CSE 4081/5211
Algorithms
Mid-Term Fall 2005

Time 70 min

Pts 50 

Print your name, and Grad/Undergrad status

1a. Solve the following recurrence equation (2 equations for GRAD students 1a and b)for general solution, by setting up a characteristic equation.

[UG 10/ Grad 5]

Tn = 4Tn-2     [Note: it is not Tn-1 on the right hand side.]    

Ans:  Characteristic equation: x2 –4=0, Solutions, x=2, -2

T(n) = c.(2)n + d.(-2)n, for two constants c and d

T(n) = Theta(2n)

1b GRAD: Tn = 2Tn-1  +1  [You have to homogenize first.]


[Grad 5]

Ans:  Characteristic equation: x2 –3x +2=0, Solutions, x=1, 2

T(n) = c.(1)n + d.(2)n, for two constants c and d

T(n) = Theta(2n)

2a. Binary search algorithm looks into the middle element of the input array and depending on whether that element is less than the key or not the algorithm recursively calls itself on the left half or right half. Recursion terminates on single element input.

Write a Ternary Search Algorithm that divides the input array into three equal portions (for the sake of convenience presume the input size to be 3^k for an integer k>=1) and recursively calls itself on one of the three portions after comparing the key with the two middle elements between the three portions (instead of the central middle element as in the binary search). Recursion terminates on the single element input.

[5]

Algorithm ternarySearch(key, global array A, index first, index last)


If first = = last 

If key = = A[first] return first

Else return not-found;


Else



Int mid1 = first +(last-first+1)/3;



Int mid2 = first +2*(last-first+1)/3;



If key <A[mid1] return ternarySearch(key, A, first, mid1;



Else if key <A[mid2] return ternarySearch(key, A, mid1+1, mid2)



Else return  ternarySearch(key, A, mid2+1, last);

End algorithm.

.2b. Set up the recurrence equation for the above algorithm and solve it by any method.

[5]


T(n) = T(n/3) + 1; Solve by Master equation: T(n) = Theta(log_3 n)

3a. Explain in a line or two the time complexity of the following algorithm-fragment in terms of n.






[2]

.(1) For i =1 through n do

.(2) 
For j = i through i+3 do

.(3)

-constant number of steps-

end for loops;

Line 2-3 runs constant number of steps = 4 times

Line 1-3: Theta(n)

3b. Explain in a line or two the time complexity of the following algorithm-fragment in terms of n.






[2]

.(1) For i =1 through n do

.(2) 
For j = 3 through i do

.(3)

-constant number of steps-

end for loops;

Two loops: Sum_{I=1,n} Sum_{j=3,I} Theta(1) = … = Theta(n^2)

The following is a directed weighted graph. Draw it first. [Usual presumption of adjacency list representation of the graphs holds for all graph theoretic questions.]

V={a, b, c, d, e}, E={(a, b, 2), (a, d, 8), (b, c, 3), (c, d, 2), (c, e, 5), (d, e, 1), (e, b, 2)}.

3c. After running the following algorithm fragment on this graph show the output for the variable count. Explain your answer in a line or two.

[UG: 3/ Grad: 2]

.(0) int count := 0;

.(1) For each node v in V do

.(2)
for each edge (u, w, d) in E do

.(3)

count++;

       end for loops;

.(4) print count;

line 1 on |V|, line 2 on |E| independent of line 1, total |V||E| = 5*7=35

3d. For the following algorithm find out what the value for count is. Explain your answer in a line or two.






[UG: 3/ Grad: 2]

.(0) int count := 0;

.(1) For each node v in V do

.(2)
for each edge (u, w, d) in E do

.(3)

if v = = u then count++;

       end for loops;

.(4) print count;

loop runs 35 times but count increments only on each edge in line 3: total=|E|=7

3e. GRAD: For the following algorithm find out what the output from line 4 would be.









[Grad: 2]

.(0) int count := 0;

.(1) enqueue all arcs in Q;

.(2) while Q not empty do

.(3)
(v, w, d) = pop(Q);

.(4)
print (v, w, d);

.(5)
d = d –5;

.(6)
if d >= 0 then push (v, w, d) on Q;

       end while loop;

(a, b, 2), (a, d, 8), (b, c, 3), (c, d, 2), (c, e, 5), (d, e, 1), (e, b, 2),

(a,d,3), (c, e, 0)

Note the order of output from the queue.

.4. Run Dijkstra’s algorithm for finding shortest path from the source node a on the graph of question 3a.








[10]

.5. UG: There are five questions in a test of duration 30 minutes. The following list shows the time required to answer each of the questions and the corresponding points: {(q1, 20 min, 10 pts), (q2, 20 min, 15 pts), (q3, 20 min, 40 pts), (q4, 10 min, 20 pts), (q5, 15 min, 30 pts). Assume that one receives grades proportionately to the time he or she spends in answering a question, e.g.., if one spends 10 min on the question q1 s/he makes 5 pts (10pts*(10min/20min)). Find out what is the maximum grade one can make in this test. Mention which algorithm studied in the class should be run on it and describe how you ran it to get the answer. 






[UG: 10]

.5. GRAD: Run the Strong Connected Component-finding algorithm on the following directed graph and find its SCC’s. Draw the DFS trees from both the phases of the algorithm.








[Grad: 10]

V={a, b, c, d, e}, E={(a, b), (b, c), (c, d), (d, b)}.

