
Name:

CSE 5211 Analysis of Algorithms
Spring 2018 Practicd Midterm Key

1. (5 pts) Simplify the summation:Score ∑
0≤k<n

[3k + 3k − 2]

Answer: The sum is ∑
0≤k<n

[3k + 3k − 2] =
∑

0≤k<n

3k +
∑

0≤k<n

3k −
∑

0≤k<n

2

=

[
3n − 1

2

]
+ 3

(
n

2

)
+ 2n

=

[
3n − 1

2

]
+

3n2 + n

2

2. (10 pts) Solve the recurrence T (n) = T (n− 1) + 2n + 2 with initial condition T (0) = 1.Score

Answer: The equation unrolls:

T (n) = T (n− 1) + 2n + 2

= [T (n− 2) + 2(n− 1) + 2] + 2n + 2

= [T (n− 3) + 2(n− 2) + 2] + 2(n− 1) + 2 + 2n + 2

...
T (0) + 2[1 + 2 + 3 + · · ·+ n] + 2(n)

= 1 + n(n + 1) + 2n

= n2 + 3n + 1

1

3. (5 pts) Find the generating function for the sequence 〈1, 3, 5, 7, . . .〉 of positive odd integers.Score

Answer: The generating function is

G(z) = 1 + 3z + 5z2 + 7z3 + · · ·

=
∑
0≤k

(2k + 1)zk

=
∑
0≤k

2kzk +
∑
0≤k

zk

= 2z
∑
0≤k

(kzk−1) +
1

1− z

=
2z

(1− z)2
+

1

1− z

=
z + 1

(1− z)2

4. (5 pts) What sequence is associated with the generating functionScore

G(z) =
2

1− z2
? (Note this function is not 1/(1− z)2)

Answer: Since
1

1− z
=
∑
0≤k

zk

by substitution you get

G(z) =
2

1− z2

=
∑
0≤k

z2k

1 + z2 + z4 + · · ·

And the sequence is 〈1, 0, 1, 0, 1, 0, 1, . . .〉.

2

(True or False) Explain your answer.

1. (5 pts) If f(n) = O(n2) then f(n) = O(n).Score

Answer: This is False. Here is a counterexample: Let

f(n) = n2 = O(n2)

But, there are no constants c > 0 and m ≥ 0 such that

f(n) = n2 ≤ cn ∀ n ≥ m

which is clearly False because it requires n ≤ c for all n ≥ m.

2. (5 pts) If f(n) is O(3lgn), then f(n) is O(n2).Score

Answer: This is True. Here’s the trick: alg(b) = blg(a). You can see the identity by take the log of both
sides and notice the equality. Then since lg(3) ≈ 1.58496250072 < 2 If f(n) is O(3lgn), then f(n) is
O(n2).

3. (5 pts) The function f(n) = lg(n!) = O(n lg n).Score

Answer: This is True. Notice

lg(n!) = lg(n(n− 1)(n− 2) · · · 2 · 1) (definition of factorial.)

=
∑

1≤k≤n

lg(k) (log of product rule.)

≤
∑

1≤k≤n

lg(n) (log of product rule.)

= n lg(n) (replacing lg k by the larger lg n.)

3

The code below is a (highly) edited implementation of Gaussian elimination Answer the questions that
follow.

The code implements pivoting: rows are swapped to help minimize floating point errors. the macro

mat_elem(a, y, x, n) (a + ((y) ∗ (n) + (x)))

indexes into row x, column y of 2-dimensional array a, where n is number of columns in a row (the row
length). It is a constant time operation.

1 #de f i n e mat_elem(a , y , x , n) (a + ((y) ∗ (n) + (x)))
2 void swap_row(double ∗a , double ∗b , i n t r1 , i n t r2 , i n t n)
3 {
4 double tmp , ∗p1 , ∗p2 ;
5 i n t i ;
6 i f (r1 == r2) return ; // no need to swap a row with i t s e l f .
7 f o r (i = 0 ; i < n ; i++) { // f o r every column
8 p1 = mat_elem(a , r1 , i , n) ; // get va lue in row r1 , column i
9 p2 = mat_elem(a , r2 , i , n) ; // get va lue in row r2 , column i

10 tmp = ∗p1 , ∗p1 = ∗p2 , ∗p2 = tmp ; // swap va lue s
11 }
12 tmp = b [r1] , b [r1] = b [r2] , b [r2] = tmp ; // swap where the row l i e
13 }

1. (5 pts) What is the worst-case time complexity of swap_row?Score

Answer: It is O(n): picking the values out of the array is constant time. Swapping the pointers is too.
The loop executed n times.

1

2 i n t i , j , co l , row , max_row , diag ;
3 double max, tmp ;
4

5 f o r (d iag = 0 ; diag < n ; diag++) {
6 max_row = diag , max = A(diag , d iag) ;
7

8 f o r (row = diag + 1 ; row < n ; row++) {
9 i f ((tmp = fabs (A(row , diag))) > max) {max_row = row , max = tmp ;}

10 }
11 swap_row(a , b , diag , max_row , n) ;
12

13 f o r (row = diag + 1 ; row < n ; row++) {
14 tmp = A(row , diag) / A(diag , d iag) ;
15 f o r (c o l = diag +1; c o l < n ; c o l++) {A(row , c o l) −= tmp ∗ A(diag , c o l) ; }
16 A(row , diag) = 0 ;
17 b [row] −= tmp ∗ b [diag] ;
18 }
19 }
20 f o r (row = n − 1 ; row >= 0 ; row−−) {
21 tmp = b [row] ;
22 f o r (j = n − 1 ; j > row ; j−−) { tmp −= x [j] ∗ A(row , j) ; }
23 x [row] = tmp / A(row , row) ;
24 }

2. (5 pts) What is big-O complexity of line 22? (Use summation notation in expressing your answer.)Score

Answer: Let r stand for the row variable. For counting let j increase. The result is∑
r<j<n

1 = n− r − 1

4

3. (5 pts) What is the big-O complexity of the for loop from line 20 to line 24? (Use summation notationScore
in expressing your answer.)

Answer: Using the previous answer, This sum is∑
0≤r<n

(n− r − 1) = (n− 1) + (n− 2) + · · ·+ 0 =

(
n

2

)

4. (5 pts) What is the big-O complexity of the for loop in line 15Score

Answer: Let d and c stand for the variables diag and col∑
d<c<n

1 = n− d + 1

5. (5 pts) What is the big-O complexity of the for loop in line 13 to line 18?Score

Answer: The complexity is modeled by the sum∑
d<r<n

[1 +
∑

d<c<n

1] =
∑

d<r<n

[1 + (n− d− 1)]

= (n− d− 1)(n− d)

=

(
n− d

2

)

6. (5 pts) What is the worst-case big-O complexity of the for loop from line 5 to line 19?Score

Answer: swap_row is called every time through the loop. In the worst-case, a row swap is required
with a cost that is O(n). The complexity is modeled by the sum∑

0≤d<n

[1 + (n− d− 1) + n +

(
n− d

2

)
] =

∑
0≤d<n

[(2n− d) +

(
n− d

2

)
]

where the first 1 is for setting max_row. The (n− d− 1) term is for testing if a row below the diagonal
is a better pivot row (lines 8 to 10). The next n is the worst case swap. And, the binomial coefficient
term is from the previous problem.

Simplifying the sum yields:∑
0≤d<n

[1 + (n− d− 1) + n +

(
n− d

2

)
] =

∑
0≤d<n

[(2n− d) +

(
n− d

2

)
]

= [(2n) + (2n− 1) + · · ·+ (n + 1)] + [

(
n

2

)
+

(
n− 1

2

)
+ · · ·+

(
1

2

)
]

= [
(3n + 1)(n)

2
) +

(
n

3

)
= O(n3)

5

7. (5 pts) What is the best-case big-O complexity of the for loop from line 5 to line 19?Score

Answer: In the best-case the call to swap_row is O(1). The complexity is modeled by the sum∑
0≤d<n

[1 + (n− d− 1) +

(
n− d

2

)
] =

∑
0≤d<n

[(n− d) +

(
n− d

2

)
]

= [(n) + (n− 1) + · · ·+ (1)] + [

(
n

2

)
+

(
n− 1

2

)
+ · · ·+

(
1

2

)
]

= [

(
n + 1

2

)
+

(
n

3

)
]

= O(n3)

8. [ts5 Which, if any for the following is True: This implementation of Gaussian elimination is: O(n3),
Ω(n3), Θ(n3)?

Answer: They are all True.

6

1 The Little Haskells (a play on The Little Rascals)
1. (5 pts) The list concatenation function is defined in the Haskell Prelude byScore

1 (++) : : [a] −> [a] −> [a]
2 (++) [] ys = ys
3 (++) (x : xs) ys = x : (xs ++ ys)

(a) What initial cost would you assign to line 2?
Answer: The time complexity of 2 is O(1).

(b) What recurrence equation describes line 3? You may assume the construction operator x:xs take
constant O(1) time.
Answer: Let x:xs = n. The time complexity is modeled by the recurrence

T (n) = 1 + T (n− 1)

which has solution T (n) = n.

2. (5 pts) The last function function is defined in the Haskell Prelude byScore

1 last [x] = x
2 last (_: xs) = last xs
3 last [] = errorEmptyList "last"

(a) What initial condition and recursion describes the time complexity of the code?
Answer: For a single element list, the complexity is T (1) = 1, For a longer list, the recursion is
T (n) = 1 + T (n− 1), where the 1 is cost of dropping the first element.

3. (10 pts) Consider the following algorithm that returns the minimum and maximum values from anScore
list of of values that can be ordered. What recurrence equation and initial conditions expresses the
algorithm’s time complexity. (Do not solve the equation.)

1 maxmin : : (Ord a) => [a] −> (a , a)
2 maxmin [] = (error "maxmin of empty list" , undefined)
3 maxmin [x] = (x , x)
4 maxmin [x , y]
5 | (x >= y) = (x , y)
6 | otherwise = (y , x)
7 maxmin (x : y : xs)
8 | (max > maxTail) && (min < minTail) = (max, min)
9 | (max > maxTail) && (min > minTail) = (max, minTail)

10 | (max < maxTail) && (min < minTail) = (maxTail , min)
11 | (max < maxTail) && (min > minTail) = (maxTail , minTail)
12 where f i r s t = maxmin [x , y]
13 max = f s t $ maxmin [x , y]
14 min = snd $ maxmin [x , y]
15 r e s i du e = maxmin xs
16 maxTail = f s t r e s i due
17 minTail = snd r e s i due

Answer: Initial conditions: T (1) = 1, T (2) = 2 seem reasonable. Given a list x:y:ss of length n there
is: One call to the function with 2 arguments. One call to the function with n − 2 arguments. Plus
several other constant time assignments and tests. The recurrence is

T (n) = 2 + T (n− 2) + c or more simple T (n) = T (n− 2) + C

Total Points: 95

7

	The Little Haskells (a play on The Little Rascals)

