Algorithms Fall 2002 Final (80 pts, 70 min)

1. Describe briefly the significances of polynomial transformations (1) from an NP-hard problem to a P-class problem, (2) from a P-class problem to an NP-hard problem.

Ans: (1) Say, X is the NP-hard problem and Y is the P-class problem and there is a polynomial transformation Pxy from X to Y. Then, using Pxy and the poly algorithm for X one can solve Y also in poly time. Hence, all the NP-hard problems and so, all the NP-class problems (by Cook’s theorem) can be solved in poly-time, or in other words that would prove P=NP. (2) One can now solve the source problem (that already has a poly-algorithm) using an indirect exponential algorithm (using the poly-trans plus the possible exp algorithm for the target NP-h problem). No significance for this transformation.

Long format question: No significance of exponential transformations anyway. 

2. The following is a sequence of matrices that needs to be multiplied in the same sequence, and their corresponding dimensions are: MNOPQR, and M (2x3), N(3x7), O(7x1), P(1x5), Q(5x4), and R(4x4). What are the minimum number of scalar multiplications for the subsequences NOP and OPQ? Show the appropriate break up as well. You must use the Dynamic Programming algorithm.

Ans: This is a highly decomposable problem (principle of optimality holds), a pre-requisite for developing Dynamic Programming algorithms. All I needed is the calculation for (NO), (OP), (PQ) and then for: (NOP) [N(OP) leads to 140 scalar mult, (NO)P to 36, so, chose (NO)P], and (OPQ) [O(PQ) leads to 48 and (OP)Q leads to 175, so, choose O(PQ)]. All other calculations (done by some students) are redundant and comes from a misunderstanding about when the Dynamic Programming approach could be utilized: a very important point.

3. Design a Divide and Conquer algorithm in order to add a list of numbers, presuming the input list will always have 2^I number of elements, for some integer I>1. Establish a recurrence equation for the algorithm’s time-complexity.

EasyAlgorithm (array A, int f, int e)

If f == l then return A[f]

Else


Return EasyAlgorithm(A, f, floor((f+e)/2)) + 



EasyAlgorithm(A, floor((f+e)/2)+1, n)

End algorithm

T(N) = 2T(N/2) + c

Long format question: Solve this anyway you want. 

4. Develop a Finite State Automaton for the string S=abab, with the alphabet {a,b} only. Show how the string S will be searched in a longer sequence P=aababab using that automaton.

FSA:

States->
0
1
2
3
F

A

1
1
3
1
2

 B

0
2
0
F
0

FSA-matching:

aababab : 0-a-1-a-1-b-2-a-3-b-F(accept, shift=1)-a-2-b-F(accept, shift=3)

