ . This table was built with only 20 test cases of Type A benchmarks, since algo-

rithm IBA
ρ is particularly slow (see Table VI) and the presented results to not warrant

further investigations for it.

Combined Tangent-Arc and Bi-arcs (IBA
a +IAT

c4):. This algorithm is similar to the
IBA
a technique described in Section 6.3 (see Figure 26), except that we initialize the

direction vectors for the data points with their value as generated using IAT
c4 . Note that,

due to their limitation to using only arc segments, the Bi-arcs are not powerful enough
to model the result of IAT

c4 as it is illustrated in Figure 25, getting poorer results.
Table VIII presents statistical data comparing the results of IAT

c4 and the combined
IBA
a +IAT

c4 . Based on the 1200 test cases, IAT
c4 is 8.22% better than IBA

a +IAT
c4 with respect

to curvature. However, an interesting observation here is that when initialized with
IAT
c4 , the resulting maximum curvature of IBA

a is improved by 65%.

Florida Institute of Technology Technical Report, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22 R. Vishen, M. Silaghi

(a)IAT +IBA
a (b)IAT

Fig. 25. The failure of IBA
a to capture the full quality of the output of IAT

Fig. 26. Combined IAT
c1 and IBA

a technique. The solution obtained in this case is already a local optima

(a)IAT
c4 (b)IAT

c4 +IBA
a

Fig. 27. Solution obtained with IAT
c4 for a set of approximately 1000 GPS points recorded while driving.

Finally we compare the best performing techniques on Type B data. We consider an
example of GPS points recorded while driving. We use IAT

c4 , IBA
a , and the combined

IAT
c4 +IBA

a algorithm to compare the results. The interpolation result for the best per-
forming algorithm is shown in Figure 27. The computation corresponds to the assump-
tion that the recording vehicle is moving at a constant speed (the bound on maximum
curvature is constant along the trajectory). IAT

c4 gives the best result of 1
1.94 meters as

the maximum curvature, and the combined IAT
c4 +IBA

a produce the second best result

Florida Institute of Technology Technical Report, Vol. V, No. N, Article A, Publication date: January YYYY.

Minimizing N-Points Interpolation Curvature, Heuristics for Solutions Using Arcs and Lines A:23

Table VII.

600 Scenarios Maximum curvature Curve length
Algorithm Avg. Relative Diff.(%) Avg. Relative Diff.(%)

IS
15 1.7192 2524.21 447.89 -15.63

IBC
35 0.7002 968.80 469.22 -11.61

IBA
a 0.1064 62.38 499.33 -5.94

IAT
c1 0.0672 2.53 531.17 0.06

IAT
c4 0.0655 0.00 530.87 0.00

The comparison is with respect to IAT
c4

Table VIII.

1200 Scenarios Maximum curvature Curve length
Algorithm Avg. Relative Diff.(%) Avg. Relative Diff.(%)

IBA
a 0.114 73.005 488.983 -6.231

IAT
c4 +IBA

a 0.071 8.226 522.110 0.120
IAT
c1 0.067 2.668 524.449 0.569

IAT
c4 0.066 0.000 521.481 0.000

The comparison is with respect to IAT
c4

with maximum curvature of about 1
1.63 meters . The IBA

a technique produces the curve
of maximum curvature 1

0.99 meters .

8. CONCLUSIONS
We address the problem of interpolating a set on N data points with C1 class curves,
while minimizing the maximum curvature in all points where it is defined, and min-
imizing curve length. We extend a family of techniques constructing an interpolation
by concatenating arcs and lines. We also construct several solutions based on general
interpolation algorithms. A set of reported experiments single out one of the proposed
methods using R-geodesics to have a promising trade-off: significantly better curvature
for slightly longer path.

For the evaluation of the aforementioned interpolation techniques we use two mea-
surements - global maximum curvature, and total interpolation length. Given two
interpolation solutions for a set of data points we prefer the curve with lower maxi-
mum curvature. In case of curves with equal maximum curvatures we prefer the one
with shorter interpolation length. In the Experiments Section we test and compare the
eleven studied algorithms using over 1000 examples of randomly generated scenarios,
as well as recorded benchmark data with approximately 1000 GPS points. In this pa-
per we evaluate: 6 variants of new R-geodesics based techniques (IAT), 2 variants of
Bi-Arc interpolation with hill-climbing (IBA), piece-wise Bézier with hypothesized con-
trol points (IBC

f), piece-wise constructions with a version of Splines (ISv), and Bi-Arc
initialized with R-geodesics (IAT+IBA).

From the six studied versions of IAT , two stand out for special trade-offs: a version
that allows for loops on intermediary segments (IAT

a) and a version that searches for
the locally best parameters of the next R-geodesic (IAT

c4). From described results it is
observed that IAT

a has the best performance on maximum curvature. However, the
technique allows self-intersecting loops that make the solution less desirable due to
significantly increased total length (214% longer than IAT

c4).
The best technique based on general interpolation IBA

a is 73% worse than IAT
c4 in

curvature with a 6% improvement in curve length. Using IAT
c4 to initialize IBA

a leads
to an improvement of 65% in curvature with the trade-off of 6% on curve length.

Florida Institute of Technology Technical Report, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24 R. Vishen, M. Silaghi

We compare IAT with methods based on general interpolation approaches such as
IBC
f and ISv . The version of IBC

f with the parameter f defining the closeness of the
control points to end-points equal to 35% (IBC

35) is the best performing method among
the candidates based on general interpolation techniques (other than IBA). However,
in comparison to IAT

c4 , the result on maximum curvature is worse by approximately
968%. The result on total length is nevertheless approximately 11% better compared to
IAT
c4 .
A remaining open question is whether a global optima can be achieved and proven.

REFERENCES
J. Barraquand and J.C. Latombe. 1989. On nonholonomic mobile robots and optimal maneuvering. In Intel-

ligent Control, 1989. Proceedings., IEEE International Symposium on. IEEE, 340–347.
Richard H. Bartels, John C. Beatty, and Brian A. Barsky. 1987. An introduction to splines for use in computer

graphics and geometric modeling. M. Kaufmann Publishers.
Guarino Lo Bianco and Piazzi. 2001. Optimal Trajactory Planning With Quantic G2-Splines. Proc. of IEEE

Inteligent Vehicles Symposium.. (2001).
T. Blu, P. Thévenaz, and M. Unser. 2004. Linear interpolation revitalized. Image Processing, IEEE Transac-

tions on 13, 5 (2004), 710–719.
Boissonnat, Cerezo, and Leblond. 1992. Shortest Path of Bounded Curvature in the Plane. Proc. of the IEEE

International Conference on Robotics and Automation, pp.:2315-2320. (1992).
L. Dubins. 1957. On curves of minimal length with a constraint on average curvature and with prescribed

intital and terminal position and tangents. American journal of mathematics, Vol.79(3):497-517. (1957).
O. D. Evans and Y. Kim. 1998. Efficient implementation of image wraping on a multimedia processor. Real-

Time Image., Vol.4:417-428. (1998).
A.R. Forrest. 1972. Interactive interpolation and approximation by Bézier polynomials. Comput. J. 15, 1

(1972), 71–79.
Bahattin Koc, Yuan-Shin Lee, and Yawei Ma. 2000a. Max-Fit Biarc Fitting to STL Models for Rapid Proto-

typing Processes. Proceedings of the sixth ACM symposium on Solid modeling and applications. (2000).
B. Koc, Y. Ma, and Y.S. Lee. 2000b. Smoothing STL files by Max-Fit biarc curves for rapid prototyping. Rapid

Prototyping Journal 6, 3 (2000), 186–205.
Ivan Krasilnikov. 2010. ACM ICPC training and related sites. http://github.com/infnty/acm/raw/master/lib/

geometry/CircleTangentsViz.jar. (2010).
Larson, Hostetler, and Edwards. 2012. Calculus (seventh ed.). Cengage Learning.
J.P. Laumond, P.E. Jacobs, M. Taix, and R.M. Murray. 1994. A motion planner for nonholonomic mobile

robots. Robotics and Automation, IEEE Transactions on 10, 5 (1994), 577–593.
Steven M. LaValle. 2006. PlanningAlgorithms. Cambridge University Pres.
T.M. Lee, E. Lee, and M. Yang. 2007. Precise bi-arc curve fitting algorithm for machining an aspheric surface.

The International Journal of Advanced Manufacturing Technology 31, 11 (2007), 1191–1197.
H. Makino. 1988. Clothoidal InterpolationA New Tool for High-Speed Continuous Path Control. CIRP

Annals-Manufacturing Technology 37, 1 (1988), 25–28.
J. McCrae and K. Singh. 2009. Sketching piecewise clothoid curves. Computers & Graphics 33, 4 (2009),

452–461.
DS Meek and DJ Walton. 1992. Clothoid spline transition spirals. Math. Comp. 59, 199 (1992), 117–133.
B. Mirtich and J. Canny. 1992. Using skeletons for nonholonomic path planning among obstacles. In Robotics

and Automation, 1992. Proceedings., 1992 IEEE International Conference on. IEEE, 2533–2540.
L. Piegl. 1987. Interactive data interpolation by rational Bezier curves. IEEE COMP. GRAPHICS APPLIC.

7, 4 (1987), 45–58.
L.A. Piegl and W. Tiller. 2002. Data approximation using biarcs. Engineering with computers 18, 1 (2002),

59–65.
Jaroslaw R Rossignac and Aristides A. G. Requicha. 1987. Piecewise-Circular Curves for Geometric Model-

ing. IBM Journal of Research Development, Vol.31(3). (1987).
J. Schönherr. 1993. Smooth biarc curves. Computer-Aided Design 25, 6 (1993), 365–370.
L.I. Schumaker. 1983. On shape preserving quadratic spline interpolation. SIAM J. Numer. Anal. 20, 4

(1983), 854–864.

Florida Institute of Technology Technical Report, Vol. V, No. N, Article A, Publication date: January YYYY.

Minimizing N-Points Interpolation Curvature, Heuristics for Solutions Using Arcs and Lines A:25

Carlo H Sequin, Kiha Lee, and Jane Yen. 2005. Fair,G2- and C2-Continuous Circles Splines for interpolation
of Sparse Data Points. Computer Aided Design Vol.37(2):201-11. (2005).

Lejun Shao and Hao Zhou. 1996. Curve Fitting With Bezier Cubics. Graphical Models and Image Processing
Vol.58(3):223-32. (1996).

D.H. Shin and S. Singh. 1990. Path generation for robot vehicles using composite clothoid segments. Technical
Report. DTIC Document.

P. Svestka and M.H. Overmars. 1995. Coordinated motion planning for multiple car-like robots using proba-
bilistic roadmaps. In Robotics and Automation, 1995. Proceedings., 1995 IEEE International Conference
on, Vol. 2. IEEE, 1631–1636.

M. Unser, A. Aldroubi, and M. Eden. 1991. Fast B-plines transforms for continuous image representation
and interpolation. IEEE Trans. Pattern Anal. Machine Intell., Vol.13:277-285. (1991).

R. Vishen and M. Silaghi. 2013. Interpolation Minimizing Maximum Curvature. http://cs.fit.edu/proj/
interpolation. (2013).

Martin Voshell. 2004. High Acceleration and the Human Body. http://csel.eng.ohio-state.edu/voshell/gforce.
pdf. (2004).

Z. Yao and A. Joneja. 2007. Path generation for high speed machining using spiral curves. Computer-Aided
Design & Applications 4 (2007), 191–198.

Byunggu Yu, Seon Ho Kim, Thomas Bailey, and Ruben Gamboa. 2004. Curve-based Representation of Mov-
ing Object Trajectory. Proceedings of the International Database Engineering and Application Sympo-
sium. (2004).

Received January 2013; revised xxxx; accepted yyyy

Florida Institute of Technology Technical Report, Vol. V, No. N, Article A, Publication date: January YYYY.

