Analysis of Algorithms:

CSE 5211
Fall 2010
Quiz 1
 Points 40
Intro to Analysis of Algorithms:
CSE 4081
Fall 2010
Quiz 1
 Points 40

Time: 45 min
Q1. The following recursive algorithm finds all possible permutations of an input list of characters.
Input: a list L[1..n] of characters, and the initial size of the list n.
Output: each possible permutation of L.
Algorithm Permute(list L, int n, int level, array A)
(1) if (level = = n+1) then print A;
 else
(2) for each element e of L do
(3)
A[level] = e;

(4)
L = L – e; // shrink the list by eliminating e
(4)
Permute (L, n, level+1, A);
 end for;

 end if;

End algorithm
Driver call: Permute(L, sizeof(L), level=1, empty A[, ,])

(1a) (grad/ug: 2) How many lists are printed for n=4?

4! = 4.3.2.1 = 24
(1b) (g: 3, ug: 8) Draw the recursion tree for L=[x y z]. Also, indicate the post-order numbering of the tree.
(1c) (Grad only: 5) Modify Permute to make sure A[i] <=A[i+1] according to the alphabet ordering (e.g., x<y<z), for each i=1..(n-1), in the output, i.e., re-write the algorithm to prun appropriate branches of the recursion tree.

You may check before printing (no pruning really), or check between (2) and (3) if e is greater than A[level-1] or not.
Q2. DFS algorithm for a graph is given below:
Input: graph G=(V, E)

Output: a DFS spanning tree over G

DFS(node v)
(1) mark v as visited;
(2) for each not visited node w adjacent to v do

(4)

parent(w) = v;

(5)

DFS(w);
 end for;
(6) if there exists a not visited node w in V
(7)

DFS(w)

 end if;
End Algorithm
Driver call: DFS(any node of the input graph)

(2a) (g: 2, ug: 5) Modify to add pre-order numbering of nodes.

Number v between line 1 and 2.
(2b) (g: 3, ug: 5) Draw a undirected G=(V={a, b, c, d, e}, E={((a,b), (b,c), (b,e), (b, d), (c,e), (c,d) }. Starting with a call to DFS(a), show your call sequences (i.e., the recursion tree or the spaniing tree for your traversal of the graph) and your pre-order numbering of the nodes.
One answer for call sequences, with pre-order numbering:
DFS(a) , 1

 DFS(b) , 2

 DFS(c) , 3

 DFS(e) , 4

 DFS(c)

 DFS(d) , 5

 DFS(b)

DFS(a)

end
(2c) (Grad only: 5) Write an algorithm that would traverse each arc once and only once, by marking arcs. Use the above DFS function.
Lines 1, 2 & 6 change for marking arc instead of node, but not 4, 5 & 7.

Q3. (g/ug: 10). Suppose a test has 4 questions {q1, q2, q3, q4}, each associated with (q#, p points, t time-needed-to-answer), which are like the following {(q1, p=20, t=10), (q2, p=30, t=10), (q3, p=5, t=10), (q4, p=10, t=10)}.
Let one receive points proportional to the fraction of time spent on the respective question.

Maximum time for the test is T=25. Find a set of questions to answer (including fraction of a question, if necessary) for maximizing points.
Show clearly each of the steps of your solution as you apply the algorithm.
Both the optimum set and the corresponding optimum grade must be in the final output.

(q1, q2, & half of q4) according to non-increasing order of point-density.

Steps are computing the densities, sorting, and then assigning questions in that order, until q4 exceeds time, then computing fraction for q4.
Explain briefly (1 or 2 lines each) (g/ug: 2 pts each question)
Q4a. Which one has higher complexity for any algorithm: space or time?
Space, each space unit allocation will consume a time unit, but algorithm may need more time in other computations too.
Q4b. Will the DFS in Question 2 above work for the directed graph?
Yes. When directed graph traversal gets stuck it is restarted from lines 6 and 7.
Q4c. What are the time and space complexities of the greedy algorithm for the Rational Knapsack problem with n input objects (where a broken object is allowed in the knapsack)?
O(n log n) time in sorting, O(n) space, constant O(1) extra space requirement over input.
Q4d. What is the space complexity of the above Permute algorithm?
Depends. If L is copied from recursion to recursion, then O(n) +O(n-1) + … = O(n^2).

A takes O(n) space in addition. Total O(n^2) in this scheme.
Q4e. In a city highway system we would like to know which intersections are critical to be kept clear for traffic flow to continue. Which algorithm will you use and why? No need to write the algorithm.
Articulation point detection algorithm based on DFS traversal.
