No negotiation on grading now. I am unavailable for the rest of the semester.

If you really need to see your paper check with me early next semester. 

I will keep all the final papers.
Have a good break!
CSE5211/4081 Analysis of Algorithms
Fall 2010

Test 3
(Six  Questions, answer double sided)    Points Grad 65/ UG 60
Key below.
Q1. LUP decomposition:
1a (Grad 6, UG 10): decompose the matrix [row1, row2, row3]
[4
-5
6,
8
-6
7,
12
-7
12]
(Text exc 28.1-2)

1b (Grad only, 4): Solve the corresponding equations from your decomposed LU matrices. Consider right hand side b=[0, 0, 0]
Looking for pivoting.
Rest are updating row-cols. Corner elements by A’-vw^T/a11

1b. Right hand causes trivial solutions, e.g., 0,0,0. Almost any answer is accepted as long as it is attempted. Even though the solution is trivial, the process of solving using first L and then U is important.
Always draw the corresponding graph before starting to answer.

Q2 (G, UG 10). Draw a undirected G=( V={a, b, c, d, e}, E={((a,b), (b,c), (b,e), (b, d), (c,e), (c,d) }. Find the articulation point in the graph using the respective DFS-based algorithm. Show the steps of your computation (the DFS tree with appropriate node numberings, etc.) 
DFS pre-ordering number.
Then, “low” numbering, and using the condition to detect obvious articulation pt node  b.
Q3. Write a dynamic programming algorithm for computing C(1,n) from the following formula. 
Analyze the space & time complexities of your algorithm.
Show the table for computing C(3, 4).
C(i, j) = 0, for all i=0 or j=0

C(i, j) = min{ C(i-1, j) + 2, C(i, j-1) – 2}, 

for all 1 ( i ( j ( n









Trivial algorithm, initialize C(0, j) & C(I, 0) with one loop. Then, run two nested loops over I, and j, making sure i<=j.
Upper triangular C matrix. Just follow the formula by row or column major.

Both space & time complexity is quadratic O(nm), or O(n^2) for n=m.

Q4 Grad [10]. Find all the strongly connected components in the directed graph E={(a, b), (b, c), (e, b), (d, b), (c, d), (c, e) }. Direction of each arc is as per the orderings, e.g., node a to node b is written as (a, b). Show steps of your computation. 
Q4 UG [10]. Find shortest distances and paths from node a to all nodes on the undirected graph E={((a,b, 3), (b,c, 2), (b,e, 7), (b, d, 7), (c,e, 6), (c,d, 2) }, by using Djikstra’s algorithm. The number within the parenthesis is the distance of the corresponding arc. Show steps of your computation. 
Grad: SCC needs first post-order DFS numbering. Then, draw reverse graph and DFS traverse again along that numbering. Each tree is a SCC, obviously it is (a), (the rest).
UG: ab must be in every path, only connection. Check then systematically node by node if new arc updates. A0, ab3, Abc5, abd/abcd7, abe10.
Q5a.  Transform the following SAT problem to a 3SAT problem instance. What is your number of steps in running the algorithm?




[G/UG 5]
V={a, b, c, d, e, f}; C={(a. ~b, c), (~d), (~c, ~f), (a, b, d, ~e)}

(a,b,~c) -> (a,b,~c),
(~d) -> (~d, z1, z2), (~d, ~z1, z2), (~d, z1,~ z2), (~d,~ z1,~ z2)

(~c, ~f) -> (~c, ~f, z3), (~c, ~f, ~z3)

(a,b,d,~e) -> (a,b,z4),(~z4,d,e)

V={a,b,c,d,e,z1,z2,z3,z4)

9 clauses, 9variables = total 18 steps.

Many other countings, including only counting new ones, are accepted. I am looking for your understanding of the steps of your algorithm.
Q5b. Answer true/false for the following sentences. Explain your answer briefly if you want.








[G/UG 5]
i) Sets of NP-class problems and NP-complete problems have null intersection.  
False: NP-complete is subset of NP-class.
ii) The set of P-class problems is a subset of the NP-complete problems. 
NEVER! Any common such problem means an NP-complete problem has poly-time algorithm,, and so….
iii) Each NP-class problem is already known to belong to either the NP-complete class or the P-class. 
False. There does exist unresolved NP-class problem that is neither P nor NP-complete.
iv) In order to prove a problem X to be NP-hard one needs to develop a polynomial transformation from a known NP-hard problem Y to X. So, if X had a polynomial-time algorithm, then Y would also have had a polynomial-time algorithm. 
True.
v) 2-SAT is a P-class problem.
Yes, poly-time algorithm Davis-Putnam exists for 2-SAT even though not for any k-sat with k>2. 
UG: Q6 (UG 10).  Write the recursive FFT algorithm and analyze its time complexity. State your input and output first.
Grad: Q6a (Grad 10) Write an iterative FFT-based algorithm for multiplying two polynomials (each represented as a sequence of co-efficients). Iterative FFT must also be written. Analyze complexity. 
From text. 
Q6b Grad Project [5]
Discuss briefly (one/two lines)

Did you use CPU or GPU for parallelization?

Except one/two groups rest are all cpu-cores.
How many threads will your program run for a polynomial with 1028 input coefficients in the 1D FFT code?

Looking for your understanding of your code, but theoretical discussion is welcome.
Note, padding necessary to 2^11, as 1028 is not a power of 2.
For how many points will you evaluate the above polynomial for,  with the 1D FFT algorithm? What are those points (no need to write all of them, just some of them)?
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