Name/ Id4:
Intro to Analysis of Algorithms
CSE 4081

Fall 2015

Final Exam
Points 50

Time 110 min

Q1a. Run the Floyd-Warshall algorithm for the following graph showing both the Distance matrix and the Path matrix from each iteration.
1b. Comment on your results.

1c. Mention two items that you wish you had done in your project: either with algorithm, or with experiment design, or with your report.

[6+2+2]

KEY:

P matrix not shown below
k =1

d =

 0 5 9 2 5000

 5000 0 5000 5000 5000

 5000 5000 0 5000 5000

 5000 5000 1 0 1

 -6 -1 3 -4 0

k =2

d =

 0 5 9 2 5000

 5000 0 5000 5000 5000

 5000 5000 0 5000 5000

 5000 5000 1 0 1

 -6 -1 3 -4 0

k =3

d =

 0 5 9 2 5000

 5000 0 5000 5000 5000

 5000 5000 0 5000 5000

 5000 5000 1 0 1

 -6 -1 3 -4 0

k =4

d =

 0 5 3 2 3

 5000 0 5000 5000 5000

 5000 5000 0 5000 5000

 5000 5000 1 0 1

 -6 -1 -3 -4 -3
1b. Negative loop detected, as seen on v1-v4-v5-v1. Need not run for 5 iterations.
1c. Must be consistent with project report. If not: 1. 0/2 here, and 2. Individual grade on project report is downward adjusted.

[A page left void deliberately]
Q2a. Use the polynomial reduction algorithm to produce a 3SAT problem instance from the following SAT problem instance.

[4+4+2]
Q2b. Show that your transformation is correct.
Q2c. An unknown class problem X has a polynomial-transformation to another problem Y, where Y is in NP-class. What does it say about the class for X?
KEY: Do truth table for source side, then work with only F of source side – on the 3SAT side.
	Input SAT-clauses
	
	Output 3SAT clause(s) for each source clause
	

	(~a, b)
	1. (a=T,b=T): T

2. (T,F): F

3. (F,T): T

4. (F,F): T
	(~a, b, z1), (~a, b, ~z1)
	2. (a=T,b=F, z1=T):

(~a,b,z1) = T, (~a,b,~z1)=F

(a=T, b=F, z1=F)

(~a,b,z1) = F, (~a,b,~z1)=T

Both clauses not true

	(a, b)
	1. (T,T)

2. (T,F)

3. (F,T)

4. (F,F): F
	
	

	(~b)
	1. (T,T): F

2. (T,F): T

3. (F,T): F

4. (F,F): T
	(~b, z3, z4), (~b, ~z3, z4), (~b, z3, ~z4), (~b, ~z3, ~z4),
	1. For (a=T, b=T, z3=T, z4=T):

(~b, z3, z4)=T,

(~b, ~z3, z4)=T,

(~b, z3, ~z4)=T,

(~b, ~z3, ~z4)=F, not all T.

For (a=T, b=T, z3=T, z4=F):

(~b, z3, z4)=T,

(~b, ~z3, z4)=F,

(~b, z3, ~z4)=T,

(~b, ~z3, ~z4)=T, not all T.

… 2 more for first (T,T): F

3. Four such combinations for (F,T):F

Q3a. Write a recursive algorithm for the following recurrence equation, after completing the recurrence with any appropriate boundary condition.
Input: An array of numbers {pj, 1≤j≤n}, and an integer W.

Output: M(n, W), for the following definition of M(i, j), i≤n, i≤W.

M(i, m) = max{M(k, m-1) +pi, M(k, m), for all k<i}. (p_i
Q3b. Write a dynamic programming (DP) algorithm, for your completed recurrence equation.
Q3c. What are your DP algorithm’s time and space complexities?

KEY: Similar to 0-1 knapsack except for constant weights m, and a loop in computing each entry.
3a. Function M(I, m)

If (k >= j) then M(I, m)=0; // boundary condition

Else

Temp = - infinity;

For k<I // note the calls are made top-down

Larger = max {M(k, m-1)+pi , M(k,m)};

If larger > temp then
 temp= larger;
 Return temp;

3b. DP goes bottom up, we need to fix lower end for k, m. Say, k,m=0.

M(I,m) is (n+1) x (W+1) matrix, initialize to 0.

For i = 1 to n

For m=1 to W

Temp = - infinity;

For k=1 to i

temp = max{ M(k, m-1)+pj , M(k,m)}};

M(I,m) = temp;

3c. Space complexity of DP is O(nW), the size of the matrix. Each element computation takes O(n), so, time complexity is O(n^2 *W).
Q4a. Set up and discuss the recurrence relation for time complexity function T(n), n is the input array size, for the following recursive divide and conquer algorithm. Analyze the time complexity of the algorithm by applying Master’s theorem to solve it.
[4+6]

UG Q4b. Show the recursion tree (for recursive calls) for the following input to the driver call. You need not fully solve the problem.
[1, 2, 3, 4].
MyAlgorithm (array a)
1. n = a. length

2. if n == 1

3. return a;

4. p = 1;

5. a[1] = (a0, a2, …, an-2);

6. a[2] = (a1, a3, … an-1);

7. vector x[1] = MyAlgorithm(a[1]);

8. vector x[2] = MyAlgorithm(a[2]);

9. For j = 0 to n-1

10. k = floor(j/2);
11. xj = xk[1] + p*xk[2]; (x not y, index k on right
12. p = p*2n;

13. return vector x;

End.
KEY:

4a. Two recursive calls of half-size on lines 7 and 8: T(n) = 2T(n/2) + overhead.

Lines 9-11, overhead: O(n)

Recurrence for time-complexity: T(n) = 2T(n/2) + O(n).

In Master’s theorem, a=2, b=2, i=1, a=b^i: T(n) = O(n^I log_n)= O(n log n)
4b. (1,2,3,4)

(1,3)

(2,4)

1
3

2
4

<<above for UG, below added for Grad>>

1*2^0 3

2
4

X1[1]=1+3*2

x1[2]=2+4

X2[1]=1+3^4

x2[2]=2+4*4

X1= 7 + 6

X2= 7 + 6*16

X3= 6 + 18*32

X4= 6 + 18*64

5a: Write a backtracking algorithm for solving the Satisfiability problem. [4+4+2]
5b. Suggest some ways to achieve pruning in the backtrack tree.
5c. Run your algorithm for the following input problem instance, showing the full backtrack tree.
V={a, b, c}, CNF={(~a,b), (a, b), (~b), (a,~c)} [CNF = conjunctive normal form]
KEY:

5a. There are many formats for writing this. Here is one using 0-1KS backtrack algorithm, with termination on C=T.
Input: (level lvl, variables: V, clauses: C)

Returns: True / False

Function BT_Sat (int lvl, var V, clauses C)

 If lvl = n

Evaluate C;

If C = T return T

Else return F;

 Else

v = lvl-th element from V; // choose next variable for assignment

v = T;

if (Function BT_Sat (lvl+1, V, C) = T) return T;

else

v=F;

if (Function BT_Sat (lvl+1, V, C) = T) return T;

else return F;
Driver: return BT_Sat (lvl=0, V, CNF)

5c.

(a=, b=, c=)

(a=T, b=, c=)

(a=F, b=, c=)

(T,T, c=)

(T,F, c=)

 (F,T,c=)

(F,F,c=)

(T,T,T)

(T,T,F)
 (T,F,T)
(T,F,F)

(F,T,T) (F,T,F) (F,F,T) (F,F,F)

CNF=F
F

F
F

F

F
F
F

F: no assignment for V makes CNF True.
5b. Modus ponens with logical symbols is not acceptable answer. There are many many possible ways to improve backtracking. Here is one.

Function BT_Sat (current var V, current clauses C)

 If V = empty

return F;

 Else

v = pop(V); // choose a variable for assignment, and remove from V

v = T;

for each clause c in C

if c=T now then

remove c from C;

if C= empty return T; // all clauses satisfied, we need not look for any more variable

else // ~v is a literal in c

remove v from c; // v will not help making c true

if c=empty return F; //current var assignments are useless as c=F

if (Function BT_Sat (V, C)) return T;

else

v=F;

for each clause c in C

if c=T now then

remove c from C;

if C= empty return T; // all clauses satisfied, stop

else // ~v is a literal in c

remove v from c; // v will not help making c true

if c=empty return F; //current var assignments are useless as c=F

if (Function BT_Sat (V, C)) return T;

else return F; // v=T/F both failed
v1

9

v2

v3

v4

v5

5

-6

1

2

1

1

