CSE 5211
Analysis of Algorithms
Final Exam
Fall 2005


Points 50 Time 100 min

Q1 (Short questions)






[points 10]

Q1a. What is the significance of having a polynomial transformation from a unknown problem X to a P-class problem Y. Answer very briefly.  

X becomes P-class problem.

Q1b. Transform the following non-standard LP problem into a equivalent standard LP problem: Maximize (2x1 -6x3)

Linear constraints: 
3x1 - x2         ( 8,




-x1 + 2x2 + 2x3 ( 0,

Variable constraints: 
x1, x3 ( 0.

Replace x2 with x2 - x2‘ everywhere and add x2 >0, and x2‘ >0. 

Q1c. A modified formula from your class project:

a[i,j]= max{a[i,j-1] –2/(n-j), a[i-1,j] –2/(n-i), a[i-1,j-1] +1/(n-i)(n-j)}. Explain briefly why Dynamic programming algorithm will not be correct for this formula.

Principle of optimality is violated. A[I,j] depends on its position I and j. Dynamic programming algorithm works when a problem can be decomposed into subproblems that are independent of the problem. The binary-search tree organization problem has this issue(subtree’s value depends on its depth in the larger tree)  but that was circumvented by adding a constant (1) to each node in the subtree.

Q1d. Apply Kruskal’s algorithm to the following weighted graph (V, E) and find a minimum spanning tree in it. Show the steps. V={v1, v2, v3, v4}, E={(v1, v2, 1), (v1, v3, 2), (v1, v4, 4), (v2, v3, 3), (v2, v4, 5), (v3, v4, 6).

Pick up edges e1, e2, and e4 in sequence.

Q1e. In the max-min algorithm for adversarial search problem, when a maximizer node x has a child returning a value that is more than what x’s parent y (minimzer) already has, then the node x should stop exploring any more of its children. Justify this pruning strategy in a line or two.

Because none of the values chosen by x will be used by y.

Q2. (Linear programming): Convert the following LP into its standard form [points 2], then to the corresponding slack form [2], find suitable entering and leaving variables [2], then run the pivot algorithm once [4].

Maximize (2x1 -6x3)

Linear constraints: 
x1 + x2 – x3 ( 7,




3x1 - x2         ( 8,




-x1 + 2x2 + 2x3 ( 0,

Variable constraints: 
x1, x2, x3 ( 0.

Step 1: -3x1 -+x2         ( -8,   x1 - 2x2 - 2x3 ( 0

Step 2: trivial exercise

Step 3: entering variable x1, leaving variable comes from eq 1 x4.

Step 4: trivial exercise

Q3. (3-SAT to ITR transformation): Transform the following 3-SAT problem into a corresponding ITR problem such that the satisfiability property is preserved, using the standard polynomial transformation algorithm.
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V={x1, x2, x3, x4}, C={(x1, -x2, x4), (x1, x2, x3), (x1, -x3, x4)}      

Straight forward translation

Q4. (Backtracking algorithm): A traveling salesperson problem is to find the smallest Hamiltonian circuit (HC) in a weighted graph G = (V, E), where nodes are V={1, 2, …, n} and edges are E={(i, j, w[i,j]), between some nodes i and j with weight w[i,j] on the corresponding edge ij}. Nodes are arbitrarily ordered but the graph is not directed. HC is a path that passes through each node once and only once starting and ending with the same node. Presume at least one HC exist in any given input graph.





Write a backtracking strategy/algorithm with some pruning to solve the TSP problem.
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Strategy: Starting with node 1 keep calling next child until all nodes are finished (leaf) then add last node to 1 arc if it exists, see if this circuit length is less than the global optimum value available so far, update or reject this value accordingly.

Pruning: check if the total path length at any point has crossed the global optimum HC length found so far, if it has do not call any more child, rather return to caller.

Q5a. (Dynamic Programming): 

The following formula (in the next paragraph) can be used to compute the length of the smallest HC for the TSP problem (see Q4) as min{P({2, 3, … n}, k) + w[k,1] | 2 ( k ( n}. The formula P(S, k) indicates the shortest acyclic path-length from node 1 to node k via all nodes in the set S-{k} (acyclic (no node appears twice in the path), k ( S. So, 1 is a special node from where the path starts.  

Write a dynamic programming (DP) algorithm for the following formula, where the algorithm eventually computes P({2, 3, …, n), k) for all nodes k such that 2 ( k ( n:

For all |S|>1, 
P(S, k) = min{P(S – {k}, m) + w[m, k] | m ( S-{k}}

For all S={k}, 
P({k}, k) = w[1, k], direct path from node 1 to node k (Recursion termination/ DP algorithm initialization)

Hint: You do not need to understand the formula fully in order to write the algorithm. Systematically grow the size of S where S ( {2, 3, …, n}, from |S| = 1, then 2, …, lastly n-1.  









[5]

Algorithm

For each k ({2, 3, … n} do


P({k}, k) = w[1, k];

For each int I=1 to n-1 do


For each S( {2, 3, …, n) such that |S| =I do



For each k ( S do


P(S, k) = infinity;



For each m ( S-{k} do




If P(S, k) > P(S – {k}, m) + w[m, k] then





P(S, k) = P(S – {k}, m) + w[m, k];

End algorithm.
Complexity: Sum over all subsets (2^(n-1)) in number,

two embedded loops one up to subset_size-1, another up to  subset_size-2.

Q5b. [This may help you in writing the algorithm. You may be able to answer this even if you cannot write the algorithm.] Show the steps of computation for each P(S, k) in the DP algorithm for a graph with 4 nodes (show the exact S’s, k’s and m’s).
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For |S|=1,    // initialization


P({2}, 2) = w[1,2]


P({3}, 3) = w[1,3]


P({4}, 4) = w[1,4]

For |S|=2,


P({2,3}, 2) = P({3}, 3) + w[3,2]


P({2,3}, 3) = P({2}, 2) + w[2,3]

P({2,4}, 2) = P({4}, 4) + w[4,2]


P({2,4}, 4) = P({2}, 2) + w[2,4]


P({4,3}, 4) = P({3}, 3) + w[3,4]


P({4,3}, 3) = P({4}, 4) + w[4,3]

For |S|=3,


P({2,3,4}, 2) = min{P({3,4}, 3) + w[3,2], P({3,4), 4) + w[4,2]}


P({2,3,4}, 3) = min{P({2,4}, 2) + w[2,3], P({3,4), 4) + w[4,3]}


P({2,3,4}, 4) = min{P({2,3}, 2) + w[2,4], P({2,3}, 3) + w[3,4]}

