Intro to Analysis of Algorithms
CSE 4081

VERSION
UG

Fall 2015
Exam 2
Points 48

Time 70 min

ANSWERS SHOULD BE BRIEF.

[Students ignore these key words: Foundations, Problem solving, Algorithm understanding.]
Q1. Binary search-tree organization problem with the dynamic programming algorithm. Fill in the two open entries in the optimum cost table for the following node(frequency) list? Computation steps should be shown. {V1(5), V2(3), V3(7), V4(6), V5(6), V6(2)}.
Draw the corresponding binary-search tree.

[8+2]
Ans:

	j->

i (row)
	0
	V1
	V2
	V3
	V4
	V5
	V6

	0
	0
	0
	0
	0
	0
	0
	0

	V1
	0
	5
	Min{5 +3.2,
3+5.2}

= 11(V1)
	26(3)
	38(3)
	56(3)
	??? (??)

62(3)

	V2
	0
	0
	3
	13(V3)
	??? (??)

25(3)
	41(4)
	47(4)

	V3
	0
	0
	0
	7
	19(V3)
	32(4)
	38(4)

	V4
	0
	0
	0
	0
	6
	18 (V4, or V5)
	22(5)

	V5
	
	
	
	
	
	6
	10(V5)

	V6
	
	
	
	
	
	
	2

Q2a. Input: a list of n numbers {xi, 1 ≤ i ≤ n}. Write a corresponding dynamic programming (DP) algorithm for the following recurrence relation.

[5]
C(lf, rt) = min{ C(lf, k-1) + C(k+1, rt) + ∑ j=lf rt xj, for lf<k<rt}.

C(lf, lf) = 0

Q2b. What is the time complexity of your DP algorithm.

[3]
Q2c. Write a memoisation algorithm for the above recurrence.

[5]
Key:
2a. Adapt from DP algorithm for Binary-search tree organization problem. There is slight difference in pointers’ ranges.

A pseudo-code should also have minimization, summation, etc. properly spelled out in algorithmic language, rather than just as mathematical formula, that my notes sometimes do not have.

	Input: a list of n numbers {x(i), 1 ≤ i ≤ n}.

Output: optimum values in matrix C(1..n, 1..n)

	1. for all 1(i (n do C(i,i) = 0; // diagonal elements 0
2. for size = 2 to n do

// size of subsequence
3.
for l =1 to n-size+1 do

4.

r = l+size-1;
//move along diagonals
5. Sum=0;
6. for j=l to r do

7. Sum = sum + x(j);

8.

C(l,r) = infinity; //minimizer
9.

for k = l+1 to r-1 do
10.

x = M(l, k-1) + M(k+1, r) + Sum;
11.

if x < M(l, r) then M(l, r) = x;
End.

	The binary-search-tree-organization DP is actually not there on my slides by deliberate choice (you write it!), but I adapted from the matrix-chain DP above.

2b. O(n^3), just as in binary-search-tree-organization algorithm.

2c.

	Input: a list of n numbers {x[i], 1 ≤ i ≤ n}.

Output: optimum value for C

	Algorithm memoisationC(l, r)
1. if r<= l then return 0; // Recurrence termination: no scalar-mult
2. else if
3. TableC[l, r] >0 return TableC[l, r]; // it is already in the table
4. Else
5. Sum=0;
6. for j=l to r do

7. Sum = sum + x[j];

8. C = infinity; // minimizer

9. for k = l+1 to r-1 do
10. x = memoisationC(l, k-1); // two recursive function calls
11. y = memoisationC(k+1, r);
12. if x+y+Sum < C then C = x+y+Sum;
13. TableC[l, r] = C; // update table before returning
14. return C;

Driver:

1. Initialize TableC = -1 for all elements;
2. call memoisationC(1, n) for the final answer.

	· I used [] for array and matrix indices to distinguish from function argument with ().
· Recursive calls on lines 10 and 11 are necessary because in memoisation not all “previous” elements are already computed. However, if they are already computed the call quickly returns in constant time from line 3, instead of further recursive calls. One may do another way, update table on line 10 and 11 instead.
· If you have any concern let me know.

· Driver line 1 makes the complexity O(n^3), although number of calls may be less, unless…

Q3. Use a greedy algorithm to create a binary tree, such that the following nodes are on its leaves, and the total cost by aggregating the product of each node’s frequency and the distance from the root on the resulting tree is minimum. For example, if V1 with frequency 5 is 2 step away from the root in the tree, and V2 with frequency 3 is 1 step away from the root then the aggregate cost of the two nodes tree is 5*2 + 3*1 = 13. The problem is to develop a tree such that the aggregate cost is minimum.
Intermediate steps should be shown. Input list of node(frequency) is below.

{V1(5), V2(3), V3(7), V4(6), V5(6), V6(2)}.

[5]
Answer:

This is Huffmann encoding. Each step is to show the status of the evolving forest, with nodes on the leaves.

First, V1(5), V2(3), V3(7), V4(6), V5(6), V6(2), each node as a tree.

Then, V1(5), V2V6(3+2), V3(7), V4(6), V5(6), two smallest trees merged.

Then, V1V2V6(5+3+2), V3(7), V4(6), V5(6).

You should draw the actual forest at each stage.
Q4a. Write a breadth first search (BFS) algorithm for traversing a graph.

[5]
Q4b. For the following graph, write an order of nodes in BFS traversal starting from v2.

[5]

Answer:
4a. Single source shortest-path LENGTH algorithm was doing the breadth-first graph traversal. You do not need to keep track of the path length here, rather stamp each node with the traversal order. You may do Q-based traversal as well.

4b. My BFT order would be: v2 – v1 – v6 – v3 – v4 –v5
Q5. Complete the following min-max search tree showing the internal node values and the pruned branches with alpha-beta pruning.
[Note that although all the leaf evaluation values are provided here, the algorithm will actually prun some branches.

Presume a depth first search traversal with your left-side branch having priority over your right-side branch.]

[10]

Key:
A: Minimizer knows 27 or below is not acceptable to the parent.

B: Maximizer knows 87 or higher is not acceptable to its parent. Note that this node will actually not be called by its parent anyway. [You may still write this answer, along with the note.]

C: I do not see any more pruning.
v1

v2

v3

v4

v6

v5

Min

36

36

40

Max

36

36

A: 27

40

Min

Max

55

B:87

27

40

73

36

36

68

23

36

12

55

5

36

29

68

57

87

64

27

19

40

73

30

