arxiv:1201.2501v1 [cs.DS] 12 Jan 2012

Nearly Optimal Sparse Fourier Transform

Haitham Hassanieh Piotr Indyk Dina Katabi Eric Price
MIT MIT MIT MIT

{hai t hamh, i ndyk, dk, ecprice}@rit. edu
Abstract

We consider the problem of computing thesparse approximation to the discrete Fourier transforanof
n-dimensional signal. We show:

e An O(klogn)-time algorithm for the case where the input signal has att he®n-zero Fourier coeffi-
cients, and

e An O(klognlog(n/k))-time algorithm for general input signals.

Both algorithms achieve(n logn) time, and thus improve over the Fast Fourier Transform, fyr/fa=
o(n). Further, they are the first known algorithms that satisfg groperty. Also, if one assumes that the
Fast Fourier Transform is optimal, the algorithm for theatak-sparse case is optimal for afy= n*(®).

We complement our algorithmic results by showing that aggi@hm for computing the sparse Fourier
transform of a general signal must use at léagtlog(n/k)/ log log n) signal samples, even if it is allowed
to performadaptivesampling.

http://arxiv.org/abs/1201.2501v1

1 Introduction

The discrete Fourier transform (DFT) is one of the most irtgodrand widely used computational tasks. Its
applications are broad and include signal processing, aomuations, and audio/image/video compression.
Hence, fast algorithms for DFT are highly valuable. Cutsetihe fastest such algorithm is the Fast Fourier
Transform (FFT), which computes the DFT of ardimensional signal i) (n log n) time. The existence
of DFT algorithms faster than FFT is one of the central goestin the theory of algorithms.

A general algorithm for computing the exact DFT must takeetathleast proportional to its output size,
i.e., Q(n). In many applications, however, most of the Fourier coeffits of a signal are small or equal
to zero, i.e., the output of the DFT is (approximatedparse This is the case for video signals, where a
typical 8x8 block in a video frame has on average 7 non-nidgigrequency coefficients (i.e., 89% of the
coefficients are negligible) [CGX96]. Images and audio @ataequally sparse. This sparsity provides the
rationale underlying compression schemes such as MPEGRIEG.JOther sparse signals appear in com-
putational learning theory [KM91, LMN93], analysis of Beah functions[[KKL88| O’D08], multi-scale
analysis[[DRZ017], compressed sensing [Ddn06, CRTO6],laiity search in databases [AFS$93], spectrum
sensing for wideband channels [[V$11], and datacenter taovimg [MNLI10].

For sparse signals, the(n) lower bound for the complexity of DFT no longer applies. Ifignal has
a small numbe¥k of non-zero Fourier coefficients — tlexactly k-sparsecase — the output of the Fourier
transform can be represented succinctly using érdgefficients. Hence, for such signals, one may hope for
a DFT algorithm whose runtime is sublinear in the signal,sizé&=ven for a generat-dimensional signat
—thegeneral case- one can find an algorithm that computes the kesparse approximatioof its Fourier
transform,z, in sublinear time. The goal of such an algorithm is to coraut approximation vectar that
satisfies the followinds//> guarantee

12 =3l <C min |7 —yll, 1)
k-sparsey
whereC' is some approximation factor and the minimization is dweparse signals.

The past two decades have withessed significant advanceblinear sparse Fourier algorithms. The
first such algorithm (for the Hadamard transform) appeandiKM91] (building on [GL89]). Since then,
several sublinear sparse Fourier algorithms for complputswere discovered [Man92, G&2,[AGS03,
(GMS05/Twel0, Akald, HIKP12]. These algorithms profidee guarantee in Equation @).

The main value of these algorithms is that they outperfornmi’sFuntime for sparse signals. For very
sparse signals, the fastest algorithm is dué to [GMSO05] asditk log®(n) log(n/k)) runtime, for sonte
¢ > 2. This algorithm outperforms FFT for arly smaller thanO(n/log® n) for somea > 1. For less
sparse signals, the fastest algorithm is dué fo [HIKP12], lasO (v/nk log®/? n) runtime. This algorithm
outperforms FFT for any smaller thar®(n/logn).

Despite impressive progress on sparse DFT, the state ofttheffers from two main limitations:

1. None of the existing algorithms improves over FFT’s na&tifor the whole range of sparse signals, i.e.,
k= o(n).

2. Most of the aforementioned algorithms are quite commexi suffer from large “big-Oh” constants (the
algorithm of [HIKP12] is an exception, albeit with runninighe that is polynomial im).

The algorithm of[[Man92], as stated in the paper, addressiystioe exactlyk-sparse case. However, it can be extended to the
general case using relatively standard techniques.

2All of the above algorithms, as well as the algorithms in fhéper, need to make some assumption about the precisior of th
input; otherwise, the right-hand-side of the expressioBEdnation [(1) contains an additional additive term. Seeifneries for
more details.

3The paper does not estimate the exact value bfe estimate that ~ 3.

Results. Inthis paper, we address these limitations by presentiogiew algorithms for the sparse Fourier
transform. Assume that the lengthof the input signal is a power of 2. We show:

e An O(klogn)-time algorithm for the exactly-sparse case, and
e An O(klognlog(n/k))-time algorithm for the general case.

The key property of both algorithms is their ability to ack@e(n logn) time, and thus improve over the
FFT, foranyk = o(n). These algorithms are the first known algorithms that setig$ property. Moreover,

if one assume that FFT is optimal and hence DFT cannot bedaiess tharO(n log n) time, the algo-
rithm for the exactlyk-sparse case 'rsptimaﬂ as long as = n®(1). Under the same assumption, the result
for the general case is at most diag log n factor away from the optimal runtime for the case of “large”
sparsityk = n/log®™ n.

Furthermore, our algorithm for the exactly sparse caseidtebas Algorithni 311 on page 5) is quite
simple and has low big-Oh constants. In particular, ouripiebry implementation of a variant of this
algorithm is faster than FFTW, a highly efficient impleméiata of the FFT, forn = 22 andk < 2'7. In
contrast, for the same signal size, prior algorithms westefahan FFTW only fok < 2000 [IEIKEZ]E

We complement our algorithmic results by showing that agp@hm that works for the general case
must use at lea$?(k log(n/k)/ log log n) samples fromx. The lower bound uses techniques from [PW11],
which shows arf(klog(n/k)) lower bound for the number darbitrary linear measurements needed to
compute thes-sparse approximation of ardimensional vectog. In comparison to [PW11], our bound is
slightly worse but it holds even fadaptivesampling, where the algorithm selects the samples basdton t
values of the previously sampled coordindesote that our algorithms amon-adaptive and thus limited
by the more stringent lower bound of [PW11].

The Q(klog(n/k)/loglogn) lower bound for the sample complexity shows that the runtimg of
our algorithm (O(klognlog(n/k)) is equal to the sample complexity of the problem times (hiylg
logn. One would speculate that this logarithmic discrepancyuis @ the need of using FFT to process
the samples. Although we do not have an evidence of the ofitynod our general algorithm, the “sample
complexity timedog n” bound appears to be a natural barrier to further improvesen

Techniques — overview. We start with an overview of the techniques used in prior wofkt a high level,
sparse Fourier algorithms work by binning the Fourier coiffits into a small number of bins. Since the
signal is sparse in the frequency domain, each bin is m«dynave only one large coefficient, which can
then be located (to find its position) and estimated (to fis@daue). The binning has to be done in sublinear
time, and thus these algorithms bin the Fourier coefficiestag ann-dimensional filter vectots that is
concentrated both in time and frequency. Thatdds zero except at a smalumberof time coordinates,
and its Fourier transforré! is negligible except at a smdthction (aboutl /k) of the frequency coordinates,
representing the filter's “pass” region. Each bin essdmptialceives only the frequencies in a narrow range
corresponding to the pass region of the (shifted) fitlerand the pass regions corresponding to different
bins are disjoint. In this paper, we use filters introducefHHKP12]. Those filters (defined in more detail
in Preliminaries) have the property that the valu&dt “large” over a constant fraction of the pass region,

“One also need to assume thatividesn. See sectiofil5 for more details.

®Note that both numbers:(< 2'7 andk < 2000) are for the exactly k-sparse case. The algorithm_in [HIKPh&wever, can
deal with the general case but the empirical runtimes areehig

®Note that if we allowarbitrary adaptive linear measurements of a vedipthen itsk-sparse approximation can be computed
using onlyO(k log log(n/k)) samples[[I[PW11]. Therefore, our lower bound holds only tbe measurements, although adap-
tive, are limited to those induced by the Fourier matrix. sTisi the case when we want to compute a sparse approximation to
from samples of:.

"One can randomize the positions of the frequencies by sagfiie signal in time domain appropriately [G®2 [GMS05].
See Preliminaries for the description.

referred to as the “super-pass” region. We say that a caaftics “isolated” if it falls into a filter's super-
pass region and no other coefficient falls into filters pag®re Since the super-pass region of our filters is
a constant fraction of the pass region, the probability aisng a coefficient is constant.

To achieve the stated running times, we need a fast methdddating and estimating isolated coef-
ficients. Further, our algorithm is iterative, so we alsochadast method for updating the signal so that
identified coefficients are not considered in future itersgi Below, we describe these methods in more
detail.

New techniques — location and estimation. Our location and estimation methods depends on whether
we handle the exactly sparse case or the general case. Iratityesparse case, we show how to estimate
the position of an isolated Fourier coefficient using onlp tsamples of the filtered signal. Specifically,
we show that the phase difference between the two samplegea lin the index of the coefficient, and
hence we can recover the index by estimating the phasesappisach is inspired by the frequency offset
estimation in orthogonal frequency division multiplexi(@FDM), which is the modulation method used in
modern wireless technologies (see [HT01], Chapter 2).

In order to design an algoritltirfor the general case, we employ a different approach. Spaityfi
we use variations of the filte® to recover the individual bits of the index of an isolatedftioient. This
approach has been employed in prior work. However, in thapers, the index was recovered bit by bit, and
one needed(log log n) samples per bit to recovetl bits correctly with constant probability. In contrast,
in this paper we recover the index ohck of bitsat a time, where each block consists@flog log)
bits. This approach is inspired by the fast sparse recovgorithm of [GLPS10]. Applying this idea in
our context, however, requires new techniques. The reasthrai, unlike in[[GLPS10], we do not have the
freedom of using arbitrary “linear measurements” of thetee¢, and we can only use the measurements
induced by the Fourier transfolfhAs a result, the extension from “bit recovery” to “block reeoy” is the
most technically involved part of the algorithm. See Sexf#idl for further intuition.

New techniques — updating the signal. The aforementioned techniques recover the position ankibe

of any isolated coefficient. However, during each filteriteps each coefficient becomes isolated only with
constant probability. Therefore, the filtering processdse® be repeated to ensure that each coefficient is
correctly identified. In[[HIKP1R2], the algorithm simply germs the filteringO (log n) times and uses the
median estimator to identify each coefficient with high @bitity. This, however, would lead to a running
time of O(klog? n) in the k-sparse case, since each filtering step taKeg n time.

One could reduce the filtering time by subtracting the ideati coefficients from the signal. In this
way, the number of non-zero coefficients would be reduced ¢ynatant factor after each iteration, so the
cost of the first iteration would dominate the total runniimge. Unfortunately, subtracting the recovered
coefficients from the signal is a computationally costly rapien, corresponding to a so-calladn-uniform
DFT (seel[[GSTO08] for details). Its cost would override anyemtial savings.

In this paper, we introduce a different approach: insteasubtracting the identified coefficients from
thesignal we subtract them directly from tH#ns obtained by filtering the signal. The latter operation can
be done in time linear in the number of subtracted coeffisiesince each of them “falls” into only one
bin. Hence, the computational costs of each iteration caselbemposed into two terms, corresponding to
filtering the original signal and subtracting the coeffitgenFor the exactly sparse case these terms are as
follows:

8We note that although the two-sample approach employed riralgwrithm works only for the exactly-sparse case, our
preliminary experiments show that using more samples tmett the phase works surprisingly well even for generaiaig
°In particular, the method of [GLPS/0] uses measurementssponding to a random error correcting code.

e The cost of filtering the original signal 8(B log n), whereB is the number of binsB is set toO(k’),
wherek’ is the the number of yet-unidentified coefficients. Thudialty B is equal toO(k), but its value
decreases by a constant factor after each iteration.

e The cost of subtracting the identified coefficients from theslis O (k).

Since the number of iterations @3(log k), and the cost of filtering is dominated by the first iteratitre
total running time isD(k log n) for the exactly sparse case.

For the general case, the cost of each iterative step isphedtiby the number of filtering steps needed
to compute the location of the coefficients, whictOglog(n/B)). We achieve the stated running time by
carefully decreasing the value Bfask’ decreases.

2 Preliminaries

This section introduces the notation, assumptions, anditiefis used in the rest of this paper.

Notation. For an input signak € C", its Fourier spectrum is denoted By For any complex number,
we usep(a) to denote th@haseof a. For any complex numberand a real positive numbérthe expression
a £+ b denotes any complex numbé&rsuch thata — a/| < b. We use{n] to denote the seftl ... n}.

Definitions. The paper uses two tools introduced in previous papersuiesandom) spectrum permuta-
tion [GGIT02,[GMS05[GST08] and flat filtering windowis [HIKP12].

Definition 2.1. We define th@ermutation?, , ;, to be

bi

(Po,a,bx)i - wai—i—aw_

—_— ~ . . . —_— ~ .
SO Py = Pyt o7 We also defing,, (i) = o(i —b) mod n, SOF, o, |\ = T~ 0mo b (D),

T (1

Definition 2.2. We say tha(G,a) = (GB,g,a,é\’B,(s,a) € R™ is aflat window functionwith parameters
B, §, anda if [supp(G)| = O(£ log(1/5)) and G’ satisfies

o G';=1fori| < (1—a)n/(2B)
o G';=0for|i| >n/(2B)
° @i € [0,1] for all ¢

[

The above notion corresponds to (¢ (2B), (1 — «)/(2B),, O(B/a log(1/0))-flat window function
in [HIKP12]. In Section[¥ we give efficient constructions afck window functions, wheré: can be
computed inO(£ log(1/6)) time and for eact, G’; can be computed i®(log(1/5)) time. Of course, for
i¢[(1—a)n/(2B),n/(2B)], G e {0,1} can be computed i®(1) time.

We note that the simplest way of using the window function®igrecompute them once and for all
(i.e., during a preprocessing stage dependent ontyamdk, notx) and then lookup their values as needed,
in constant time per value. However, the algorithms preskm this paper use the quick evaluation sub-
routines described in Sectibh 7. Although the resulting@iigms are a little more complex, in this way we
avoid the need for any preprocessing.

We use the following lemma abo#, , ;, from [HIKP12]:

Lemma 2.3(Lemma 3.6 of [HIKP12]) If j # 0, n is a power of two, and is a uniformly random odd
number in[n], thenPrloj € [-C,C] (mod n)] < 4C/n.

Assumptions. Through the paper, we assume thathe dimension of all vectors, is an integer power of
2. We also make the following assumptions about the precisidhe vectorse:

e For the exactlyk-sparse case, we assume thatc {—L,..., L} for some precision parametér To
simplify the bounds, we assume thiat= n°(!); otherwise thdog n term in the running time bound is
replaced byog L.

e For the general case, we assume tfagt, < n°M) - ming_sparse, |7 — y||,- Without this assumption, we
addo ||z]|, to the right hand side of Equationl (1) and replagen by log(n/d) in the running time.

3 Algorithm for the exactly sparse case

Recall that we assume; € {—L...L}, whereL < n¢ for some constant > 0. We choose) =
1/(16n2L). The algorithm (NISELESSSPARSEFFT) is described as Algorithin3.1.
We analyze the algorithm “bottom-up”, starting from the &vlevel procedures.

Analysis of NOISELESSSPARSEFFTINNER. For any execution of NISELESSSPARSEFFTINNER, define
S = supp(z — z). Recall thatr, (i) = o(i — b) mod n. Defineh, (i) = roundn,(i)B/n) and
06.5(1) = T (1) — hop(i)n/B. Note that thereforé, ;(i)| < n/(2B). We will refer toh, ; (i) as the “bin”
that the frequency is mapped into, and, (i) as the “offset”. For any € S define two types of events
associated withh and.S and defined over the probability space inducedrby

e “Collision” event E,.;(z): holds iff h, (i) € hop(S — {i}), and
e “Large offset” eventF, ¢ (i): holds iff |0, ()| > (1 — a)n/(2B).

Claim 3.1. For any: € S, the eventt,; (i) holds with probability at most|S|/B.
Proof. Consider distinct, j € S. By Lemmd2.3,

Pr(|755(i) — 75 5(j) mod n| < n/B] < Prlo(i — j) mod n € [-n/B,n/B]] <4/B.
HencePr(h, (i) = hop(j)] < 4/B, sOPr[Equ(i)] < 4|S|/B. O
Claim 3.2. For anyi € S, the eventt, ¢ ¢ (i) holds with probability at most:.

Proof. Note that, (i) = m,(i) (mod n/B). Forany oddr and! € [n/B], we have thaPr;[o(i—b) = [
(mod n)/B] = B/n. The claim follows. O

Lemma 3.3. The outputz of HASHTOBINS has

= 2 (@=2)(Grsa)y, o ™ £ ol +2]F]).
ho’,b(i):j

Let¢ = |{i € supp(2) | Eoss(i)}|. The running time oHASHTOBINS is O(£1log(1/8) + |supp(z)| +
(log(1/9)).

Proof. DefineG = Gp s, andG’' = G 5. We have

: Pa,a7b($) = a * P@a,b(x)
Pras(o = 2)+ (G = G) « Prag
= G % Pygp(x —2) £ 6(|ll, + 2]|2]l,)

L) wy
Q) D

procedure HASHTOBINS(z, Z, Py o, B, 9, @)
Computey;,,, g for j € [B], wherey = G o5 - (Prap())

CompUtegljn/B = /y\jn/B - (G/B@,g * Pa,a,bz)jn/B forj € [B]

return u given byu; = yA’jn/B.
end procedure
procedure NOISELESSSPARSEFFTINNER(z, £/, 2)
LetB=F/p.
Chooser uniformly at random from the set of odd numbergin
Chooseb uniformly at random fromjn].
u < HASHTOBINS(z, 2, Py, B, §, o).
u' <~ HASHTOBINS(z, 2, Py 14, B, 0,).
w <+ 0.
ComputeJ = {j : |u;| > 1/2}.
for j € Jdo
a < @]/ﬁ;
i+, (round¢(a)n/(2))).
v < round;).
@i — V.
end for
return w
end procedure
procedure NOISELESSSPARSEFFT (z, k)

Z+0
fort€0,1,...,logkdo
ky = k/2t.

Z < Z + NOISELESSSPARSEFFTINNER(z, k¢, 2).
for i € supp(z) do
if |ZZ| > Lthenz; =0
end if
end for
end for
return z
end procedure

Algorithm 3.1: Exactk-sparse recovery

Therefore
U =Y jn/p = Y Go(Prapla— 2)) iy T Ol + 2] 2ll)
ll|<n/(2B)
= > Gjn/Bny (i) Poap(® = 2));) Tzl +21[=])1)

|o.0(0)—in/ Bl <n/(2B)

= Z é_oa_’b(i)(w - Z)iw_aﬂ”’b(i) + 5(Hw|]1 +2 ”2”1)
ho’,b(i):j

We can compute HSHTOBINS via the following method:

N

Computey with |supp(y)| = O(£ log(1/6)) in O(£log(1/5)) time.
Computey € C” given byv; = > yi+ 5.
As long asB dividesn, by Claim 3.7 of [HIKP12] we havg;,, /s = ©; for all j. Hence we can compute

it with a B-dimensional FFT irO(B log B) time.
4. For each coordinatee supp(Z), decreasey,_, /5 by G’ (i) Ziw ™). This takesO(|supp(Z)| +
¢log(1/6)) time, since computin@\’%yb(i) takesO(log(1/9)) time if E, (i) holds andD(1) otherwise.

U
Lemma 3.4. Consider any € S such that neithe,,; (i) nor E,s¢(i) holds. Letj = hy (). Then
round(¢ (@ /t;))n/(27)) = 7a(i),
roundu;) = z; — Zz;,
andj € J.
Proof. We know that|z|, < nL and|/z||; < nL. Then by Lemm&3]3 and.,;(:) not holding,
= (& — 2),G_q, i) £ 300L.

BecauseF, (i) does not holdﬁ_%yb(i) = 144,50

G = (x — 2), + 30nL + 26L = (z —), + 46nL. @)

Similarly,

L —

u; = (x— 2)w o) £ 46n L

—

Then becauséénL < 1 < ‘(3: —2);

¢(@;) = 0+ sin"*(46nL) = 0 + 85nL
ando(u}) = —myp(i) £ 80nL. Thuse(u; /') = 7, (i) £ 160nL = 7,4 (i) + 1/n. Therefore

round o (a} /u;)n/(21)) = 7o p(i).

Also, by Equation[(R), round:;) = z; — z;. Finally, [roundu;)| = |z; — z;| > 1, so|u;| > 1/2. Thus
jed. O

Claims[3.1 and 312 and Lemrha 3.4 together guarantee thaadbriec S the probability that” does
not contain the paifi, (z — 2);) is at most{|S|/B + «. We complement this observation with the following
claim.

Claim 3.5. Foranyj € J we havej € h,;(S). Therefore|J| = |P| < |S].

Proof. Consider anyj ¢ h,;(S). From the analysis in the proof of Lemrhal3.4 it follows thaf| <
40nL < 1/2. O

Lemma 3.6. Consider an execution oNOISELESSSPARSEFFTINNER, and letS = supp(z — z). If
|S| < K/, then
El|z =z —wllo] <8(8 +a)lS].

Proof. Let e denote the number of coordinates S for which eitherE.,; (i) or E,¢¢(i) holds. Each such
coordinate might not appear ia with the correct value, leading to an incorrect valuevgf In fact, it might
result in an arbitrary paifi’, v") being added td, which in turn could lead to an incorrect valuef. By
Claim[3.5 these are the only ways thatan be assigned an incorrect value. Thus we have

|z — 2 —wl|o < 2e

SinceE[e] < (4|S|/B + a)|S| < (468 + «)|S|, the lemma follows. O

Analysis of NOISELESSSPARSEFFT Consider theth iteration of the procedure, and defifie= supp(z—
2) wherez denotes the value of the variable at the beginning of looge Nwt|Sy| = | supp(z)| < k.

We also define an indicator variablewhich is equal td iff |S;|/|S;—1| < 1/8. If I, = 1 we say the the
tth iteration was nosuccessfulLety = 8- 8(5 + «). From Lemma&3J6 it follows thatr[l; = 1 | [S;—1| <
k/2t=1] < ~. From Clain{3.5 it follows that even if thigh iteration is not successful, thesy|/|S; 1| < 2.

For anyt > 1, define an evenE(t) that occurs iffy ¢, I; > t/2. Observe that if none of the events
E(1)...E(t) holds thenS;| < k/2t.

Lemma3.7.LetE = E(1)U...UE()\) for A = 1+log k. Assume tha2ey)'/? < 1/4. ThenPr[E] < 1/3.
Proof. Lett’ = [t/2]. We have

Pr[E(t)] < <tt/> 7zt’ < (te/t’)t’,yt’ < (Qey)t/z
Therefore D12
Pr(E] < 3" Pr[E(®)] < % <1/4-4/3=1/3

O

Theorem 3.8. The algorithmNOISELESSSPARSEFFT runs in expected)(klogn) time and returns the
correct vectorz with probability at leas/3.

Proof. The correctness follows from Lemrha3.7. The running timeoimithated byO (log k) executions of
HASHTOBINS. Since

E[l{i € supp(2) | Eors(i)}] = a[supp(z)],
the expected running time of each execution eSHTOBINS is O(g log n+k+aklog(1/0)) = O(g log n+
k+aklogn). Settinga = ©(27%/2) and3 = ©(1), the expected running time in roun O (2~"/2k log n+
k 4 272k 1ogn). Therefore the total expected running timeigk log n). O

4 Algorithm for the general case

This section shows how to achieve Equatioh (1)@o& 1 + e. Pseudocode is in Algorithm 4.1 apnd#4.2.

4.1 Intuition

Let S denote the “heavyO(k/¢) coordinates off. The overarching algorithmrE3RSE-FT works by first
finding a set. containing most of, then estimating;, to getz. It then repeats om — z. We will show that
each “heavy” coordinate has a large constant probabilityodih being inZ. and being estimated well. As
aresult,r — z is probablyk /4-sparse, so we can run the next iteration with» k/4. The later iterations
will then run faster, so the total running time is dominatgdhe time in the first iteration.

8

Location As in the noiseless case, to locate the heavy coordinatesomgder the bins computed by
HASHTOBINS with P, , ;. We have that each heavy coordinatis probably alone in its bin, and would
like to find its locationr = 7, 4(4). In the noiseless case, we showed that the difference irephdbke bin
using P, 0, and usingP; 1 ; is 27 - plus a negligibleD(6) term. With noise this may not be true; however,
we can say that the difference in phase between uBing, and P, . 35, as a distribution over uniformly
randoma, is 271‘% + v with (for example)E[»?] = 1/100 (with all operations on phases modd@e). So
our task is to find- within a region@ of sizen/k usingO(log(n/k)) “measurements” of this form.

One method for doing so would be to simply do measurements raitdomg < [n]. Then each

measurement lies within/4 of 27#3—7: with at leastl — E’/’i}ﬁ > 3/4 probability. On the other hand, for

j#T, 27#% — 27r% is roughly uniformly distributed around the circle. As auktseach measurement is
probably more tham /4 away from%%. HenceO(log(n/k)) repetitions suffice to distinguish among the
n/k possibilities forr. However, while the number of measurements is small, it i<lear how to decode
in polylog rather thar®(n/k) time.

To solve this, we instead dotaary search on the location for= O(log n). At each ofO(log,(n/k))

levels, we split our current candidate regi@ninto ¢ consecutive subregiongs, ..., Q;, each of sizew.
Now, rather than choosing < [n], we chooses € [, 5-]. As a result,{%%ﬂ | j € Qq} all lie within a

region of sizer /4. On the other hand, ifi — 7| > 16w, then272" — 2727 will still be roughly uniformly
distributed about the circle. As a result, we can check aeiogndidate element, from each region: if
eq is in the same region as each measurement usually agrees in phase; kyti$f more thanl6 regions
away, each measurement usually disagrees in phase. Hetha@ (vig) measurements, we can locatéo
within O(1) regions with failure probabilityl /#2. The decoding time i© (¢ log t).

This primitive LOCATEINNER lets us narrow down the candidate region foto a subregion that is a
t' = Q(t) factor smaller. By repeatintpg, (n/k) times, we can find- precisely. The number of mea-
surements is the®(logtlog,(n/k)) = O(log(n/k)) and the decoding time i©(tlogtlog,(n/k)) =
O(log(n/k)logn). Furthermore, the “measurements” (which are actuallys¢dalHASHTOBINS) are non-
adaptive, so we can perform them in parallel for@llk/¢) bins, with O(log(1/6)) = O(logn) average
time per bins per measurement.

Estimation By contrast, BTIMATEVALUES is quite straightforward. Each measurement uskig, ;
gives an estimate of eadh that is “good” with constant probability. However, we adlyaeed eachy;
to be “good” with1 — O(e) probability, since the number of candidatésg ~ k/e. Therefore we repeat
O(log %) times and taking the median for each coordinate.

procedure SPARSEFFT(z, &, €)
2 0
for r € [R] do
ChooseB, ., k,, o, as in Theorerh 4]9.
L, + LOCATESIGNAL (z,2"), B,)
2+ « 20 4 ESTIMATEVALUES(x, 20 k,, L,, B,.).
end for
return 241
end procedure
procedure ESTIMATEVALUES(z, z, k¥, L, B)
for r € [Res] do
Chooseu,, b, € [n] uniformly at random.
Chooser, uniformly at random from the set of odd numbergyif
a") + HASHTOBINS(z, 2, P, 4, 1, B,).
end for
w < 0
for i € L do
w; + median, ﬁg;)’b(i)
end for
J « argmaxji_p [|Ws|l,-
return wy
end procedure

wari

Algorithm 4.1: k-sparse recovery for general signals, part 1/2

4.2 Formal definitions

As in the noiseless case, we defing,(i) = o(i — b) mod n, h, () = roundn, (i) B/n) ando, (i) =
Tob(1) — hop(i)n/B. We sayh, (i) is the “bin” that frequency is mapped into, and,, as the “offset”.
We defineh_, (j) = {i € [n] | hes(i) = j}.

Define

Brr(z, k) = min [z =yl -

In each iteration of BARSEFFT, definez’ = z — Z, and let

- 2
p? = Bre?(@, k) + o2 ([o! |2 + 12l
©=ep?/k
S={iel |l >}
~ ~ 2
Then|S| < (14 1/e)k = O(k/e) and‘ ' —a's ‘2 < (1 + €)p®. We will show that each € S is found by

LOCATESIGNAL with probability 1 — O(«), whenB = Q(ﬁ).
For any: € S define three types of events associated wihd.S and defined over the probability space
induced bys anda:

e “Collision” event E,,;(i): holds iff h, (i) €
e “Large offset” eventF, ¢ (i): holds iff |0, (7)|

ho (S = {i});
> (1—a)n/(2B); and

~ 2
e “Large noise” event,, ;s (7): holds iff ‘ x,h’é(h b(i))\SH > p%/(aB).
o, o, 2

10

procedure LOCATESIGNAL (z, z, B)
Choose uniformly at randorine [n] ando relatively prime ton.
Initialize z§1> =(t—1)n/Bfori € [B].
Letwy = n/B,t' =logn,t = 3t', Dyax = logy (wg + 1).
for D € [Dy,4.] doO
[P+ | OCATEINNER(z, 2, B, 6, at, 0, 3, 1P) g /()P 1, t, Rype)
end for
L+ {m b8Pty | j e [B])
return L
end procedure

> d, o parameters fo€, G’
> (1,1 + w),..., (I, lp + w) the plausible regions
> B ~ k/e the number of bin
>t =~ log n the number of regions to split int
> Rjoe = logt = log log n the number of rounds to ry
> Running time:R;,.B log(1/9) + RjoeBt + Rioe [supp(2)|
procedure LOCATEINNER(z, Z, B, d, o, 0, b, [, w, t, Rjy.)
Lets = ©(al/?).
Letv;, = 0for (j,q) € [B] x [t].
for r € [Ry,.| do
Choose: € [n] uniformly at random.
Chooses e {Z—Z‘j, A g—zf} uniformly at random.
U < HASHTOBINS(z, 2, Py g4, B, 0,).
@ < HASHTOBINS(z, 2, Py 445, B, 6, @).
for j € [B] do
¢j (1 /W)
for g € [t] do
Mjq < lj +
2mBm; q

q—1/2
t

0jq mod 27
if min(]0; 4 — ¢;|,2m — |64 — ¢;|) < smthen
Vjg & Vjg+1
end if
end for
end for
end for
for j € [B] do
Q* — {q P Ujq > Rloc/2}
if @* # 0 then
I+ mingeg- lj + qt;lw
else
l;- —1
end if
end for
return [
end procedure

w

o o &P

n

Algorithm 4.2: k-sparse recovery for general signals, part 2/2

11

By Claims[3.1 an@ 3| Pr[E..;(i)] < 21S|/B = O(«) andPr[E,f¢(1)] < 2a for anyi € S.
Claim 4.1. For anyi € S, Pr[E,uisc(i)] < 8a.

Proof. For eachy # i, Pr{h,(j) = hop(i)] < Prl|loj — oi| < n/B] < 4/B by Lemma 3.6 of [HIKP12].
Then

2
E[Hmlh;i(hfr,b(i))\sHz] <4 Hﬂf/[n}\sHZ /B < 4(1+¢€)p?/B
The result follows by Chebyshev’s inequality. .

We will show that if Epi (i), Eof ¢ (), and Epeise(7) all hold then $ARSEFFTINNER recoversz; with
constant probability.

Lemma 4.2. Leta € [n] uniformly at random and the other parameters be arbitrary in
u = HASHTOBINS(z, %, Py 4, B, d,).

Then for anyi € [n] with j = h, (i) and notE,; (i),

—

2
Blja; - (2 — 2] 1 2201 +0)° | (2= 2 \{}H +0(ns)(\xH2+Hx—zH)

Proof. LetG = Gpsa- LetT = h_;(j) \ {i}. By Lemme3.B,

B — (@ = 2), = Y Cpu(@— 2w £ O(mo) (o, + e =2)

el
- @—2)] < 1+ 9) | X @ =207+ o(m)(lall, + ||7 =2)
iyeT
2
3 - 2| <20467 |3 @ 2O + 0@l + |72)2
A o, 2 i'eT 2
E[‘uj— (x—2), 1 <2(1+9) ‘ (x — 2) H +0né*) (|| =3 + Hx—zH
where the last inequality is Parseval’s theorem. O

4.3 Properties of LOCATE SIGNAL

Lemma 4.3. LetT C [m] consist oft consecutive integers, and suppaese 7' uniformly at random. Then
for anyi € [n| and setS C [n] of [consecutive integers,

Pr[oi mod n € S] < [im/n] (1 + [I/i])/t < - 1 +@ +lﬁ +i

Proof. Note that any interval of lengthcan cover at most+ |//i] elements of any arithmetic sequence of
common differenceé. Then{oi | o € T'} C [im] is such a sequence, and there are at miosin | intervals
an + S overlapping this sequence. Hence at m@st/n| (1 + |1/i|) of theo € [m] havesi mod n € S.
Hence

Prjoi mod n € S] < [im/n] (1 + [1/i])/t.

12

Lemma 4.4. Suppose none df.q; (i), E,rf(i), and E,qs (i) hold, and letj = h, (). Consider any
run of LOCATEINNER with 7,5 (i) € [l,1; +w] . Thenm, (i) € [I},1; + 3w/t] with probability at least
1 — tf%Fe) | as long as
Ck
B=—.
afe

for C larger than some fixed constant.

Proof. LetT = m,,(i). Letg = ©(f1/3), andC’ = B = 9(1/4%).

To get the result, we dividg;, [; + w] into ¢ “regions”, Q, = [l; + %w, lj + 4w] for ¢ € [t]. We will
first show that in each round ¢; is close to27 57 /n with large constant probability. This will imply that
@, gets a “vote,” meaning; , increases, with large constant probability for thevith 7 € Q. It will also
imply thatv; , increases with only a small constant probability wher- ¢'| > 2. ThenRy,. rounds will
suffice to separate the two with “high” probability, allowithe recovery ofy’ to within 2, or the recovery
of 7 to within 3 regions or the recovery of within 3w/t.

~ 12
Define™” = h;i(hcnb(i)) \ i} 50‘ iy ‘2 < %. In any roundr, define@ = @) anda = a,. We have
by Lemmd4.P that
~ ~ 12 91~ 112 9 9 ~112
Bja; —w @]] < 201+ 8)2 |2'r] + 0ms)(lal + ||#])

2 o~
P < 3k l"|2

uj —w x';
~ -~ 2mat L 3
d(9(u;), p(x'i) —) < sin~!(C'—’p)

whered(z,y) = min,ez |z — y + 27| is the “circular distance” between andy. The analogous fact
holds forqﬁ(z?j) relative to¢(§’,~) — M. Therefore

(o /i5), 27
—a(0(i1y) — 6. (6(a) — 2T) - (p(a¥y) — 2O,
<d(9()). (@) — Z2T) + do(id). o(a') — AT,

/3
<2$in_1(C—/p)

by the triangle inequality. Thus for any= ©(g) andp = O(g), we can set’’ = m =0(1/¢%)
so that

2m BT

d(cj,) < sm/2)
with probability at least — 2p.

13

Equation [(B) shows that; is a good estimate farwith good probability. We will now show that this

means the approprate “regioy, gets a “vote” with “large” probability.

For theq’ with 7 € [I; + £-2w, I; + Lw], we have thatn; , = I; + L2y satisfies

|7 —mjg| < -
' 2t

and hence by Equatidd 3 and the triangle inequality,

28T
d(cjv 9]'7(]') < d(Ta Cj) + d(

st 2mPw

2npT 2mPmj g
)

)

2 + 2tn
ST ST
- 2 2
= ST

Thus,v; o will increase in each round with probability at ledast- 2p.

Now, considery with |¢ — ¢'| > 2. Then|r —m; 4| > % and (from the definition of) we have
22+ 1)sn
Bl —mjgql > % = 3sn/4. 4

We now consider two cases. First, assume that m;,| < %. In this case, from the definition ¢f it
follows that

BT —mjql <nj2.

Together with Equatiori{4) this implies
Pr[B(t — mjq) mod n € [-3sn/4,3sn/4]] = 0.

On the other hand, assume that—m;,| > %. In this case, we use Lemrha}4.3 with parameters
[l =3sn/2,m= 2—’3, t = Z—’g, i = (1 —m;4) andn to conclude that

4w |7 —myql 3sn st 4w
_ . — < ’
Pr[B(T —mj4) mod n € [=3sn/4,3sn/4]] < - +2 - +3s + 5w st

<2 1D 4os
n
< — +9s < 10s

where we used thgi| < w/2 < n/(2B), the assumptiods < |i|, ¢ > 1, s < 1, and thats* > 5/B
(because = Q(g) and B = w(1/¢%)). Thus in any case, with probability at ledst- 10s we have

2n8(mjq — T) 3

d(O,) > 537'('

n

for anyq with |¢ — ¢’| > 2. Therefore we have

2w BT

dle;, 03) = d(0, 7P Maa ZT)y e

>
p) > sm

with probability at leastl — 10s — 2p, andwv; , is not incremented.

14

To summarize: in each round; , is incremented with probability at least-2p andwv; , is incremented
with probability at mosti0s + 2p for |¢ — ¢/| > 2. The probabilities corresponding to different rounds are
independent.

Sets = f//20 andp = f’/4. Thenwv; . is incremented with probability at least— f" andv; , is
incremented with probability less thai. Then afterR;,. rounds, by the Chernoff bound, fay — ¢’| > 2

Prfujq > Rioe/2) < (%%,) gFioel? < (ag)Piee/? = 200
’ Rloc/2

for g = f1/3/4. Similarly,
Pr(vj g < Ripe/2] < fHFioe),
Hence with probability at least — ¢ f2(fiiec) we haveq’ € Q* and|q — ¢/| < 2 for all ¢ € Q*. But then
7 —1; € [0, 3w/1] as desired.
Becausé[|{i € supp(Z) | E,sr(i)}|] = a [supp(z)|, the expected running timed3(R;o. Bt+ R0 2 log(1/6)+
Rioc [supp(2)| (1 + arlog(1/4))). O

Lemma 4.5. SupposeB = % for C larger than some fixed constant. Then for any .S, the procedure
LOCATESIGNAL returns a sef. such thati € L with probability at leastl — O(«). Moreover the procedure
runs in expected time

O((Z 108(1/5) +[supp(2)| (1 + alog(1/6))) log(n/B)).
Proof. Suppose none o, (i), Eorf (i), andEyeise(i) hold, as happens with probability— O(«).

Sett = O(logn),t’ = t/3 and Ry, = O(logy /. (t/a)). Letwy = n/B andwp = wo/(t")P~1, so
WD,pe 41 < 1107 Dy = logy (wy + 1). In each round), Lemmd 4 implies that if € 18", 11" + wp)
thenm,y (i) € 1”7, 187+ 4 wp 41] with probability at least — a?(iee) = 1 a//t. By a union bound,
with probability at least — o we haver, (i) € [l](.D’"“”l), l](-Dm“”l) + WD, ut1] = {ZJ(.D””‘“”“)}. Thus

i = (UPmety e L
SinceRiopcDimaz = O(logy /o (t/a)log,(n/B)) = O(log(n/B)), the running time is

O(Dina (Rioe = 108(1/3)+ Ruve Isupp(2)] (10 10g(1/8)))) = O((10g(1/8)-+lsupp(2)] (1+log(1/5)) log(n/B)).
O

4.4 Properties of ESTIMATE VALUES

Lemma4.6. Foranyi € L,

if B> S for some constant'.

Proof. Definee, = ag.%ari — 2/; in each round-, and7, = {# min ho, b, (') = he, p, (1), # i}, and

., -~
Vi() = g x pw It
T

15

Suppose none oE(EZl)l(z'),Eé?f(z’), and £

noise (1) hold, as happens with probability — O(«). Then by
LemmdZ.2,

2
L+ 0ma)(lall3 + [|«/|[3):

Ea,lles?] < 201+ 6)* ||,

Hence byE"), and E"")

of f noise

not holding,

2

p
Ear[|er|2] < 2(1 4+ 5)2E + O(pz/ng)
< 3 e 3k 3 9
B aBp B aeBM C’u

Hence with3/4 — O(a) > 5/8 probability in total,

2 <

12
er* < G < w2
for sufficiently largeC. Thus |median, e,|* < ;2 with probability at leastt — e=(fest) - Since@; =
2/; + median e,., the result follows. O

Lemma 4.7. Let Res = O(log =5r). Then ifk’ = (1 + f)k < 2k, we have

Errz(gzz —wy, fk) < Err2(;£, k) + O(e)p?
with probability 1 — ~.
Proof. By Lemmé& 4.6, each indexe L has

2
2 [k
>,u]<—B.

w; — a';

Pr|

2
> 12}, With probability 1 — v, |U| < fk; assume this happens. Then

w; — '

LetU = {i |

|@ - Do < ©)

Let T' contain the to2k coordinates ofvy,;;. By the analysis of Count-Sketch (most specifically, Theo-
rem 3.1 of [PW11]), thé,, guarantee means that

|

Because/ is the top(2 + f)k coordinates ofv, ' C J and|J \ T'| < fk. Thus

- 2 ~
2y — Wr ’2 < Err2(:n’L\U, k) + 3ku?. (6)

— — 2
2 — —

Err*(z), —wy, fk) < w’L\U—wJ\UH2

2

~ 2 ~
<||¥'pv— @"2 + H(x' - @)J\(UUT)H2

~ 2 —~ 2
< | =@, + 1\ T | @ = @)oo
< B’ (2, k) + 3kp® + flop?
< Err? ((Z'/L\U, k) + 4ep?

where we used Equatiorid (5) andl (6). O

16

4.5 Properties of SARSEFFT

Defines”) = z — 2("). We will show thatto(") gets sparser asincreases, with only a mild increase in the
error.

Lemma 4.8. Consider any one loop of SPARSE-FT, running with parameter®s = % for some param-
etersC, f, and«, with C larger than some fixed constant. Then

B0, 2/) < (14 0() B (07, k) + O(edn (o3 + ||5)

with probability 1 — O(«/ f), and the running time is

O((1supp(2)|(1 + alog(1/6)) + = log(1/6)) (log — -+ log(n/B)).

Proof. We useR.s = O(log Z) = O(log) rounds inside BTIMATEVALUES.
The running time for IOCATESIGNAL is

O((2 105(1/8) + | supp(2"))|(1 + alog(1/6) log(n/ B))
and for ESTIMATEVALUES is
Otor (2 10g(1/8) + | supp(0))|(1 + aclog(1/4)

for a total running time as given.
2
Let? = £ Enr(3(), k), andS = {i € [n] | (@("’\ > 12},
By Lemmal4.5, each € S lies in L, with probability at least — O(«). Hence|S \ L| < fk with
probability at least — O(«a/f). LetT C L contain the largest coordinates of("). Then

6[%\(LuT)Hz + [T\ S| Hﬁfﬁf\sul < El"l"z(ﬁ[(:ﬂ)\p k) + k?,uz. (7

Err? (% (r]\L’fk7 <‘ [n\(LUS)H2 ‘

Letw = 20+D — 201 = 5(") —5(r+1) py the vector recovered bySEIMATEVALUES. Thensupp(@) C L,
)

Err? @) 21k) = Err?(0) — @, 2fk)
< Err?(9, :L})\ , fk) + Err (U(L —w, fk)
)
]

< Err?(3, T\L,fk:) + Err (vé),k:) + O(kp?)

n

by Lemmd4.V. But by Equatiofil(7), this gives

Err?(@ Y 2fk) < Err (’ﬁ[(;])\L,k) + Err (v(Lr), k) + O(ku?)
< Err?(0") k) 4+ O(kp?)
= Err? (0", k) + O(ep?).

The result follows from the definition gf. O

Given the above, this next proof largely follows the argutreffIPW11], Theorem 3.7.

17

Theorem 4.9. SPARSEFFT recoversz(£+1) with

Hf _ 2(RH) H2 < (1+ ¢)Err(7, k) + 6 |2,

in O(£ log(n/k)log(n/s)) time.
Proof. Define f, = O(1/r?) so Y. f, < 1/4. ChooseR so[[,cp fr < 1/k < [[,.pfr- ThenR =
O(log k/loglog k), since[[, fr < f11/3 = (2/R)".

Sete, = fre, ap = O(f2), k, = k]‘[Kr fis By = O(%a, f,). ThenB, = w(5z ’“T -), so for sufficiently

large constant the constraint of Lemmal 4.8 is satisfied. pprogriate constants, Lemm 8 says that in
each round,

Err® (00, k) = En? (@7, fky) < (1+ fre) Ere? (@), k,) + O(fred®n®([l3 + Hﬁ()

) (8)

with probability at leasl — f,.. Now, the chang& = (") — ("1 in roundr is a median of HSHTOBINS
resultsu. Hence by Lemm@a 313,

I@ll, < 2max|fill, < 2((1 +9) |[5¢)
(6m) (v 7], + [
(on/m) (], + [

. +on(||z|l, + 2 Hw —

)

1
ol o}

<ol

We shall show by induction thao™ ||, < 4"~![|Z],. Itis true forr = 1, and then since < R < log k,

(Gnv/m) (2], +47 2],
(onv/nk |7],) < 4 [

[]

<sf

ThereforeHﬁ(’“)Hg <4"|z|l, < k|Z|l, < nyn||z],. Plugging into Equatiori{8),

Err® (30 k1) < (14 fr6) Brr? (00, k) + O(fre®n®® ||z[3)
with probability at least — f,. The error accumulates, so in rouneve have

Er? (@), k, [[i) < B @ k) [[(1+ fie) + D O(fred®n™ [ll3) T (1 + f5)
i<r i<r i<r 1<j<r
with probability at least. — . _, f; > 3/4. Hence in the end, sinde[[,_, fi < 1,
H@<R+1> Hz = Er?(@F), 1 - o(1)) < Err(@, k) [T (1 + fie) + O(Res*n™ |)|2) [(1 + fie)
i<R i<R
with probability at leas8/4. We also have
H(l + fie) <efXifi <e

making

[[a+fig<1+ed fie<1+2e

7 7

18

Thus we get the approximation factor

2
H?ﬁ 3R+ HZ < (1 + 2¢) Err(3, k) + O((log k)82n* ||z[|2)

with at least3/4 probability. Rescaling by poly(n) and taking the square root gives the desired
Ha - 2<R+1>H2 < (1+ € Exx(3, k) + 6 ||/, .
Now we analyze the running time. The updatet) — 2(") in roundr has support sizek,., so in round-

| supp (3¢ |<Z2k¢ =O0(k

i <r

Thus the expected running time in rounds (recalling that we replaceilby § /n©(1)

O(([supp(2)| (1 + o, log(n/9)) + ji log(n/5)) (log a1€ +log(n/B,)))

rer

=0O((k + T—IZ log(n/d) + E% log(n/d))(log r + log % + log(ne/k) +logr))
=0((k + 6% log(n/d))(log r + log(n/k)))

We split the terms multiplying: and 7 log(n/d), and sum over. First,

R
Z(logr +log(n/k)) <O(Rlog R + Rlog(n/k))

r=1

<O(log k + log klog(n/k))
=0O(log klog(n/k)).

Next,

R
2712 (logr + log(n/k)) = O(log(n/k))

r=1

Thus the total running time is

O(klogklog(n/k) + élog(n/é) log(n/k)) = O(% log(n/d)log(n/k)).

O

5 Reducing the full k-dimensional DFT to the exactk-sparse case im di-
mensions

In this section we show the following lemma. Assume thdividesn.

Lemma 5.1. Suppose that there is an algorithihthat given a vectoy such thaty is k-sparse, computes
¢ in time T'(k). Then there is an algorithml’ that given ak-dimensional vector: computest in time
O(T'(k)))-

19

Proof. Given ak-dimensional vectox, we definey; = x; mod &, fori = 0...n — 1. WheneverA requests
a sampley;, we compute it fromz in constant time. Moreover, we have that= 2, .,) if ¢ divides
(n/k), andg; = 0 otherwise. Thug is k-sparse. Sincé can be immediately recovered frajnthe lemma
follows. O

Corollary 5.2. Assume that the-dimensional DFT cannot be computeddfn logn) time. Then any
algorithm for thek-sparse DFT (for vectors of arbitrary dimension) must rurfli¢k log k) time.

6 Lower Bound

In this section, we show any algorithm satisfyifig (1) mustess (k log(n/k)/log log n) samples of:.
We translate this problem into the language of compresgiusisg:

Theorem 6.1. Let /' € C™*" be orthonormal and satisfyf; ;| = 1/+/n for all ¢, j. Suppose an algorithm
takesm adaptive samples df'z and computeg™* with

|z —2%||, <2 min |

k-sparser’ v x/HZ

for any z, with probability at leasB/4. Thenm = Q(klog(n/k)/loglogn).

Corollary 6.2. Any algorithm computing the approximate Fourier transfarmst acces® (k log(n/k)/log log n)
samples from the time domain.

If the samples were chosen non-adaptively, we would imnelgiaavern = Q(klog(n/k)) by [PW11].
However, an algorithm could choose samples based on thes/afyprevious samples. In the sparse recovery
framework allowing general linear measurements, this tadgpcan decrease the number of measurements
to O(kloglog(n/k)) [IPW11]; in this section, we show that adaptivity is muchslegfective in our setting
where adaptivity only allows the choice of Fourier coeffitge

We follow the framework of Section 4 df [PWi1]. L& C {S C [n] | |S| = k} be a family ofk-sparse
supports such that:

o |S® S| > kfor S #£S' e F, whered denotes the exclusive difference between two sets,
e Prgerli € S| =k/nforalli € [n], and
o log | F| = Q(klog(n/k)).

This is possible; for example, a random linear coddrofk]* with relative distance /2 has these proper-
ties/td

For eachS € F, let X° = {z € {0,+1}" | supp(z®) = S}. Letz € X uniformly at random. The
variablesz;, i € S, are i.i.d. subgaussian random random variables with peteas’> = 1, so for any row
Fj of F, Fjz is subgaussian with parametet = k/n. Therefore

PrSHFjw\ > t\/k/n] < 2¢ /2
zeX

P2, < 0(y 25, ©

Let X = {2 | S € F} be the set of all such®.
Letw ~ N(0, a%[n) be i.i.d. normal with variance/ /n in each coordinate.
Consider the following process:

hence there exists ar* € X with

This assumes /k is a prime larger than 2. I/ is not prime, we can choosg € [n/2, n] to be a prime multiple ok, and
restrict to the first’ coordinates. This works unleagk < 3, in which case the bound é¥(k log(n/k)) = (k) is trivial.

20

Procedure First, Alice chooses' € F uniformly at random, then: € X subject tosupp(z) = S, then
w ~ N(0,ak1,) for a = ©(1). Forj € [m], Bob chooses; € [n] and observeg; = Fi,(z +w). He
then computes the result ~ x of sparse recovery, rounds by & = argmin.y ||z* — 2/||,, and sets
S’ = supp(z). This gives a Markov chai§ — =z —y — 2’ —» & — 5.

We will show that deterministic sparse recovery algorith@guire largem to succeed on this input
distributionz 4 w with 3/4 probability. As a result, randomized sparse recovery #lyos require largen
to succeed witt3/4 probability.

Our strategy is to give upper and lower bounds/¢§; S’), the mutual information betweesiand.S’.

Lemma 6.3(Analog of Lemma 4.3 of [PW11] for = O(1)). There exists a constanf > 0 such that if
a < o, thenI(S;S") = Q(klog(n/k)) .

Proof. Assuming the sparse recovery succeeds (as happens wittoBabjity), we have|z’ — (z + w)||, <
2 ||w||y, which implies||z’ — x|, < 3 |lw]||,. Therefore

|2 — [y, < |12 — x'”2 + Hx' - wH2
< 2|2’ -2,

< 6Hw|]2.

We also know{|z’ — 2”||, > vk for all distinctz’, 2" € X by construction. With probability at lea8y4
we havel|w||, < V4ak < vk/6 for sufficiently smallo. But then||# — z|, < vk, soi = x andS = §'.
ThusPr[S # 5] < 1/2.

Fano’s inequality stateH (S | S’) < 1+ Pr[S # S']log | F|. Thus

(S 8) = H(S) - H(S | §') > —1 + % log | F| = Q(k log(n/k))

as desired. O

We next show an analog of their upper bound (Lemma 4.1 of [AWI (S; S’) for adaptive measure-
ments of bounded,, norm. The proof follows the lines af [PWIL1], but is more catefbout dependencies
and needs thé,, bound onF'z.

Lemma 6.4.)
1(S;8") < O(mlog(1 + o logn)).

Proof. Let A; = [, for j € [m], and letw}; = Fj;w. Thew) are independent normal variables with

variancea .
Lety; = Ajz + wj. We knowI(S;5") < I(x;y) becauseS — =z — y — S’ is a Markov chain.
Because the variabled; are deterministic given,...,y;—1, we have by the chain rule for information

21

that
1(8;8") < I(z;y)

m

= I(w;y) + > I(w5y5 [y, y5-1)
j=2
< I(Avzy) + > T(Ajzsy [y, y-1)
j=2
= I(Ayz; Ay +wi) + > T(Ajms Aje + wf [y, y5-1)
j=2
= H(Ajz +w)) — H(Aix +w) | Ajz) + ZH(ij—i—w; |1, yi,) — H(Ajz4w) | Ajz,yn, ..oy ,)
j=2

= H(A1x+w'1) —H(w’l | Alﬂj‘) +ZH(AJ$+’LU; | Yl ,yj_l) —H(w; | Ajﬂj‘,yl,...,yj_l)

j=2

= H(Aww +wy | A) = H(w) | Ayz, A) + Y H(Ajz +w) |y, y5-1,A)) — H(w) | Aje, Aj)
i=2

NE

< H(Ayw +w) | Ay) — H(w) | A, A) + 3 H(Aje + | Ay) — H(w) | Az, A))

<.
||
N

= H(Aix+w) | Ay) — H(Aix +w) | Az, Ay) + ZH(ij +w’ | Aj) — H(Ajz +wj | Ajz, Aj)
j=2
= > I(Ajm; Ajx + w | Ay).
J
Thus it suffices to show(A;z; Ajz + w’; | Aj) = O(log(1 + Llogn)) for all j. We have
I(Ajz; Ajo +wj | Aj) = Eay[I(Ajz; Ajz + w))]

Note that4; is a row of F andw;. ~ N(0, %’“) independently. Hence it suffices to show that for any row
of I, for u ~ N (0, %) we have

I(va;ve + u) = O(log(1 + é logn)).

But we know|vz| < O(4/ ’“"%) by Equation[(®). By the Shannon-Hartley theorem on charegdcity of
Gaussian channels under a power constraint,

E[(vw)2])
E[u?]
n klogn

log(1 + JO(-

)

as desired. O

Theoreni 6.1 follows from Lemnia 8.3 and Lemimad 6.4, with- ©(1).

22

7 Efficient Constructions of Window Functions

Claim 7.1. Letcdf denote the standard Gaussian cumulative distributiontionc Then:

1. cdf(t) =1 — cdf(—¢).

2. cdf(t) < e /2 fort < 0.

3. cdf(t) < ¢ fort < —y/2log(1/6).

4. fgf:_oo cdf(x)dz < 6 for t < —\/4mlog(1/9).

5. For anyd, there exists a functiocﬁg(t) computable im0 (log(1/J)) time such thaH cdf —c;i/f(;Hoo < 0.

Proof.

. Follows from the symmetry of Gaussian distribution.
. Follows from a standard moment generating function bam@aussian random variables.

1
2
3. Follows from (2).
4. Property (2) implies thatdf(t) is at mosty/2r larger than the Gaussian pdf. Then apply (3).
5

. By (1) and (3)cdf(t) can be computed asé or 1 + § unless|t| < y/2(log(1/d)). But then an efficient
expansion around only requiresO(log(1/4)) terms to achieve precisiahd.

For example, we can truncate the representation [Mar04]

1 e—t2/2 t3 t5 t7
cdf(t) = 5 + = <t+—+f+ —— +>

atO(log(1/9)) terms.

Claim 7.2. Define the continuous Fourier transform pft) by

o~

for= [)

For ¢ € [n], define
gt = Z f(t+mnj)
j=—o00

and

=3 Flt/m+i).

j=—00

Theng = ¢/, whereg is then-dimensional DFT ofj.

23

Proof. Let A;(¢) denote the Dirac comb of peridd A;(¢) is a Dirac delta function whehis an integer
zero elsewhere. Thefy; = A;. For anyt € [n], we have

o~ :Z Z f(s+nj)e—2ﬂits/n

s=1j=—o0

:En: i f(s+nj)e—27rit(s+nj)/n

s=1 j=—o0

— i f(s)e—27rits/n

S§=—00

_ / f 27rits/nds

= (F- A1)(t/n)
= (f * Aq)(t/n)
= Y ft/n+3)
j=—00
=g,
O

Lemma 7.3. There exist flat window functiorGAand@\’ with parameters, §, and o such thatG can be
computed ir0(£ log(1/5)) time, and for eachi G’; can be evaluated if(log(1/5)) time.

Proof. We will show this for a functionG’ that is (approximately) a Gaussian convolved with a box-car
filter. First we construct analogous window functions fae ttontinuous Fourier transform. We then show
that discretizing these functions gives the desired result

Let D be a Gaussian with standard deviatioto be determined later, Pis a Gaussian with standard
deviationl/o. Let F' be a box-car filter of lengtRC’ for some paramete:ﬁ' that is, IetF()=1for|t| < C

andF(t) = 0 otherwise, sd(t) = sinqt/C). LetG* = D - F, soG* = D « F.
Then|G*(t)| < |D(t)| < d fort > o+/21log(1/6). FurthermoreG* is computable irO(1) time.

lts Fourier transform i€5*(t) = cdf(o(t + C)) — cdf(c(t — C)). By Claim[Z1 we have foft| >

C ++/2log(1/d)/o that@(t) = +4. We also have, foft| < C' — y/2log(1/4) /o, that@(t) =1+26.
Now, fori € [n] let H; = 3772 G*(i + nj). By Claim[Z.2 it has DFTH; = D e GX(i/n + §).

Furthermore_ ., sisriey |G ()] < 2cdf(—/2log(1/9)) < 26.
Similarly, from Clain{7.1, property (4), we have thatjf2 > C'+/4r log(1/d) /o then} =, -, » ‘G*(i/n)‘ <
46. Then for anyli| < n/2, H; = G*(i/n) + 4.

Let
G; = Z G*(J)
|7]l<o+/21og(1/85)

j=i (mod n)

for |i| < o+/2log(1/6) andG; = 0 otherwise. ThelG — H||, < 26. Let

1 li| <n(C—+/2log(1/d)/0)
G = 0 Han—F\/Zlog 0)/o)

cdfs(o(i + C)/n) — cdfs(o(i — C)/n) otherwise

24

where cdf(t) computescdf() to precision+§ in O(log(1/6)) time, as per Claini71. The@’; =
G*(i/n) £20 = H; £ 66. Hence

|G-

215, <[~ o=, - 5~ 1 e

Replacings by §/8 and plugging inr = 22, /210g(1/5) andC = (1 — «/2)/(2B), we have that:
Gi| = 0for [i] > (2 log(1/3))

G'; = 1for |i| < (1 —a)n/(2B)

G'; = 0for |i| >n/(2B)

E;\g € [0,1] for all 4.

lG-a|_<s

We can computé over its entire support if)(£ log(n/§)) total time.

For anyi, G; can be computed i (log(1/4)) time for |i| € [(1 — a)n/(2B),n/(2B)] andO(1) time
otherwise.

We needed that/2 > (1 — «/2)/(2B) + V27w« /(4B), which holds forB > 2. The B = 1 case is trivial,
using the constant functio@@’; = 1. O

Acknowledgements

References

[AFS93] R. Agrawal, C. Faloutsos, and A. Swami. Efficientismity search in sequence databaskes.
Conf. on Foundations of Data Organization and Algorithipages 69-84, 1993.

[AGS03] A.Akavia, S. Goldwasser, and S. Safra. Proving ftame predicates using list decodieOCS
pages 146—, 2003.

[AkalO] A. Akavia. Deterministic sparse fourier approxiiioa via fooling arithmetic progressions.
COLT, pages 381-393, 2010.

[CGX96] A. Chandrakasan, V. Gutnik, and T. Xanthopoulostaldxiven signal processing: An approach
for energy efficient computingnternational Symposium on Low Power Electronics and Dgsig
1996.

[CRT0O6] E. Candes, J. Romberg, and T. Tao. Robust uncertaiimciples: Exact signal reconstruc-
tion from highly incomplete frequency informatiolfEEE Transactions on Information Theory
52:489 — 509, 2006.

[Don06] D. Donoho. Compressed sensintEEE Transactions on Information Theqr$2(4):1289 —
1306, 2006.

[DRZz07] I. Daubechies, O. Runborg, and J. Zou. A sparse sgenethod for homogenization multiscale
problems.Multiscale Model. Sim6(3):711-740, 2007.

25

[GGIT02] A. Gilbert, S. Guha, P. Indyk, M. Muthukrishnan, and Mtasiss. Near-optimal sparse fourier
representations via samplin§TOG 2002.

[GL89] O. Goldreich and L. Levin. A hard-corepredicate fdoae-way functionsSTOG pages 25-32,
1989.

[GLPS10] Anna C. Gilbert, Yi Li, Ely Porat, and Martin J. Siss. Approximate sparse recovery: optimiz-
ing time and measurements. $TOC pages 475-484, 2010.

[GMSO05] A. Gilbert, M. Muthukrishnan, and M. Strauss. Imped time bounds for near-optimal space
fourier representationsSPIE Conference, Wavele005.

[GSTO8] A.C.Gilbert, M.J. Strauss, and J. A. Tropp. A tuaban fast fourier samplingsignal Processing
Magazine 2008.

[HIKP12] H.Hassanieh, P. Indyk, D. Katabi, and E. Price. fierand practical algorithm for sparse fourier
transform.SODA 2012.

[HTO1] Juha Heiskala and John Terry, Ph@FDM Wireless LANs: A Theoretical and Practical Guide
Sams, Indianapolis, IN, USA, 2001.

[IPW11] P.Indyk, E. Price, and D. Woodruff. On the power odptivity in sparse recoverfzOCS 2011.

[lwel0] M. A. lwen. Combinatorial sublinear-time fourielgarithms. Foundations of Computational
Mathematics10:303 — 338, 2010.

[KKL88] J. Kahn, G. Kalai, and N. Linial. The influence of valiles on boolean functionEOCS 1988.
[KM91] E. Kushilevitz and Y. Mansour. Learning decisionggeusing the fourier spectrurBTOGC 1991.

[LMN93] N. Linial, Y. Mansour, and N. Nisan. Constant depilcaits, fourier transform, and learnability.
Journal of the ACM (JACM)1993.

[LVS11l] Mengda Lin, A. P.Vinod, and Chong Meng Samson Seeew fiexible filter bank for low com-
plexity spectrum sensing in cognitive radiakurnal of Signal Processing SysterG2(2):205—
215, 2011.

[Man92] Y. Mansour. Randomized interpolation and appration of sparse polynomial$CALP, 1992.

[Mar04] G. Marsaglia. Evaluating the normal distributiodournal of Statistical Softwarel1(4):1-7,
2004.

[MNL10] Abdullah Mueen, Suman Nath, and Jie Liu. Fast appr@te correlation for massive time-series
data. InNSIGMOD Conferengepages 171-182, 2010.

[O’'D08] R. O’Donnell. Some topics in analysis of booleandtians (tutorial). STOGC 2008.
[PW11] E. Price and D. Woodruff(1 + ¢)-approximate sparse recoveOCS 2011.

26

	1 Introduction
	2 Preliminaries
	3 Algorithm for the exactly sparse case
	4 Algorithm for the general case
	4.1 Intuition
	4.2 Formal definitions
	4.3 Properties of LocateSignal
	4.4 Properties of EstimateValues
	4.5 Properties of SparseFFT

	5 Reducing the full k-dimensional DFT to the exact k-sparse case in n dimensions
	6 Lower Bound
	7 Efficient Constructions of Window Functions

