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Analog coupled oscillator Based 
Weighted ising Machine
Jeffrey chou, Suraj Bramhavar, Siddhartha Ghosh   & William Herzog

We report on an analog computing system with coupled non-linear oscillators which is capable of 
solving complex combinatorial optimization problems using the weighted Ising model. The circuit 
is composed of a fully-connected 4-node LC oscillator network with low-cost electronic components 
and compatible with traditional integrated circuit technologies. We present the theoretical modeling, 
experimental characterization, and statistical analysis our system, demonstrating single-run ground 
state accuracies of 98% on randomized MAX-CUT problem sets with binary weights and 84% with 5-bit 
weight resolutions. Solutions are obtained within 5 oscillator cycles, and the time-to-solution has been 
demonstrated to scale directly with oscillator frequency. We present scaling analysis which suggests 
that large coupled oscillator networks may be used to solve computationally intensive problems 
faster and more efficiently than conventional algorithms. The proof-of-concept system presented here 
provides the foundation for realizing such larger scale systems using existing hardware technologies and 
could pave the way towards an entirely novel computing paradigm.

Solving certain classes of combinatorial optimization (CO) problems has proven to be notoriously difficult using 
standard von Neumann computing architectures. A canonical example is the traveling salesman problem, for 
which exact algorithms scale very poorly with problem size. Applications of CO problems span many disciplines, 
including business operations, scheduling, traffic routing, finance, big data, drug discovery, machine learning, 
and many other systems requiring the minimization of a complex energy landscape with multivariate inputs1. As 
the decades-long progress of digital CMOS technologies begins to plateau, there is a growing desire to find alter-
native computing methodologies which can address the challenges of these traditionally difficult problems. One 
strategy to solve CO problems lies in mapping them to the Ising Hamiltonian for spin glass systems and finding 
the ground state solution2,3. The Ising model dates back many decades but was re-popularized by D-Wave Systems 
in an attempt to exploit quantum mechanical phenomena to speed up computation. Novel quantum annealing 
machines4–7 and digital CMOS annealing accelerators8 are garnering significant attention in the hopes of solving 
such problems faster than conventional algorithms performing heuristic optimizations. The Ising Hamiltonian 
can also be mapped to the comparable field of Hopfield neural networks, which haves been previously explored 
to solve CO problems1,9–11.

Recently, alternative classical methods to solve the Ising model have emerged using optoelectronic parametric 
oscillators12–14, memristor cross-bar arrays11,15,16, electronic oscillators17,18, and GPU based algorithms19,20. An 
analysis of one such coupled oscillator system revealed the potential for a significant speedup over digital com-
puting algorithms at large node sizes21. Even algorithmic approaches which emulate nonlinear dynamical systems 
but are run on conventional computing hardware have been shown to match and even surpass the performance 
of state-of-the-art algorithms, motivating the desire to build these systems in physical hardware22,23. Scaling up 
the optoelectronic oscillator Ising machine remains challenging owing to its time-multiplexed architecture and 
highly complex and costly optoelectronic setup12,13. All of the proposed systems bear close resemblance to those 
described in the field of stochastic computing, where so-called ‘p-bits’, or probabilistic representations of digital 
bits have been shown in simulation to be capable of solving invertible logic and combinatorial optimization 
problems3,24,25. Analog implementations of these circuits typically rely on magnetic tunnel junctions, which could 
conceivably be implemented using standard CMOS technology, but a scalable physical implementation of this 
technology has yet to be realized. In a similar vein, the all-electronic oscillator concept initially proposed by Wang 
and Roychowdhury introduces the tantalizing prospect of creating a similar system using readily available elec-
tronic components interconnected in a parallel fashion and is particularly well suited for chip-scale integration 
and scaling using present day technologies17. In this case, the ‘p-bit’ is represented by the phase of an oscillator, 
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which can probabilistically settle to one of two values. Previous reports have experimentally demonstrated a 
Chimera-graph architecture with a total of 240 nodes and described its performance on 20 random problems26. 
However, a rigorous and statistically significant analysis of the accuracy of this experimental system has not been 
demonstrated. In the reported physical implementation, resistive coupling is used to apply the connecting weights 
between their oscillators, where the absolute resistance values determines the coupling weights. However, specific 
details of the oscillator and interconnect architectures employed in these demonstrations are currently publicly 
unavailable, thus precluding our ability to determine the operation and limitations of this approach.

In this paper, we build upon this initial work and demonstrate a 4 node, fully-connected, differential LC 
(inductor-capacitor) oscillator based analog circuit with standard electronic components which accurately maps 
to the Ising model. One key difference between the circuit presented here and that demonstrated previously17,26 
involves the interconnection architecture and oscillator coupling scheme. Whereas previous implementations 
used a simple resistor to apply the connection weights directly, the circuit demonstrated in this work implements 
gain ratios in a cross-bar architecture. Specific advantages gleaned from using the cross-bar architecture include 
the ability to program weights with larger bit-depth and easy scalability in CMOS for large and fully-connected 
systems27. We provide a thorough analysis of system performance, describe in detail the circuit architecture 
including a new modality used to program variable interconnection strengths, and demonstrate the system capa-
bilities in solving a variety of MAX-CUT problems with both binary and multi-bit weight values. To the best of 
our knowledge, this is the first demonstration of an all-electronic oscillator-based Ising machine with multi-bit 
weights. The thorough statistical analysis presented herein provides valuable insight into the viability of these 
systems as computing platforms when scaled to larger node counts.

Theory
Much of the theoretical framework for using coupled oscillators as Ising solvers has been described previously, 
but will be summarized here for convenience28. The Ising Hamiltonian is given by the following equation:

∑ ∑= − −H J s s h s
(1)i j

V

ij i j
i

V

i i
,

where V represents the number of nodes in a particular problem set, Jij represents the weight values interconnect-
ing the nodes, and s = [si … sV] represents the solution space where si can take the value of either +1 (spin ↑) or 
−1 (spin ↓). One common benchmark optimization problem, known as the MAX-CUT problem, is defined by 
taking an undirected graph and finding a bisection of that graph which maximizes the cut set. This problem can 
be mapped directly to the Ising Hamiltonian above, and the solution to the problem is represented by the state 
s which minimizes H. A particular problem of interest is typically defined by a graph G(V, E), where V repre-
sents the number of vertices and E represents the number of edges. An example of a 4-node system is shown in 
Fig. 1(a). If J = 1 for all connections, and we neglect the Zeeman term (hi = 0), the minimum solution is defined 
by 6 degenerate 2 × 2 solution sets, as shown in Fig. 1(b). It has been shown previously that these graphs can be 
represented by a network of coupled nonlinear oscillators whose phase dynamics are described by the Kuramoto 
model29, and that this model maps directly to the Ising Hamiltonian if the phases of these oscillators take values of 
either 0° or 180° 17. One mechanism used to polarize the phases is to introduce an injection-locking signal at twice 
the natural frequency of the oscillators17,30. This ‘super-harmonic’ injection locking signal, and its application in 
the context of LC-oscillator systems is mathematically similar to the case of the degenerate optical parametric 
oscillator used in previous optical Ising machines12,13, where optical pump pulses at twice the optical oscillation 
frequency are used to create binary phase values.

In the LC-oscillator system, the phase evolution of each oscillator in the network (θi(t)) can be represented by 
the following differential equation:

Figure 1. (a) Schematic of a fully connected 4-node system. (b) Degenerate solutions for 4-node problem. (c) 
Simulation of the oscillator phases with initial conditions set to incorrect state. (d) Probability distribution of 
solution states after 1000 trials with randomized initial conditions.
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where V is the total number of oscillators (or vertices) and A represents the amplitude of the injection-locking 
signal applied to each oscillator. The time t in the equation is defined in dimensionless units in relation to the 
oscillation period. The addition of Gaussian phase fluctuations, representing noise in the system, converts equa-
tion Eq. (2) into a network of stochastic differential equations (SDEs), whose solutions can be approximated 
iteratively using the Euler-Maruyama method. Annealing is accomplished by gradually increasing the injection 
locking term A according to the formula:

= − τ−( )A t A e( ) 1
(3)

t
0

with τ set to 5 oscillation cycles. One solution simulated for the example problem described above is shown in 
Fig. 1(c), where the initial condition was intentionally selected to be an incorrect solution state (s = [↑↑↑↑]). Even 
in this scenario, the oscillator phases evolve to settle at one of the 6 correct solutions (s = [↓↓↑↑]). The system 
settles to the ground state within 3 oscillation cycles. This simulation was then run 1000 times with randomized 
initial conditions, and the system always settles to a correct solution state with fairly uniform probability (shown 
in Fig. 1(d)). The average settling time for the 1000 trials was 2.3 oscillation cycles.

Results
Circuit implementation.  The oscillator circuit employs a differential injection-locked frequency divider 
topology, as shown in Fig. 2(a)31. This architecture is selected to offer the option of synchronizing the oscillator 
with an incident super-harmonic injection locking signal. Transistors (Supertex TN0702) M1 and M2 form a 
cross-coupled pair, which serves as the negative resistance component, necessary for unity loop gain. The cou-
pling signal from the other oscillators is applied differentially through transistors M3 and M4. This specific cou-
pling circuitry is typically used for quadrature LC oscillators and employs an injection locking based coupling 
scheme, which has been previously mapped to the generalized Adler’s equation32, and can further be mapped to 
the Kuramoto model28. Current source I2 provides the bias current for the coupling signal. The output voltage of 
the oscillator is tapped at nodes VoL and VoR, directly out from the oscillating LC tank (L = 100 µH, C = 0.1 µF). 
The LC tank circuit has a resonant frequency of 50 kHz, and is composed of L1, C1, and L2, C2. Current source 
I1 provides a biasing current for the oscillator circuit and can also be used for injection locking to help polarize 
the phases to 0° and 180°.

A differential analog multiply and accumulate circuit in a cross-bar array is used apply the necessary signals 
into input nodes ViL and ViR, as shown in Fig. 2(b). The coupling coefficient polarity is controlled by the polar-
ity of the output of the differential summing amplifier (Texas Instruments THS4140) to the nodes ViR and ViL. 
Digital potentiometers (Analog Devices AD5272), R12–R34, are employed to control the individual gains of each 
of the input oscillator signals. A key advantage of this interconnect circuit versus a more straight-forward resistive 
approach17 stems from the ability to scale the number of fully-connected nodes without adding resistive loading 
to each oscillator by using a simple buffer circuit. The actual gain term is determined by the ratio of the feedback 
resistor, RFB = 1 kΩ, and the digital potentiometers. An Arduino microcontroller board was used to apply the dig-
ital I2C communication signals to the digital potentiometers. Precise tuning of the bias voltages for the oscillator 
and coupling circuit is critical to ensure accurate solution performance of the system.

The analog coupling coefficients from the Ising Hamiltonian (Jij) are mapped linearly to the ratio of the gains 
between the various oscillators. The digital potentiometers employed here have 1024 tap points, with a maximum 

Figure 2. (a) Circuit diagram of the LC oscillator circuit. The input coupling is inserted at the gates of 
transistors M3 and M4. (b) Multiply and accumulate cross-bar array composed of digital potentiometers. (c) 
Photograph of full breadboard system.
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resistance of 20 kΩ. The conversion from the analytical coupling coefficients to the digital potentiometers’ pro-
grammed values (Dij), which range from 1–1024, is shown the following equation:

βα β α= + −D
J

(1 )
(4)

ij
ij

where β = Rmin * 1024/20 kΩ, and α is the mapping scalar. To prevent high currents at the summing amplifier at high 
coupling coefficient values, we set Rmin = 760 Ω. The mapping from the coupling coefficients, Jij, to the resistance 
values is scaled based on the α term to enable maximum dynamic range. A value of α = 2.5 is used in this paper.

Experimental setup.  A schematic of the experimental setup for the 4 node system is shown in Fig. 3(a). A 
National Instruments Labview program transmits the user-defined digital potentiometer values to an Arduino 
Uno board. The Arduino board then transmits the digital I2C resistors values to the six unique weights (J12–J34). 
The analog oscillator voltage signals are monitored by the Labview program with a data acquisition board, at a 
maximum sampling rate of 500 kHz.

A representative phase-time trace of a single run while the weights are being programmed is shown in Fig. 3(b). 
The digital potentiometers are programmed sequentially in time, due to the serial nature of the digital scheme. The 
time period of the weight programming is dependent on the loop speed of the Arduino board and the complexity 
of the code – which has a maximum loop frequency of 117 kHz33. After the last weight (J34) is programmed, the 
oscillators arrive at the new solution state. Phases of the oscillators are each measured relative to oscillator 1, whose 
phase is given a default binary value of “0”. The binary phase outputs are then determined with a simple threshold, 
where phases differences >90° with respect to oscillator 1 are assigned “1”, and phases <90° are assigned “0”. We 
note that, unlike the simulation, no annealing of the coupling strength, is required to arrive at the solution. This is 
likely due to the low node count of the system. With more nodes, simulations of this oscillator network using cou-
pled differential equations have shown that ramping up either the coupling strength or an external super-harmonic 
injection locking signal will be required in order for the system to preferentially settle to the correct solution. The 
super-harmonic injection locking signal serves a dual purpose in that it replaces the rounding feature described 
above, forcing the phases of each oscillator to their respective binary values (either 0° for “0” or 180° for “1”). As 
pointed out previously, this signal is required to extract sensible answers using large node count systems17.

A high sampling rate phase measurement of the phase transition of the oscillators is shown in Fig. 4. The 
phases were obtained via performing a moving window Fourier transform on the time-domain amplitude signal. 
The red dashed weight change line is when the last potentiometer (J34) has been digitally switched. From this 
measurement, we observe a 100 µs solution time, which translates to 5 cycles of the 50 kHz oscillators, as shown 
in Fig. 4(a). A potentially attractive pathway to scale the solution time of these systems involves simply increasing 
the oscillator frequency, as the settling time is expected to scale with oscillator period. In an attempt to validate 
this hypothesis, Fig. 4(b) shows the same experiment but with oscillator frequencies reduced by one order of 
magnitude, to 5 kHz, by utilizing 10 µF capacitors. We experimentally observe the time-to-solution also increases 
by approximately one order of magnitude, which suggests that the time-to-solution does indeed scale with the 
oscillator frequencies. The 90° threshold algorithm translates the final oscillator phase states to a binary solution 
of [0 1 1 0], if we use the order of the oscillator number. This solution is one of the 6 correct degenerate solutions 
for a fully-connected MAX-CUT problem with 4 nodes and equal connection weights.

Time trace data of the oscillators under various binary weight configurations is shown in Fig. 5 to demonstrate 
the functioning system. The voltage amplitudes of each oscillator are shifted by 10 V to help distinguish the indi-
vidual oscillators. All oscillation voltage amplitudes in this experiment range from 0 to 10 V. With the appropriate 
binary weights shown in Fig. 5(a–d), each oscillator can be made to be 180° out of phase with all other oscillators. 

Figure 3. (a) System level diagram of the oscillator control system. Blue lines indicate digital signals while red 
lines indicate analog signals. (b) Schematic timing diagram of the oscillator phases during system operation.
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With this graph structure of only one node connected to the remaining three, it intuitively follows that the energy 
minimization is achieved when the central node is out of phase with the others. Under the fully connected system 
in Fig. 5(e), there exist 6 degenerate solutions, in which any 2 oscillators are 180° out of phase with any other 2 
oscillators. Here we only show one of the six solutions.

Figure 4. Measured phase versus time data during the last weight change, J34, with (a) 50 kHz and (b) 5 kHz 
oscillators. A solution time of approximately 5 cycles is measured. The time-to-solution directly scales with 
oscillator frequency.

Figure 5. (a–e) Measured oscillator amplitude data at various binary weight configurations. The lines 
connecting the oscillators correspond to a weight of 1, while an empty space corresponds to a weight of 0.
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Statistical analysis.  In order to validate the accuracy and reliability of the system, more than 2000 auto-
mated computer controlled experiments with random weights were performed. Figure 6(a,b) shows the prob-
ability distribution of the arrival of each solution energy with a 1 bit and 5 bit weight values, respectively. The 
probability of achieving the ground state for 1 bit and 5 bit weights are 98% and 84%, respectively. The ground 
state probability was determined by 10 trials of each of the 2000 randomly generated problems. Clearly, the proba-
bility of achieving the ground state decreases with increasing weight bit resolutions. We observe that the solutions 
for all of the experiments follow a Boltzmann distribution with the peak of the curve at the ground state.

To fully characterize the ground state solution probability versus weight bit resolution, the results of running 
over 2000 random problems for weight bit resolutions from 1 to 5 is shown in Fig. 6(c). The ground state accuracy 
decreases monotonically as the bit resolution is increased. The total number of oscillator periods, NT, required to 
reach ground state with 99% certainty is defined as NT = Nc log(1 − 0.99)/log(1 − P(b)). Here, P(b) is the meas-
ured ground state probability from a single run for bit resolution b, and Nc is the number of oscillator periods for 
a single run. We obtain the P(b) from Fig. 6(a) and plot the results in Fig. 6(d). Thus to achieve the ground state 
with 5 bits of weight resolution, an average of 13 periods would be required.

To characterize the cause of the non-ground state solutions for the non-binary weights, Fig. 7 plots the meas-
ured ground state probability versus the difference between the ground state Ising energy and the next highest 
energy state (ΔE = E1 − E0) for randomly generated problems with 5 bit weights. Intuitively, this parameter char-
acterizes the depth of the ground state potential well, with easier problems exhibiting large ΔE, and more difficult 
problems exhibiting small ΔE. The data shows that as ΔE decreases, the probability of finding the ground state 
on a single trial also decreases. For example, when ΔE < 2, the probability of achieving the ground state falls 
below 0.9. Noise in the system causes difficulty in distinguishing energy-near solutions from the ground state 
solution. The minimum ΔE value inversely scales with weight bit resolution, which is the cause of the decreased 
accuracy for higher bit problems. Alternatively, binary weight systems typically have very high ground state prob-
abilities due to the large ΔE values. For example, in the 4 node binary weight system, the minimum energy dif-
ference between E1 and E0, is ΔE = 2, which gives rise to very high accuracy solutions. The complete absence of 
non-unitary probabilities for ΔE > 2 implies that the system does not become trapped in local minimum, so long 

Figure 6. Experimentally measured probability of solution energy for (a) 1 bit and (b) 5 bit weight resolutions 
after more than 2000 trials with random weights. Solution energy of E0 represents the ground state solution. 
Error bars represent the standard deviation. (c) The measured ground state probability versus weight bit 
resolution. (d) Estimated solution time in number of oscillator periods based on a 99% confidence. The 
corresponding shaded regions represent the standard deviation.
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as the ΔE is large enough. To compare the experimental results to simulations, we overlay a similar plot generated 
by simulating a set of randomly generated 5-bit weight problems with the SDE simulation technique described 
above. The simulated sample set includes 1000 different problems, and each point represents the mean ground 
state probability value of all the problems with a given ΔE value. The behavior of the SDE simulated system 
matches reasonably well to the behavior measured experimentally.

Discussion
To understand the expected performance as the system size is scaled, the SDE solver discussed previously was 
extended beyond the case of V = 4 and used to calculate the probability that the system can find the ground state 
as a function of V. We note that, for this scaling study, the annealing schedule described in Eq. (3) was used with 
τ = 5 cycles. This value was intentionally chosen to be small to allow for a pessimistic assumption of the solution 
time scaling trends. The problem set for this test was a set of circular graphs, known as Mobius ladder graphs, 
with each node connected to its two nearest neighbors and one node directly opposite (shown in Fig. 8(a)). The 
ground-state solutions for this problem set were determined through brute force calculation34, which allows for 
the solution from the SDE solver to be compared against a global energy minimum. Figure 8(a) plots the proba-
bility P that the system reaches the ground state solution after 500 independent runs for each problem set, show-
ing a natural roll-off from ~100% ground state probability when V = 8 to roughly 3% probability when V = 300. 
Translating these results to calculate the overall time required to find a solution for a given problem (ts), we first 
find Nt by defining Nc as the number of oscillation periods required for a single run of the simulated system to 
reach a minimum value and multiplying by the number of trials required to reach the ground state based on the 

Figure 7. Experimentally measured ground state probability versus solution energy difference between the 
ground state Ising energy and the next highest energy state (ΔE = E1 − E0) for randomly generated 5 bit 
weights.

Figure 8. (a) Simulated ground state probability on a circular graph versus number of oscillators. (b) Scaling 
simulation of the coupled oscillator system with 50 kHz and 1 MHz oscillator frequencies. For comparison, 
data extracted from previous Ising machine demonstrations for an identical problem13 (orange dots) is plotted 
alongside the simulated data, illustrating a potential advantage of this coupled oscillator system.
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expected probability P (as described previously). Finally, multiplying Nt by the period of one oscillation yields the 
final solution time ts. Figure 8(b) shows these computed values assuming a system built with 50 kHz oscillators 
(to match the current experimental circuit), along with a linear fit to a logarithmic trend line. The results are 
compared against the identical problem set and a similar analysis from a previous Ising machine implementa-
tion13 (orange points). For illustrative purposes, a similar trend line is plotted for a system assuming an oscillator 
frequency of 1 MHz. Direct scaling with oscillator frequency was demonstrated in Fig. 4, and the additional line 
is shown here to highlight the potential speedup that can be achieved against existing implementations with 
relatively modest hardware specifications. It is also important to note that this scaling analysis focuses entirely 
on ground state solutions. As shown in Fig. 6(b), when the ground state solution is not reached, the system often 
settles to a value very close to the absolute minimum, which can be sufficient for many optimization problems.

Moving beyond simple Mobius ladder graph problems, we extend the analysis to randomized cubic graphs, 
where each node is connected to three others with the connections determined at random. For each node size, 100 
different problem instances were generated and the exact ground state was found using the BiqMac MAX-CUT 
solver35. Each problem set was then run 100 times using the coupled oscillator simulator, and the ground state 
probability (P) and solution time (ts) were determined as described previously. Figure 9 shows the mean ts calcu-
lated for all 100 problem sets at each node size, assuming a 1 MHz oscillator. The data is plotted against an iden-
tical experiment on cubic graphs solved using a GPU-accelerated mean-field algorithm, which has shown ~20x 
speedup when compared against existing Ising machine implementations19. It is clear from the simulation that a 
crossover point is reached at V ~ 150, with the coupled oscillator approach trending much more favorably as the 
system size is scaled. As a point of reference, the BiqMac solver running on a modern CPU took approximately 
10–20 seconds to solve random cubic problem instances with V = 200. This analysis lends credibility to the prom-
ise of using coupled oscillator systems to solve non-trivial computational problems.

conclusion
In summary we demonstrate the simulation, design, experiment, and characterization of a parallel, all-to-all 
connected coupled oscillator system which correctly maps to the weighted Ising model. The system is capa-
ble of successfully solving random MAX-CUT problems with 98% success probability with binary weights. The 
proof-of-concept breadboard experimental demonstration enabled a study of accuracy as a function of the inter-
connect weight bit-resolution. We show that the performance maps accurately to SDE simulations, and use these 
simulations to predict the system behavior at larger node sizes, which show favorable scaling when compared 
against existing optoelectronic implementations and GPU-based algorithms for similar problem sets. A full com-
parison on more densely connected problem sets will be the subject of future work.

A significant advantage of the coupled oscillator system presented here lies in the fact that it can be scaled 
using existing low-cost hardware and lends itself especially well to an integrated circuit implementation. One 
major challenge, and an important area of future study, involves the interconnect architecture required to densely 
connect very large numbers of oscillators (>1e3). While time-multiplexed approaches have been implemented in 
recent instances12,13, frequency- or code-division multiplexed systems could also provide interesting pathways to 
efficiently allocate connection resources. Another interesting area for study involves the use of measurement and 
feedback approaches to increase the ground state solution probability for larger problem sizes36,37. As transistor 
scaling begins to limit the progress in conventional digital computing architectures, the demand for alternative 
strategies continues to grow, and oscillator-based Ising machines could represent a novel and important platform 
to push the bounds of certain classes of computational problems.

Figure 9. Solution time scaling simulation for randomized cubic graphs using coupled oscillator approach 
(blue) vs. mean-field algorithm run on conventional GPU (orange). Dashed lines represent log-linear fits to 
the respective data. In the case of the coupled oscillator simulation, the fit was determined using the last 8 data 
points.
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