
Fast Fourier Transform Notes
18.310, Fall 2005, Prof. Peter Shor

1 Introduction: Fourier Series

Early in the Nineteenth century, Fourier studied sound and oscillatory motion and conceived
of the idea of representing periodic functions by their coefficients in an expansion as a sum of
sines and cosines rather than their values. He noticed, for example, that you can represent
the shape of a vibrating string of length L, fixed at its ends, as

y(x) =
∞
∑

x=1

ak sin(πkx/L)

The coefficients, ak, contain important and useful information about the quality of the
sound that the string produces, that is not easily accessible from the ordinary y = f(x)
description of the shape of the string.

This kind of representation is called a Fourier Series, and there is a tremendous amount
of mathematical lore about properties of such series and for what classes of functions they
can be shown to exist. One particularly useful fact about them is the orthogonality property
of sines:

∫ L

x=0
sin(πkx/L) sin(πjx/L)dx = δj,k

L

2
.

Here δj,k is the Kronecker delta function, which is 0 if j 6= k and 1 if j = k. The integral
above, then, is 0 unless j = k, in which case it is L/2. To see this, you can write the
product of these sines as a constant multiple of the difference between cos(π(k + j)x/L)
and cos(π(k − j)x/L), and realize that unless j = ±k, each of these cosines integrates to 0
over this range.

By multiplying the expression for y(x) above by sin(πjx/L), and integrating the result
from 0 to L, by the orthogonality property everything cancels except the sin(πjx/L) term,
and we get the expression

aj =
2

L

∫ L

x=0
f(x) sin(πjx/L)dx

Now, the above sum of sines is a very useful way to represent a function which is 0 at
both endpoints. If we are trying to represent a function on the real line which is periodic
with period L, it is not quite as useful. This is because for a periodic function, we need
f(0) = f(L) and f ′(0) = f ′(L). For the sum of sines above, the terms with odd k such as
sinπx are not themselves periodic with period L. For periodic functions, a better Fourier
expansion is

y(x) = a0 +
∞
∑

j=1

aj cos(2πjx/L) +
∞
∑

k=1

bk sin(2πkx/L).
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It is fairly easy to rewrite this as a sum of exponentials, using the identities

cos x =
eix + e−ix

2

sinx =
eix − e−ix

2i
.

This results in the expression (with a different set of coefficients aj)

y(x) =
∞
∑

j=−∞

aje
2πijx/L (1)

The orthogonality relations are now

∫ L

x=0
e2πij/Le2πik/L = δ−j,kL

This means that we now can recover the aj coefficient from y by performing the integral

aj =
1

L

∫ L

x=0
y(x)e−2πijx/L (2)

2 The Fourier transform

Given a function f(x) defined for all real x, we can give an alternative representation to it
as an integral rather than as an infinite series, as follows

f(x) =

∫

eikxg(k)dk

Here g(x) is called the Fourier transform of f(x), and f(x) is the inverse Fourier transform
of g(x). This is a very important tool used in physics.

One reason for this is that exponential functions eikx, which f is written as an integral
sum of, are eigenfunctions of the derivatives. That is, the derivative, acting on an expo-
nential, merely multiplies the exponential by ik. This makes the Fourier transform a useful
tool in dealing with differential equations.

Another example of the Fourier transform’s applications can be found in quantum me-
chanics. We can represent the state of a particle in a physical system as a wave function

φ(x), and the probability that the particle in this state has a position lying between x and
x+ dx is |φ(x)|2dx.

The same state can also be represented by its wave function in momentum space, and
that wave function of the variable p is a constant multiple of the Fourier transform of φ(x):

ψ(p) = c

∫

eikxφ(x)dx
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We can derive a formula for computing the Fourier transform in much of the same way
we can compute Fourier series. The resulting formula is

g(x) =
1

2π

∫

e−ikxf(x)dx

where the integration is over all real values of x.
The Fourier transform can be obtained by taking the Fourier series and letting L go to

∞. This turns both the function and its Fourier series into functions defined over the real
line. The finite Fourier transform arises by turning these both into a finite sequence, as
shown in the next section.

3 The Finite Fourier Transform

Suppose that we have a function from some real-life application which we want to find the
Fourier series of. In practice, we’re not going to know the value of the function on every
point between 0 and L, but just on some finite number of points. Let’s assume that we
have the function at n equally spaced points, and do the best that we can. This gives us
the finite Fourier transform.

We have the function y(x) on points jL/n, for j = 0, 1, . . . , n − 1. We would like to
represent the function

y(x) =
∑

k

ake
2πikx/L

but, of course, we only have knowledge of y at values of x = jL/n. If we plug in x = jL/n
for the value of x, we get

yj =
∑

k

ake
2πijk/n. (3)

There is one more thing to notice here. Namely, that adding n to k doesn’t change any
of the values of e2πijk/n because e2πi = 1. Thus, if we just have n equally spaced points,
we only need the first n terms from the Fourier series to perfectly match the values of y at
our points. This makes sense — if we start with n complex numbers yj, we end up with n
complex numbers ak, so we keep the same number of degrees of freedom. The ak here are
the finite Fourier transform of the yj.

How do we compute the ak, given the yj. It’s not hard to see that it works in essentially
the same way that it did for the complex Fourier series we talked about earlier, only we
have to replace an integral with a sum. Thus, we get

ak =
1

n

∑

j

yje
−2πijk/n. (4)

Here, again the ak are the finite Fourier transform of the yj . The inverse Fourier
transform given above (Eq. 3) is the same as the finite Fourier transform, except we have
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put a − sign on the exponent, and left out the factor of 1/n. In fact, you will sometimes
see the factor of 1/n distributed equally, with a 1/

√
n on both the forwards and the inverse

Fourier transforms.
How do we prove that the formulas (4) and (3) are inverse transforms of each other?

The proof works the same way as it does for the Fourier series, and in fact this formula can
be derived from (2) and (1). The orthogonality relations turn into the sum

n−1
∑

j=0

e2πijk/n = nδ0,k.

I’ll let you figure out the rest of it.

4 Computing the finite Fourier transform

It’s easy to compute the finite Fourier transform or its inverse if you don’t mind using
O(n2) computational steps. The formulas (3) and (4) above both involve a sum of n terms
for each of n coefficients. However, there is a beautiful way of computing the finite Fourier
transform in only O(n log n) steps.

One way to understand this algorithm is to realize that computing a finite Fourier
transform is equivalent to plugging into a degree n − 1 polynomial at all the n roots of
unity, e2πik/n, for 0 ≤ k ≤ n− 1. The Fourier transform and its inverse are essentially the
same for this part, the only difference being which n-th root of unity you use. So, let’s be
consistent with Prof. Kleitman’s notes and do the inverse Fourier transform.

Suppose we know the values of ak and we want to compute the yj using the inverse
Fourier transform, Eq. (3). Let the polynomial p(x) be

p(x) =
n−1
∑

k=0

akx
k.

Now, let z = e2πi/n. Then, it is easy to check that we have

yj = p(zj).

This shows we can express the problem of the inverse Fourier transform as evaluating the
polynomial p at the n-th roots of unity.

What we will show is that if n is even, say n = 2s, it will be possible to find two degree
s− 1 polynomials, peven and podd, such that we get all n of the values yj for 0 ≤ j ≤ n− 1
by plugging in the s-th roots of unity into peven and podd. The even powers of z will appear
in peven, and the odd powers of z will appear in podd. If n is a multiple of 4, we can then
repeat this step for each of peven and podd, so we now have our n values of yj appearing as
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the values of four polynomials of degree n/4− 1, when we plug the n
4 th units of unity, i.e.,

the powers of z4, into all of them. If n is a power of 2, we can continue in the same way,
and eventually reduce the problem to evaluating n polynomials of degree 0. But it’s really
easy to evaluate a polynomial of degree 0: the evaluation is the polynomial itself, which
only has a constant term. So at this point we will be done.

The next question we address is: how do we find these two polynomials peven and podd?
We will do the case of peven first. Let us consider an even power of z, say z2k. We will look
at the j-th term and the (j + s)-th term. These are

ajz
2kj and aj+sz

2kj+2ks

But since z2s = zn = 1, we have
z2kj+2ks = z2kj

. Thus, we can combine these terms into a new term in the polynomial peven, with coeffi-
cients

bj = aj + aj+s

If we let

peven =
s−1
∑

j=0

bjx
j

we find that
p(z2k) = peven(z2k).

Now, let us do the case of the odd powers. Suppose we are evaluating p at an odd power
of z, say z2k+1. Again, let’s consider the contribution from the j-th and the (j+s)-th terms
together. This contribution is

ajz
(2k+1)j + aj+sz

(2k+1)(j+s).

Here we find that z(2k+1)s = −1. Why? Again, z2ks = 1, and zs is a square root of 1,
because when we square it we get z2s = zn = 1. Since z is a primitive n-th root of 1, zs is
not 1, so it must be −1. We now have

ajz
(2k+1)j + aj+sz

(2k+1)(j+s) = (ajz)z
2kj + (aj+sz)z

2kj(−1)

= (aj − aj+s)z z
2kj

Setting the j-th coefficient of podd to

b̃j = (aj − aj+s)z
j

and letting

podd =
s−1
∑

j=0

b̃jx
j
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we see that
podd(z

2k) = p(z2k+1).

So now, we can show how the Fast Fourier transform is done. Let’s take n = 2t. Now,
consider an n × t table, as we might make in a spreadsheet. Let’s put in our top row
the numbers a0 through an−1. In the next row, we can, in the first n

2 places, put in the
coefficients of peven, and then in the next n

2 places, put in the coefficients of podd. In the next
row, we repeat the process, to get four polynomials, each of degree n

4 − 1. After we have
evaluated the second row, we treat each of peven and podd separately, so that nothing in the
first n

2 columns subsequently affects anything in the last n
2 columns. In the third row, we

will have in the first n
4 places the coefficients of peven,even, which give us the value of p(z4k)

when we evaluate peven,even(z4k). Then in the next n
4 places, we put in the coefficients of

peven,odd. This polynomial will give the value of p(z4k+2) when we evaluate peven,odd(z4k).
The third n

4 places will contain the coefficients of podd,even, which gives us the values of
p(z4k+1). The last n

4 places will be occupied by the coefficients of podd,odd, which gives the
values of p(z4k+3). From now on, we treat each of these four blocks of n

4 columns separately.
And so on.

There are two remaining steps we must remember to carry out. The first is that the
values of p(zk) come out in the last row in a funny order. We have to reshuffle them so
that they are in the right order. I will do the example of n = 8. Recall that in the second
row, the polynomial po, giving odd powers of z, followed pe, giving even powers of z. In the
third row, first we get the polynomial giving z4k, then z4k+2, then z4k+1, then z4k+3. So
in the fourth row (which is the last row for n = 8), we get the values of p(zk) in the order
indicated below.

0 1 2 3 4 5 6 7

coefficients of p

pe(z
2k) = p(z2k) po(z

2k) = p(z2k+1)

pe,e(z
4k) = p(z4k) pe,o(z

4k) = p(z4k+2) po,e(z
4k) = p(z4k+1) po,o(z

4k) = p(z4k+3)

p(z0) p(z4) p(z2) p(z6) p(z1) p(z5) p(z3) p(z7)

You can figure out where each entry is supposed to go is by looking at the numbers in
binary, and turning the bits around. For example, the entry in the 6 column is p(z3). You
can figure this out by expressing 6 in binary: 110. You then read this binary number from
right to left, to get 011, which is 3. Thus, the entry in the 6 column is p(z3). The reason
this works is that in the procedure we used, putting in the even powers of z first, and then
the odd powers of z, we were essentially sorting the powers of z by the 1’s bit. The next
row ends up sorting them by the 2’s bit, and the next row the 4’s bit, and so forth. If we
had sorted starting with the leftmost bit rather than the rightmost, this would have put
the powers in numerical order. So, by reversing the bits and sorting, we get the right order.

The other thing we have to do is to remember to divide by n if it is necessary. We only
need do this for the Fourier transform, and not the inverse Fourier transform.
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5 Multiplication and Convolution

Let’s go back to the complex Fourier series. Suppose we have two functions f and g.
Suppose we have the Fourier series for these two functions, that is,

f(x) =
∞
∑

j=−∞

aje
2πijx/L

and

g(x) =
∞
∑

k=−∞

bke
2πikx/L

How do we find the Fourier series of the sum of these two functions? It’s easy. We take the
sum of the Fourier coefficients.

f(x) + g(x) =
∞
∑

k=−∞

(ak + bk)e
2πikx/L

How about the product? This requires some calculation.

f(x)g(x) =
∞
∑

j,k=−∞

ajbke
2πi(j+k)x/L

Now, what is the e2πilx/L term of this Fourier series? We get a contribution to l exactly
when j + k = l. So,

f(x)g(x) =
∞
∑

l=−∞





∞
∑

j=−∞

ajbl−j



 e2πilx/L

This sequence, cl =
∑

j ajbl−j, is known as the convolution of sequences aj and bk. We
recently saw how convolutions come up in generating functions. If you multiply two gener-
ating functions together, you take the convolution of their respective sequences. The same
thing is true in the Fourier transform, in Fourier series and the finite Fourier transform:
taking the Fourier transform turns pointwise multiplication turns into convolution, and vice
versa.

I didn’t do this in class, but I think it might be worth going through in these notes.
Let’s check that the convolution of functions turns into multiplication of the Fourier series.
Remember that f(x) and g(x) are both periodic with period L. Their convolution is

h(y) =

∫ L

0
f(x)g(y − x)dx

=

∫ L

0

∑

j

aje
2πijx/L

∑

k

bke
2πik(y−x)/Ldx
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=

∫ L

0
ajbke

2πi(ky+(j−k)x)/Ldx

= L
∑

k

akbke
2πiky/L

where we only get the terms with j = k because
∫ L
0 e2πi(j−k)x/L is 0 if j 6= k.

Wait a minute! Where did that L come from? We didn’t get it when we multiplied f
and g. I don’t have any good intuitive explanation for it right now, but if you look at the
equations, you can see it’s really there. Remember this extra L. We’ll see it again in a
couple of paragraphs.

Now, let’s work out the details of the fact that pointwise multiplication turns into
convolution for finite Fourier series. Suppose we have two sequences and their finite Fourier
transforms, i.e.,

fk =
∑

j

aje
2πijk/n

gk =
∑

j

bje
2πijk/n.

What do we get when we take the inverse Fourier transform of the pointwise product fkgk?
Let

fkgk =
∑

j

cje
2πijk/n

Then taking the Fourier transform, we get

cl =
1

n

∑

k

e−2πilk/nfkgk

=
1

n

∑

k

e−2πilk/n
∑

j

aje
2πijk/n

∑

j′

bj′e2πij′k/n

=
1

n

∑

j

∑

j′

ajbj′

∑

k

e2πik(j+j′
−l)/n

=
∑

j

ajbl−j

where the last equality holds because the sum over k is 0 unless l = j+ j ′. Thus, pointwise
multiplication turns into convolutions for the finite Fourier transform as well.

We can use this fact that pointwise multiplication turns into convolution to multiply
polynomials efficiently. Suppose we have two degree d polynomials, and we want to multiply
them. This corresponds to convolution of the two series that make up the coefficients of
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the polynomials. If we do this the obvious way, it takes O(d2) steps. However, if we use the
Fourier transform, multiply them pointwise, and transform back, we use O(d log d) steps for
the Fourier transforms and O(d) steps for the multiplication. This gives O(d log d) total,
a great savings. We must choose the n for the Fourier series carefully. If we multiply two
degree d polynomials, the resulting polynomial has degree 2d, or 2d + 1 terms. We must
choose n ≥ 2d+1, because we need to have room in our sequence a0, a1, . . . an−1 for all the
coefficients of the polynomial; if we choose n too small, the convolution will “wrap around”
and we’ll end up adding the last terms of our polynomial to earlier terms.

One can ask the question: when you multiply polynomials by taking the Fourier trans-
forms and multiplying pointwise, how many times do you have to divide by n? At first
sight, it seems like the answer should be inconsistent. If we first take the inverse Fourier
transform, Eq. (3), of each of the polynomials, multiply then, and then take the Fourier
transform, we end up dividing by n when we take the forwards Fourier transform, so we
divide by n once. On the other hand, if we take the forwards Fourier transform of the poly-
nomials first, we have to divide each of these polynomials by n. Then, when we multiply
them together, we have divided each of these by n, so we’ve ended up dividing by n2 total.
Sot it seems like, when we take the inverse Fourier transform, we should end up with an
extra division by n than we did if we took the inverse Fourier transform first. Both of these
methods can’t be right, since the two answers differ by a factor of n. What’s going on?

The correct answer, as you should be able to figure out if you sit down and write
everything out, is that you only divide by n once. This is related to the extra L term we
mentioned above, which turns into an n when you turn Fourier series into finite Fourier
transforms, and cancels out one of the extra factors of n.

6 Fourier transforms modulo p and fast integer multiplica-

tion

So far, we’ve been doing finite Fourier transforms over the complex numbers. We can
actually generalize them to work over any field with a primitive n-th root of unity. Suppose
z is our n-th root of unity. The main fact we need to have the finite Fourier transforms
work is that if z 6= 0 and zn = 1, then

n−1
∑

k=0

zk = 0

This holds for any field with a primitive n-th root of unity. The transforms work the same
way as in Eqs. (3) and (4). The inverse Fourier transform is

yj =
n−1
∑

k=0

akz
jk
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and the forward Fourier transform is

ak =
1

n

n−1
∑

j=0

yjz
−jk

If we take a prime p, then the field of integers mod p has an n-th root of unity if
p = mn + 1 for some integer m. In this case, we can take the Fourier transform over
the integers mod p. Thus, 17 has 16th roots of unity, one of which can be seen to be
3. So if we use z = 3 in our fast Fourier transform algorithm, and take all arithmetic
modulo 17, we get a finite Fourier transform. We can use this for multiplying polynomials.
Suppose we have two degree d polynomials, each of which has integer coefficients of size at
most B. The largest possible coefficient in the product is (B − 1)2(d + 1). If we want to
distinguish between positive and negative coefficients of this size, we need to make sure that
p > 4(B−1)2(d+1). We also need to choose n ≥ 2d+1, so as to have at least as many terms
as there are coefficients in the product. We can then use the Fast Fourier transform (mod p)
to multiply these polynomials, with only O(d log d) operations (additions, multiplications,
taking remainders modulus p), where we would have needed d2 originally.

Now, suppose you want to multiply two very large integers. Our regular representation
of these integers is as

∑

k dk10
k, where dk are the digits. We can replace this by

∑

k dkx
k

to turn it into a polynomial, then multiply the two polynomials using the fast Fourier
transform.

How many steps does this take? To make things easier, let’s assume that our large
integers are given in binary, and that we use a base B which is a power of 2. Let’s assume
the large integers have m bits each and that we use a base B (e.g., 10 in the decimal system,
2 in binary) that has b bits. We then have our number broken up into m/b “digits” of b bits
each. How large does our prime have to be? It has to be larger than the largest possible
coefficient in the product of our two polynomials. This coefficient comes from the sum of
at most m/b + 1 terms, each of which has size at most (2b − 1)2 < 22b This means that
we’re safe if we take p at least

(
m

b
+ 1)22b

or taking logs, p must have around 2b+ log2
m
b bits.

Rather than optimizing this perfectly, let’s set b = log2m; this is simpler and will give
us the right asymptotic growth rate. We thus get that p has around 3 log2m bits. We
then set n = 2m

b + 1, so that our finite Fourier transform involves O(n log n) = O(m)
operations, each of which may be an operation on a (3 log2m)-bit number. If we use
longhand multiplication and division (taking O(b2) time) to do these operations, we get an
O(m log2m)-time algorithm.

There’s no reason that we need to stop there. We could always use recursion and
perform these operations on the 3b-bit numbers using fast integer multiplication as well.
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If we use two levels of recursion, we get an O(log n(log log n)2) time algorithm. If we use
three levels of recursion, we get an O(log n(log log n)(log log log n)2 time algorithm, and so
forth.

It turns out, although I won’t go into the details, that if you work hard enough you can
get a O(n log n log log n) time algorithm. The details can be found in Aho, Hopcroft and
Ullman’s book “Design and Analysis of Computer Algorithms.” This algorithm uses the
Chinese remainder theorem to get a recursion that produces a running time just a little bit
more efficient than what you get using recursion with the method above.

7 Details of making a spreadsheet

It seems at first like the FFT is perfectly suited for a spreadsheet. It can be illustrated
beautifully by a two-dimensional diagram. However, once you start looking at the details,
it gets fairly tricky. The diagram illustrating the FFT is:
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FFT Figure

Here, the outlined boxes in the top row contain our input. In every black box we put
ai + ai+s where ai and ai+s are the entries in the two boxes in the row connected to this
black box by black lines. In each yellow box, we put (ai − ai+s)z

i, where now ai and ai+s

are the boxes in the row above connected to this yellow box by brown lines. One thing to
remember is that z (as well as s) changes from row to row. In calculating the boxes in the
second row, we use our original z. In the third row, we use z2. (So in terms of our original
z, we are really multiplying by z2i here and not zi.) In the fourth row, we use z4. In the
fifth row, it turns out we don’t need to use z at all, since in all these yellow boxes we have
i = 0.

One tricky thing about this is that we have to start counting i from the first box of the
contiguous row of yellow boxes it’s in, and not from the column. So, for example, in row 3
you need to get i by taking the column number mod 4 and not just the column number.
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After row 5, we’re done with all the addition steps, and have only one or two steps left.
In row 6, we shuffle all the numbers into the red boxes according to the reversal-of-binary-
digits permutation. If you’re constructing the spreadsheet according to the instructions in
Prof. Kleitman’s lecture notes, you don’t actually need row 6, because he folds this shuffle
into rows 2 through 5. However, you haven’t really gotten rid of any complexity, because
he has made constructing rows 2 through 5 are a little more complicated.

Finally, depending on whether we’re doing the FFT or the inverse FFT, we may need
to make a row 7 where we divide row 6 by n, which in this case is 16.

If we’re doing an FFT mod p for some prime p, all of these arithmetic operations are
going to have to be done mod p, and in the last step, we will have to multiply by n−1,
which is the integer satisfying

n · n−1 = 1 mod p

This inverse can be found by Euclid’s gcd algorithm.
There are a number of issues that can arise when you construct the spreadsheet for the

homework. The first is the issue of copying formulas in spreadsheets. Suppose you want
to give a spreadsheet for the FFT in which you can easily change the prime p and/or the
root of unity z. If you put z or p into the formulas, then when you copy the spreadsheet
you’ll have to change them all by hand. Furthermore, if you get them by using an absolute
reference like $A$3 (say to a cell containing p or z) then when you copy this cell, the
reference in the copy will still points to A3. If you want to change the values of p and z,
you will need to replace all these references.

Of course, you can argue that this is what the find-and-replace tool in the spreadsheet
editor is intended for. But Prof. Kleitman has also figured out how to construct a spread-
sheet cleverly so that we don’t have to use this tool. Suppose we start our spreadsheet with
the three rows

A B C D E F G H I J K L

1 0 1 2 3 4 5 6 7 8 9 10 11 . . .
2 p p p p p p p p p p p p . . .
3 z z z z z z z z z z z z . . .

Then if we want to make a reference to p, we can use a reference like C$2. This uses
the value in the same column, but the second row. Now, we can copy our spreadsheet
horizontally. This changes C to column farther to the right, and we can put a new prime
p in the second row of our copy. As long as we don’t change the rows our spreadsheet
occupies, but just move it horizontally, we’re fine.

We now need to calculate the values of bi using the equations

bi = ai + ai+s

b̃i = (ai − ai+s)z
i

12



The first case (bi) is easy. The second case (b̃i) is trickier, because of the zi term. The
obvious way is to calculate it is to use a statement like

= MOD( (J5 − N5) ∗ z(2∗i), p).

to calculate N6 in row 6, where s = 4 and we multiply by (z2)i. There are two problems
with something like this. The first is that, if row 2 is all p’s and row 3 is all z’s, we can get
p and z by N$2 and N$3, but where do we get the i from? In row 3, we have two stretches
of four yellow cells, and we want i to start counting from 0 each time. If we just reference i
up in the first stretch, we’ll have to change the formula if we copy it to the second stretch.
This can be solved by using MOD(i, 4) in the formula.

The second problem is somewhat more serious. This is that using the spreadsheet’s
arithmetic to compute z2i is very likely to give you an integer overflow, if z or i is large.
What we could do is to create an extra row that contains powers of z mod p, and use the
OFFSET function to find the right cell in it. This works fine, but it’s kind of complicated
and messy, and it’s easy for mistakes to sneak in.

Here’s what I think might be the easiest solution: create another (n × log2 n) array in
your spreadsheet that contains the numbers z i that you need to multiply by ai − ai+s in
the b̃ cells. For n = 16, the numbers you need to multiply them by look like

− − − − − − − − 1 z z2 z3 z4 z5 z6 z7

− − − − 1 z2 z4 z6 − − − − 1 z2 z4 z6

− − 1 z4 − − 1 z4 − − 1 z4 − − 1 z4

− 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1

where all of the powers are performed mod p. Here − means that we have b instead of b̃ in
the corresponding cell, so there’s no zi term needed for that cell.

How can we constrct this second array? Since we’ll never actually be looking at the −
cells, we can fill them in anyway we want, and it’s easiest to fill them in with the same
sequence we find in b̃ cells.

For example, for n = 16, if p = 193, and z = 3 is our 16th root of 1, we get

1 3 9 27 81 50 150 64 1 3 9 27 81 50 150 64
1 9 81 50 1 9 81 50 1 9 81 50 1 9 81 50
1 81 1 81 1 81 1 81 1 81 1 81 1 81 1 81
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

How do we create this table? It’s easy. We get the first eight cells in the top row by sticking
in a 1 on the left, and then repeatedly multiplying by 3 mod 193. We can get the rest of
the cells by copying the cell 8 positions to the left. In the second row, we can get the first
four cells by squaring the cells above them mod 193, and the rest by looking 4 positions to
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the left. In the third row, we can get the first two cells by squaring the celle above them,
and the rest by looking 2 positions to the left. Larger FFT’s will work similarly.

Unless you want to use a search-and-replace function, you should remember to get 3
and 193 by referencing cells that contain them, rather than coding them into the formulas.

Finally, we need to shuffle all the entries around, by copying the entry in each cell to the
column obtained by reversing the digits of the column’s number in binary. For example,
if n = 16, you would move the entry in the 5th (= 0101) position to the 10th (= 1010)
position. I didn’t find it too painful to construct this shuffle by hand. I also don’t see
any easy way of making the spreadsheet do it for you, but I wouldn’t be too surprised if
someone thinks of a clever way.

You also need to remember to divide by n. You do this by multiplying by n−1 (mod p).
Calculating n−1 can be done using the Euclidean algorithm, which you should have gone
over earlier in 18.310.

There are a lot of ways to make errors in this process. One thing you can do to make
it easier is to start out by making a spreadsheet which uses z = 3 and p = 17 or 193, and
change the numbers to be bigger later. You can also put in test sequences where you can
easily figure out what the FFT should be, such as putting in one 1 and the rest 0’s. I find
it useful to color the cells using the b formula one color and those using the b̃ formula a
different color, so that I could visually see if I stuck these formulas in the wrong columns
by mistake.

I’ve explained how to do the FFT on a spreadsheet using two different types of cells
in each row: one type that computes b and another that computes b̃. If you use slightly
more complicated formulas, you might be able to use just two formulas total for all of these
rows, again, one for b̃ and one for b, but where these two types don’t need to be customized
for each rows. Here, I don’t see any way to do it without using use the OFFSET function
(which generally makes things more complicated), and you also need some way to figure out
which row you’re in (which also makes things more complicated, although not by much),
so unless you can figure out some clever way of doing it without the OFFSET function, it’s
probably not worth the extra trouble.
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