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Abstract 

Dating to as far back as 6000 B.C.E., the Indus Valley Civilization left behind a trove of artifacts that 

have given us a captivating puzzle to solve. Arguably chief among these is the decipherment of the 

Indus Valley Script. Being able to automatically identify, and eventually decipher Indus Valley Script 

graphemes in a lab or field setting would be of great benefit to scholars who study this fascinating slice 

of our human heritage. In this paper we present an investigation into the use of existing pretrained 

models to automatically locate and identify Indus Valley Script graphemes in curated images of both 

seals and stamps. We present a brief survey of applicable approaches to similar problems, preliminary 

results evaluating the “Detecto” Faster R-CNN and YOLOv3, selection of, and experiments with the 

YOLOv3 model, and finally we present the results, and discuss avenues for further experimentation.  

 

Introduction 

The Indus Valley Script (IVS) [1] remains a 

fascinating and enigmatic piece of Indus Valley 

Civilization (A.K.A. the Harappan Civilization) 

[2]. Dating to c. 6000 B.C.E. this society of the 

Indus River valley left tantalizing clues about 

their lives and culture. Artifacts range from the 

mundane to the unique. Once thought to be 

exceptionally peaceful and egalitarian, scholars 

are challenging many aspects of earlier held 

archeological conclusions [3]. Although many 

decipherments of the IVS have been put forth, 

there remains no scholarly consensus as to the 

meaning behind the graphemes that are known 

to make up the script [4]. Being able to quickly 

decipher the hundreds of seals and stamps this 

civilization left would go a long way towards 

our understanding of their culture. To help 

facilitate the eventual decipherment and the 

application of the resultant new understandings 

of the IVS and the culture that spawned it, an 

automated system that can quickly and reliably 

identify IVS graphemes would greatly aid both 

desk-bound research and, it is our hope 

eventually, in-situ field work.  

 

 

Literature Survey 

We conducted a search of literature focusing on 

combinations of terms such as Indus Valley 

Script, Harappan, OCR, and grapheme. 

Approaches developed by Google researchers 

have shown encouraging results for the 

detection of characters in natural scenes [5] [6]. 

However, these approaches did not resonate as 

completely applicable as DistBelief is built on 

massive clusters of CPU cores running training 

against millions of images pulled from 

Google’s immense Street View databases. We 

also reviewed approaches to detection and 

translation of Egyptian hieroglyphic characters 

[7] [8]. Both approaches rely on the hieroglyphs 

being divided in a rigid columnar structure and 

therefore would most likely not translate well to 

mostly linear structure of IVS stamps and seals. 

Of particular interest for future investigation is 

the use of attention mechanisms in similar 

problems to first identify regions in images 

where text is most likely present and then feed 

that information into additional layers [9] [10] 

[11]. An additional avenue for future research is 

to utilize novel methods to draw bounding 

boxes around detected graphemes [12] [13]. 

Researchers have also applied Markov models 

to analyze the structure of the IVS with 
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interesting results [14]. Ultimately, we settled 

on an initial investigation of the Detecto and 

YOLOv3 models running on the PyTorch and 

TensorFlow frameworks respectively [15] [16] 

[17] [18]. YOLOv3 showed better initial results 

and was selected for further experimentation. 

Images 

Source images of seals and stamps were taken 

from several sources. Primarily the Indus Script 

Dictionary [19] and with permission from 

Harappa.com [20]. Additional some images 

were pulled from National Geographic and 

ISTC websites [21] [22]. All together we were 

able to utilize 232 source images. To further 

augment images for training and validation we 

developed a configurable script that applies 

various transformations to base images (See 

§Data Augmentation). Bounding box data with 

labels was then created in two sets. The first set 

labeled all characters in the images as the single 

class “grapheme.” The second set labeled each 

grapheme with its corresponding Harappan 

character code based on Everson’s proposed 

Universal Multiple-Octet Coded Character Set 

[23]. Each Harappan character code takes the 

form HXXX, where XXX is the three-digit 

sequential character number. Those characters 

that did not appear in the abridged set (abridged 

in relation to all known IVS graphemes) were 

labeled as “grapheme” so they could be 

included or excluded based on class-name 

filtering at the time of training. For training 

purposes, six images were chosen at random 

from the set of those images that did not 

contain a single appearance, in our overall set, 

of a given grapheme.  

Model Selection 

Prior to sourcing the 232 images we evaluated 

both the Detect-o and YOLOv3 models on an 

initially limited set of 26 images, 22 for 

training, and 4 for validation. The Detecto 

model was trained 2000 iterations over 20 

epochs while YOLOv3 was trained with 2500 

iterations over 10 epochs. Results are shown 

in . YOLOv3 was selected due to its slightly 

better results and for the ease of code 

implementation and execution.   

Data Augmentation 

While CNNs have impressive representational 

power in computer vision, they require vast 

amounts of training data to generalize well to 

real-world examples. This can be problematic 

for many object detection problems, as there is 

a large cost associated with sourcing large sets 

of annotated images. This is especially true 

with the Harappa grapheme dataset. There are 

only a limited number of sources to draw 

images of Harappan symbols from (mostly 

seals and tablets stored by museums). The total 

number of objects displaying Harappan 

graphemes around the world is less than ~5000, 

well below the tens of thousands of images that 

comprise typical landmark object detection 

datasets such as COCO and Pascal VOC [24] 

[25]. In addition, finding annotators who are 

qualified to accurately label the data is difficult. 

Unlike with PASCAL VOC and COCO, which 

contain mostly common place objects, there are 

only a few qualified experts around the world 

who have the knowledge and expertise needed 

to identify these symbols. Even for a simple 

detection task that does not seek to positively 

identify each character, it can still be difficult 

for an amateur annotator to differentiate what 

portion of the seal forms the grapheme and 

what is an engraving or damage. This makes 

data annotations for the Harrapan dataset prone 

to error, and noise that we can be ill-afforded 

with such a small sample of images to train 

from. 

 

Data augmentation is a technique in machine 

learning for artificially expanding the training 

set so that it can better represent the distribution 

of real-world data the model has yet to see. 

With data augmentation, already collected 

examples in the training set are modified with 

some augmentation policy to subtly alter the 

content of the original image. These types of 

augmentations typically come in two flavors. 

One is altering the pixel content of the image 

by changing the saturation, bloom, or color of  
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Figure 1: Detecto and YOLOv3 Initial Results 

the original image, as well as applying noise 

filters that change the pixel values of the image 

with some predefined random distribution,  

typically, Gaussian.  The other type of 

augmentation category is affine transformation, 

such as image rotation, translation, scaling, 

cropping, and flipping the image around an axis 

[26].  With image classification tasks, where the 

labels are not tied to any position in the original 

image, automatic data augmentation is simple. 

The image can be altered without fear of also 

changing the intended label. With object 

detection tasks, however, augmentation is more 

difficult. Applying affine transformations to the 

image without also changing the bounding box 

labels accordingly will result in an unusable 

image. 

 

It is possible to use hand-cranked methods to 

apply data augmentation, such as using a 

human labeler to apply the same set of 

bounding boxes in a rotated image. However, 

this does not scale well to larger applications. It 

became evident early on that hand-labeled data 

augmentation would be insufficient to generate 

the large set of training needed to represent the 

space of all image configurations in our 

Harappan grapheme dataset. 

 

To handle the expanded set of hand labeled 

Harappan images as well as to scale for any 

additional examples that may be added to the 

dataset later, a data generator that applies 

pixel and affine transformations automatically 

was developed. The data generator can accept 

any number of images at any size. In addition, 

it is capable of handling both color and 

grayscale imagery. During training, images are 

read from disk as needed by the data generator. 

The generator then automatically applies a set 

of randomized augmentation policies to the 

image. Because the augmentations and the 

necessary label adjustments are generated 

automatically, there is no limit to the number of 

training instances that can be produced by the 

generator. However, there is a limit to the 

number of representations that are realizable 

using the transforms listed here, and one must 

take care that they do not generate a series of 

images that are too like each other while using 

the generator. The full set of augmentation 

policies used by the data generator are listed 

below with examples provided in Error! 

Reference source not found. and  

Figure 3. 
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Pixel Value Transforms 

1. Noise Filters 

2. Saturation 

3. Bloom  

4. Contrast 

Affine Transformations 

1. Rotation (-45 ˚ - 45˚) 

2. Scaling  

3. Translation (Up to 
1

8
 of either x or y-dim 

of image) 

 

Figure 2: Pixel Augmentations 

The bottom row has pixel-level transforms on them, while the top row is the untransformed original 

image. The bottom image on the left had a Gaussian noise filter applied, while the right had a series of 

different saturation, bloom and coloring effects applied.  
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Figure 3: Affine Transformations 

As with Error! Reference source not found., the top row consists of unaltered images, while the 

bottom images have selected affine transformation applied to them. The left column represents a 

scaling transform, the middle a rotation transform, and the right a translation transform. 
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While developing the data and augmentation 

generator, efforts had to be made to ensure that 

any augmentation that was applied was 

consistent with the domain of Harappa 

graphemes that are likely to be encountered in 

the real world. This limited the scope of 

augmentation techniques that could be applied. 

In particular, the orientation of the symbols 

themselves are intrinsic to their meaning. 

Mirror reflections of symbols, therefore, are 

ruled out, as are extreme rotation transforms 

(e.g., a 90° transform).  The rotation transform 

also has the potential of rotating graphemes 

outside of the dimensions of the original image, 

making those bounding box labels useless. A 

function that removed bounding boxes that bled 

out of the image by more than a third of their 

area was used to remove labels in this category.  

 

In addition, model constraints were also a factor 

in how augmentations were applied. For 

example, when a rotation transform is applied 

to an image, ideally one would also apply the 

same transform to the bounding boxes so that 

they information content of the bounding box 

matched that of the original image. However, 

the model we used to perform the object 

detection task, YOLOv3, uses a set of anchor 

boxes to inform predictions that are generated 

under the assumption that the image they are 

being applied to is not rotated. Therefore, the 

hypothesis generated by YOLOv3 is unable to 

represent rotated bounding boxes.  

 

We dealt with this by keeping the bounding 

boxes parallel with the y-axis of the original 

image. To do so, the minimum and maximum 

values for both the x and y dimension of the 

box were chosen to generate a new, enlarged 

bounding box that was able to cover all the 

original grapheme. This is not ideal, as the 

resultant bounding boxes also cover other 

features in the image that do not relate to the 

grapheme. In addition, the enlarged bounding 

boxes that were generated in this fashion tended 

to overlap with each other, sometimes to a great 

degree. It was feared that this might induce 

some level of confusion in the model. The 

representations it learned might overlap 

multiple graphemes, resulting in single 

detections covering multiple graphemes instead 

of keeping them separate, which was desired. 

The decision was made to apply non-max 

suppression to rotated bounding boxes based on 

Intersection-over-Union with their neighboring 

bounding boxes, removing bounding boxes that 

overlapped too much with each other. This 

solution is also non-ideal, as some of the 

symbols in the rotated image will not have an 

associated bounding box attached to them 

during training. Future research could explore 

this problem by using or creating a model that 

is effectively able to represent bounding boxes 

in a rotated space. 

Precision and Recall 

While we initially utilized validation loss in our 

initial model selection, validation loss cannot 

be used as a metric to quantify the model’s 

performance at a given detection task. The 

validation loss provides some information into 

how the model improves in performance as it is 

exposed to more images during training, it 

cannot be used to compare the performance of 

the model at the given detection task with other 

approaches. The loss function used by the 

model is inherent to the model itself. This loss 

function will differ with a model’s architecture, 

as different models will optimize different 

parameters to perform the same task. 

Comparing a model’s validation loss with 

another is, therefore, unproductive. We need 

another set of metrics to provide a meaningful 

measure of the model’s performance at the 

detection task. This set of metrics is the 

precision and recall of the model. 

 

Precision is the ratio of true positives that the 

model generates over the entire set of positive 

predictions provided by the model. Positives 

correspond to bounding boxes output by the 

model that are deemed with some degree of 

confidence to contain an object of interest 

(OoI).  True positives are positive predictions 

that correspond with a real OoI in the image. 
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False positives are positive predictions that do 

not contain a real object of interest in them. The 

ratio of true positives to the total number of 

positives generated by the model provides a 

measure of “trust” in the predictions made by 

the model. A high ratio, or precision, means that 

most of the predictions made by the model are 

accurate. Conversely, a low precision means 

that the model generates false predictions at a 

high frequency relative to true predictions. 

 

Recall is a closely related metric that measures 

the model’s ability to detect all the real OoI’s in 

the image. Recall is defined as the ratio of true 

positives over the sum of true positives and 

false negatives generated by the model. 

Negatives are bounding boxes that fall below 

the confidence threshold required to rate it a 

positive. They are therefore deemed to not 

contain an OoI. False negatives are therefore 

the bounding boxes that are deemed to be 

negative that contain an OoI in them. A model 

with high recall will therefore detect most of 

the real OoI’s in the image with a high 

probability. Conversely, a model with low recall 

will detect few of the real OoI’s in the image. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑝

𝑇𝑝+𝐹𝑝
    (1) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑝

𝑇𝑝+𝐹𝑛
    (2) 

where: 

 𝑇𝑝 =True Positives 

 𝐹𝑝 = False Positives 

 𝐹𝑛 = False Negatives 

 

At the heart of both metrics is the determination 

of what predictions the model deems to be 

positive or negative. This determination is 

controlled by the confidence threshold set by 

the user. For each prediction made by the 

model, an associated confidence score is 

assigned to the box that corresponds to the 

probability that the bounding box contains an 

actual OoI based on the probability distribution 

learned by the model. Predictions with 

confidence scores below the threshold are 

determined to be negatives, while those above 

the thresholds are deemed to be positives. 

Setting a high confidence threshold will 

therefore reduce the number of positive 

predictions made by the model, increasing the 

probability that an OoI will not be detected. 

Lowering the threshold increases the chance 

that all OoI’s are detected, but at the cost of 

inducing false detections that contain nothing of 

interest. 

 

We desire a model that provides both a high 

precision and high recall. However, a model’s 

performance in one metric is usually inversely 

proportional to its performance in the other. As 

the model’s recall improves, the precision will 

tend to degrade, and vice-versa. As both metrics 

are functions of the confidence threshold, we 

can increase one or the other by raising or 

lowering the confidence threshold. 

 

Unlike other OCR tasks, the background of a 

typical sequence of IVS graphemes can contain 

other features like those exhibited by the 

symbols that we want to detect, such as animal 

or human pictographs. This complicates the 

recognition task, as there is a possibility that the 

features that the model learns are also common 

to the other etchings on the seal or stamp, 

inducing a degree of confusion that increases 

the chance that the model will output a false 

positive. It is important that we can quantify the 

tendency of the model to produce false 

positives during detection.  

YOLOv3 

YOLOv3 is an object detection model that uses 

a convolutional neural network feature 

extractor with a fully connected layer prediction 

head at the end that output scaling factors for 

anchors to generate bounding boxes, object 

confidence values, and class scores. What 

distinguishes this model from its previous 

iterations (YOLOv1 and v2) is the Darknet 

feature extractor that forms the front end of the 

model [16]. Darknet has 53 convolutional 

layers and a fully connected layer at the end.  
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Figure 4: Darknet-53 Layers 

While Darknet’s classification performance 

tends to be lower than other state of the art 

feature extractors such as Resnet-101 and 

Resnet-152 [16], it still performs well on most 

classification metrics. More importantly, it 

contains fewer layers and, thus, fewer 

parameters than either Resnet-101 or -152. This 

makes it better suited for deployment as the 

backbone of an object detection model being 

used on an embedded system or other 

environment with a constrained memory 

footprint, such as a mobile phone. As the 

envisioned end goal of this project is to deploy 

an inference model to a mobile device (perhaps 

with a symbol classifier on the backend that 

accepts the cropped bounding boxes of the 

inference model and outputs classifications), 

the end state deployment environment was a 

factor that needed to be considered when 

choosing our model. 

 

Yolov3 is like other state of the art object 

detection models in that, instead of generating 

new bounding boxes for images, it uses a set of 

prior boxes generated before training begins. 

The output of the model adjusts those priors to 

generate its prediction bounding boxes. This 

simplifies the detection task. Instead of having 

to localize and generate a bounding box of 

appropriate size to fit the object detection, the 

network must learn to localize the OoI and 

apply regressions to the provided anchor boxes. 

To generate these anchors, YOLOv3 divides 

input imagery into a grid of equally sized cells 

at three different scales. Taking the bounding 

boxes from the training set, a K-means 

clustering algorithm is used to form clusters of 

truth boxes based on their dimensions. The 

three different scales of anchor size are based 

on the clusters generated by the K-means 

algorithm. 

 

The object confidence values are a measure of 

the probability that a bounding box contains an 

object of interest based on the underlying 

probability distribution learned by the model. 

The confidence threshold at which a bounding 

box is said to be a “positive” (i.e., a detection 

by the model) is a value set by the user when 

post processing the predictions of the model. If 

we set the confidence threshold low, we’ll 

increase the likelihood that all of the objects of 

interest in the image will be detected. However, 

a low confidence threshold also induces a risk 

that we will accept bounding boxes that do not 

contain an OoI in them (or a “false positive”). 

Conversely, if we raise the confidence 

threshold, we will the probability of generating 

false positives goes down, but we lower the 

probability that we will detect all the objects in 

the image. This is a tradeoff that the model 

implementer and end user need to consider 

when using the trained model during inference. 

 

Yolov3 has faster training times for models of 

similar detection performance. The model 

divides input images into different regions and 

outputs objectness scores to each of those 

regions with predicted regressions and classes. 

Non-max suppression is applied to the set of 

bounding boxes and predictions that have 

higher IOU are removed based on which 

prediction has the lower objectness score. 
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Unlike other benchmark object detection 

models like Faster-RCNN, YOLOv3 does not 

use any region proposal network to make its 

predictions. Each input only makes a single 

forward propagation through the network. 

Because there is only one pass, YOLOv3 trains 

faster than other models of comparable 

detection performance. Class predictions for the 

model are made with independent logistic 

classifiers. 

Training 

YOLOv3 was trained for 40 epochs with 232 

training images augmented to 5000 with the 

active augmentation chain. An initial learning 

rate of 1e-4 was used. During training, this 

learning rate was slowly tapered off to a final 

learning rate of 1e-6.  This was so that, as the 

model approached convergence, we could slow 

the training of the model so that an optimum 

local maxima could be identified. Validation 

was performed on 13 images. This set of 

imagery was not augmented to provide a good 

baseline of the model’s performance on the 

dataset as-is. Precision and recall curves were 

generated for the validation set of imagery at 

each epoch of training to give a good indication 

of the progress of the model’s performance at 

the object detection task. 

 

Three different model configurations were 

trained. First, the model was trained on a set of 

weights initialized with a random normal 

distribution centered around 0.0 with a standard 

deviation of 0.01. The input data to this model 

was the set of augmented training images with 

three color channels. This model was the 

baseline configuration (henceforth referred to 

as the “baseline” model). Performance in this 

configuration should give a good idea of 

YOLOv3's suitability for the problem. Second, 

a model was trained with the input imagery 

converted to grayscale. This was to lower the 

dimensionality of the input space and, 

therefore, reduce the number of features that the 

model needed to learn. It was hypothesized that 

the most salient features that need to be learned 

for grapheme detection would be contained 

within the spatial dimensions of the image 

rather than the color channels. Humans identify 

different graphemes based on their shape, not 

their color. Furthermore, the identity and 

information conveyed by graphemes in the 

image do not change when the image is 

rendered in grayscale. Reducing the complexity 

of the detection problem by removing the color 

channels could outweigh the information lost 

from doing so. To test this hypothesis, we 

trained a model using grayscale imagery. All 

other training hyperparameters were identical to 

those used with the color model described 

above. 

 

 Finally, the model was trained with a set of 

weights provided by the model developer that 

had been pre-trained on the COCO dataset. The 

COCO dataset consists of over 200,000 labeled 

images that display objects from 80 different 

object categories. Most of these categories are 

everyday objects such as vehicles, animals, and 

household items. This method of transfer 

learning can help improve the performance of 

object detection models on small datasets such 

as the IVC dataset. The idea is that the model 

learns general features of objects of interest in 

imagery that can help the model even when 

identifying object classes that it has never seen 

before. This can improve the performance of 

the model over a model that has to learn all 

features needed to identify objects of interest 

from scratch. It should be noted that there is 

little cross-over between the domain of IVC 

graphemes and the objects of interest in the 

COCO dataset. Using the pre-trained COCO 

weights did increase the object detection 

performance of our model, but it is possible that 

there are other datasets that could be used that 

exhibit features closer to the ones that we wish 

to identify in the IVC dataset. One possible 

candidate is the Street View House Numbers 

(SVHN) dataset, a landmark dataset that 

formed the foundation of early research in the 

use of Convolutional Neural Networks in 

Optical Character Recognition. The difference 

in dimensionality between the IVC and SVHN 

datasets would have to be bridged in some way  

(SVHN images are only 32x32, while the 
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average image in the IVC dataset is 400x400), 

but, if we could overcome the gap in input-

space dimensions, the features learned training 

on the SVHN image set may transfer more 

effectively to the IVC detection problem. In any 

case, the model that was trained with the 

COCO pre-trained weights performed 

significantly better than the other two 

configurations, demonstrating that transfer 

learning will be a critical component of 

developing an IVC detector that is able to 

recognize graphemes with the precision needed 

for researchers in the field. This is even more 

important if we wish to train the model to not 

only recognize the broad class of IVC 

graphemes, but also the individual characters 

themselves. 

 

 
Figure 5: Training (left) and Validation (right) 

losses for the baseline model. 

Note that training had reached convergence at 

around epoch 20. This was consistent with the 

observed training behavior in Detecto as well. It 

is unlikely that there is any benefit for training 

greater than 25 epochs (though this might 

change should more labeled data become 

available).  

 

 
Figure 6: Training (left) and Validation (right) 

losses for the Grayscale model. 

It was hard to track the progress of the 

grayscale model during validation, as the loss 

function began to report NaN values halfway 

through training. We have not found a 

definitive reason for why this might be the case. 

However, the convolutional layers of the 

detection head for YOLOv3 use leak-Rectified 

Linear Unit (ReLU) activation functions, which 

are prone to cause NaN values if untuned. This 

is because the gradient for a ReLU function is 

always one for inputs greater than zero. 

Depending on the kernel weights for the filters 

of the convolutional layers, this can cause the 

backpropagated gradient to “explode” (I.e., 

exponentially trend to infinity or negative 

infinity), resulting in “dead weights” in the 

network that prevent the model from improving 

its learned representation any further. It is 

possible that the model was tuned to work 

specifically with colored imagery and given the 

same set of hyperparameters for grayscale 

imagery, will result in early onset of dead 

weights. Lowering the learning rate by a factor 

of 10 (so to 1e-5) should help rectify this 

problem. 
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Figure 7: Training (left) and Validation (right) 

for model trained with COCO weights. 

The model with pretrained weights takes longer 

to reach convergence than the baseline model. 

This is possibly because it was still extracting 

salient features from the imagery where the 

baseline model was unable to do so. 

Results 

 
Figure 8: Precision-Recall curves for baseline 

model (left) and grayscale model (right) for 

best epoch of training (epoch 22 for baseline 

model and epoch 20 for grayscale). 

 

 
Figure 9: Precision-Recall curve for model 

pretrained with COCO for best epoch of 

training (epoch 20) 

To produce the precision and recall curves for 

each model, the precision and recall for each 

validation image were calculated over a range 
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of confidence values from a set of 11 equally 

spaced intervals in the range [0.0, 1.0]. These 

calculations not only generated precision and 

recall for each model, but also the number of 

true positives, false positives, and false 

negatives that were generated. Based on the 

precision and recall curves generated for each 

model, the best epoch for training could be 

determined based on the area under the curve. 

The greater the area under the curve, the higher 

the precision of the model over all values of 

recall and, thus, the better the model was at 

keeping the number of generated false positives 

low while simultaneously detecting all the truth 

objects in the image. 

 

It should be noted that, due to the lack of data 

available for the validation portion of model 

training, it was impossible to generate 

continuous precision-recall curves. This makes 

it difficult to definitively determine which 

model performed the best based on precision 

and recall alone. The outliers in the validation 

set could skew the precision and recall in a 

fashion that is not representative of the 

distribution of the real-world data. 

Nevertheless, general trends could still be 

determined from the precision and recall 

displayed by the models during all epochs of 

training that allowed us to determine which 

model performed the best at the task.   

 

The best precision and recall curves were 

selected from each model during training based 

on area under the curve to determine which 

epoch demonstrated the model’s best 

performance. It was found that the best epoch 

for the COCO model and the grayscale model 

was epoch 20, while, for the color model, the 

best epoch was 22. The precision and recall 

curves for those epochs of training are 

displayed in Figure 8 and Figure 9.  

 

Based on the statistics charted by these curves, 

the COCO model had the best performance on 

the object detection task. It had a consistently 

high precision over all values of recall, which 

can be seen in its PR-curve (Figure 9). The 

precision for the model only began to decrease 

after a recall value of 0.8. This can be 

interpreted as “the model will produce mostly 

true detections while detecting, on average, 

80% of the objects in the image”. If we want to 

increase the detection probability by lowering 

the confidence threshold, we risk generating 

false positives after this point.  The detection 

performance of the COCO model can be 

attributed to the domain knowledge that it had 

learned previously when training on COCO, 

which seems to transfer over to the domain of 

IVC graphemes well. As noted earlier, this 

would indicate that transfer learning is probably 

the most lucrative avenue to pursue when 

improve performance on the detection task. 
 

Another result of note is that the grayscale 

model seemed to outperform the baseline 

model. Though both models had, on average, a 

lower precision than the COCO model (I.e., 

were generating more false positives during 

validation), the grayscale model maintained a 

higher precision over a greater range of recall 

values than the color model. This was true even 

after the validation losses of the grayscale 

model began to produce NaN values, showing 

that, even with the dead weights in the gray 

scale model, the model’s representation of the 

detection task was still more precise with the 

color model. This should be improved with 

hyperparameter tuning to prevent the spread of 

dead weights in the grayscale model. This 

seems to be clear evidence that there are 

performance gains to be had in lowering the 

input dimensions of the problem by removing 

the color channels. Based on this and the 

performance of the model trained with COCO 

weights, an approach that could be tried to 

further improve the detection performance of 

the model is to perform transfer learning on a 

dataset closer to the domain of IVC graphemes 

(potentially the SVHN dataset mentioned 

earlier) and cast the instances of that dataset 

into grayscale as well. 

Comparison with Detecto Approach 

For the final comparison between our approach 

with YOLOv3 with the actively generated 

augmentation chain and last semester’s 
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approach using Detector (Faster-RCNN with 

Resnet 50 feature extractor), we trained the 

Detecto model for 20 epochs on our expanded 

training dataset as well as the augmented data 

that was in the previous semester’s dataset (we 

were unable to apply our augmentation chain to 

Detecto training, as its model architecture is 

implemented in PyTorch while ours is in 

TensorFlow) and collected metrics on the 13 

images in the expanded validation set. The 

validation set contained 73 ground truth 

bounding boxes in total. Each model’s ability to 

output a prediction that corresponding with 

each of these boxes (true positives) was 

measured as well as any boxes the model 

produced that did not match a corresponding 

truth object in the image (false positives).  The 

confidence score and the IOU threshold for 

both models was set at the same value, 0.5. We 

found that Detecto outperformed our model in 

all metrics of object detection. Furthermore, it 

seems that Detecto, even without the active 

augmented training data, was able to generate 

accurate predictions for data that it had never 

seen before (i.e., unlabeled data that we 

collected off the internet). 

 

 Truth 

Object 

False Object 

Detected 108 0 

Undetected 0 N/A 
Table 1: Detecto’s Detections vs Truth Boxes. 

The rows correspond to whether the model 

detected an object, while the columns 

correspond to whether the detection 

corresponded with a truth object or not. The top 

left cell is the number of True Positives, the top 

right cell is the number of false negatives, and 

the bottom left cell is false positives (the 

bottom right cell, true negatives, cannot be 

measured in an object detection model, as all 

portions of the image that do not contain a 

prediction would be counted as a false 

negative). Impressively, Detecto was able to 

generate predictions for all of the truth boxes in 

the validation set. In addition, it was able to do 

so without generating any false positives.  

 

It is worth noting that, in Detecto’s and 

YOLO’s metrics, the number of true positives 

will be higher than the true number of objects 

in the images because overlapping detections 

will both be treated as true or false positives by 

the metrics module. A simple fix is to not only 

compare IOUs between the truth boxes, but to 

also compare IOUs between other predictions 

so that those predictions can be removed before 

metrics values are calculated, perhaps with non-

max suppression. 

 

This is not entirely unexpected. Detecto’s 

Resnet feature extractor has more parameters 

than Darknet and is capable of learning more 

complex representations of the problem 

domain. In addition, Faster R-CNN splits the 

detection problem into two components: 1. 

Region Proposal Generation to localize 

locations of interest in the image, and 2. Object 

Classification and Regression to generate more 

accurate predictions for the identified object 

class [34]. What was surprising was that 

Detecto was able to outperform our model even 

with the actively augmented training data. 

There are two reasons for why this might be the 

case. One is, as mentioned earlier, a more 

accurate representation of the problem domain 

can be learned by the Faster R-CNN model. 

The other is that, since the augmented data used 

by the Detecto group was hand labeled, a 

higher proportion of labels were conserved after 

the affine transformation was applied and the 

labels that were preserved were of a higher 

fidelity than those that were automatically 

generated. We would still recommend 

(admittedly, with some bias) using our data 

augmentation approach going forward. It is 

easily scalable and can handle new data 

instances more effectively than the hand labeled 

approach. In addition, it is easier to generate 

new affine transformations and apply them to 

the data pipeline with our approach. However, 

there is room for improvement. Methods for 

applying higher fidelity labels could be 

investigated. One method that could be 

explored is using a different bounding box 

coordinate scheme (possibly using an additional 

bounding box parameter, ϴ, which measures 
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the angle of the center line of the bounding box 

from the y-axis). Most of the standard object 

detection models in use today cannot be used to 

learn representations using this bounding box 

coordinate scheme. Many of the standard 

models (YOLO, Faster R-CNN, and Single 

Shot Detector (SSD)) use anchor boxes like the 

ones mentioned during our description of 

YOLOv3. While these anchor boxes help the 

model perform the object detection task, it also 

restricts the possible representations the model 

can learn. One approach that could be tried is to 

use a convolutional neural network architecture 

to output regression values for the rotated 

bounding box. In practice, this approach tends 

to result to inaccurate results due to the 

sensitivity of the angle prediction.      

 

the showing that further research into using the 

Faster-RCNN architecture as a grapheme-

detector may be worth looking into. This 

research would have to also examine the 

tradeoffs for the longer training times for 

Faster-RCNN as well as the larger number of 

parameters that would need to be stored in 

memory when performing inference with the 

model, an important factor to consider when 

deploying the model to a constrained memory 

environment.  

 

 Truth Object False Object 

Detected 305 26 

Undetected 21 N/A 

Table 2: YOLOv3’s Detections vs Truth Boxes. 

In contrast to Detecto, YOLOv3 generates 

many predictions at a much lower confidence, 

resulting in many overlapping true positives. In 

addition, YOLOv3 is more prone to generating 

false positives and misses more of the truth 

boxes than Detecto. The conclusion is that a 

Faster R-CNN architecture would provide both 

a higher precision and recall for the detection 

problem than YOLOv3. Adding a Faster R-

CNN architecture from the TensorFlow model 

API could be a next step.  

Symbol Class Results 

After statistics had been gathered for the object 

detection models, an additional YOLOv3 model 

was trained on the set of images that had been 

labeled with the symbol’s classes given by 

Everson [23]. In total, there were 185 symbol 

classes that covered most of the graphemes in 

the image (those that were not assigned a 

specific symbol class were assigned to the 

general class “grapheme”). In total, there were 

1265 different instances in the training set and 

34 instances in the validation set. Most of the 

symbol classes in the data consisted of a 

singleton, and only a handful had more than ten 

instances. Q naïve approach was attempted by 

our model which tried to learn on the whole set 

of 185 symbol classes to provide a baseline for 

future detection and classification efforts. A 

more refined approach in the future could select 

only those symbols that appear a statistically 

significant number of times in the dataset. 

Despite these limitations, those class instances 

that did show appear in the dataset were 

identified with YOLOv3 with a surprisingly 

high precision. The exception to this is 

“grapheme”, as this was an overarching 

category encompassing many different symbols 

exhibiting a range of features that overlapped 

highly with other symbol categories.
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Figure 10: Distribution of symbol instances in the dataset. 

Most symbol instances appeared only once in the training dataset. Augmentation helps this somewhat, 

but not to a degree necessary to recognize low frequency data with any kind of precision. The class 

instances that appeared most frequently in the data, most notably ‘H311’ (116 instances in the dataset), 

‘H127’ (72 instances in the dataset) are labeled with relatively high precision. 

 

 

Symbol ID  Appearances in the Training Dataset 

H311 116 

H127 72 

“grapheme” 44 

H060 44 

H148 38 

H376 37 

H091 36 

H070 31 

H189 30 

H368 27 

Table 3: Ten most common classes that appeared in the training dataset and the number of times they 

appear. 

 

The YOLOv3 COCO configuration was selected for the classification task due to its performance on 

the object detection task. All training configurations were kept the same between the classification 

model and the detection model, with the only difference being the addition of the symbol classes in the 

dataset and the reduction of epochs from 40 to 30. Additionally, the configurations for the 

augmentation pipeline for the training of this model was the same as with the previous models. 

 



Automatic Isolation and Identification Costa Thomas 
 

16 

   
Figure 11: Training loss (left) and validation loss (right) for the YOLOv3 model trained on symbol 

classes. 

It should be noted that the model seems to reach convergence at a much later stage than when it was 

performing object detection, due to the increased complexity of the task. Running for the full 40 epochs 

for the next set of training runs may give us a better picture of when the model reaches the desired 

optimum. 

 

The resulting model fails to identify most of the symbol classes in the image. However, the few symbol 

classes that appeared in the dataset with a frequency are classified with surprising accuracy. It is 

important to caveat this statement, however. The metrics we used to evaluate the model’s performance 

on the symbol classes were only gathered on the validation set, which consisted of only six images, 

insufficient to provide a full picture of the model’s performance on the set of real-world IVC imagery. 

What the metrics do show is that there is potential for the detection and the classification tasks to be 

performed simultaneously, given enough data instances. As noted, transfer learning on a related dataset 

(SVHN) should help performance in this area tremendously.  

 

The metrics used to evaluate the performance of the model were the number of true positives, false 

positives, and false negatives the model generated while performing the detection task. This analysis 

was constrained to the ten symbol classes that appeared in the training dataset with the highest 

frequency (given in figure 13). The confidence threshold used to classify a model’s detection as a 

‘positive’ was set at 0.5, as with the detection task, and the IOU threshold that was used to determine 

whether a detection should be classified as a ‘True Positive’ was set at 0.5. Here are the results for the 

ten classes: 

 

 Truth Object False Object 

Detected 25 0 

Not Detected 0 N/A 

Table 4: Detection results for symbol class H311. 

As with the detection task, the rows coincide with a model detection, while the columns correspond to 

whether there was a truth object at the site of the detection or not. The top left cell consists of True 

Positives, the top right cell False Positives, the bottom left cell False Negatives, and the bottom right 

true negatives. Based on these results, the model successfully detected all of the H311 symbols in the 

validation set and generated no false detections for this symbol class. 

 

 Truth Object False Object 

Detected 6 0 

Not Detected 0 N/A 

Table 5: Detections for Symbol H127 
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 Truth Object False Object 

Detected 12 1 

Not Detected 0 N/A 

Table 6: Detections for class “Grapheme” 

 

 Truth Object False Object 

Detected 6 0 

Not Detected 0 N/A 

Table 7: Detections for Symbol H060 

 

 Truth Object False Object 

Detected 13 0 

Not Detected 0 N/A 

Table 8: Detections for Symbol H148 

 

 Truth Object False Object 

Detected 6 0 

Not Detected 0 N/A 

Table 9: Detections for Symbol H148 

 

 Truth Object False Object 

Detected 8 0 

Not Detected 0 N/A 

Table 10: Detections for Symbol H148 

The other three symbols (H070, H189, and H368) were not present in the validation dataset. 

 

As can be seen, the symbols that appeared with a high frequency in the training dataset were detected 

by YOLOv3 with a high precision (Note: Some of the numbers reported here are repeat detections, 

which is the same bug as was present in the object detection module. To report an accurate result, non-

max suppression should be applied on the predicted bounding boxes to reduce the chance of repeat 

detection). This provides some confidence that an object detection model like YOLOv3 (and Faster R-

CNN, if it were trained on the same dataset) could be used to also perform classification on high 

frequency graphemes with a high degree of accuracy. 

Conclusion 

In this paper we presented YOLOv3 as 

candidate model for the identification and 

classification of Indus Valley Script graphemes 

in curated images. We utilized 232 source 

images of Indus Valley Script seals and stamps. 

Further, we augmented the dataset with a 

custom data generator that applies a 

configurable set of pixel augmentations and 

affine transformations to create thousands of 

training images. In spite of this active 

augmentation chain, YOLOv3 still performed at 

worse at the object detection task than Detecto, 

showing that the Faster-RCNN architecture is 

better suited to identifying Indus Valley 

Graphemes than YOLOv3. It also revealed that 

our current data augmentation pipeline was not 

rigorous enough to overcome the greater 

detection power of the Faster R-CNN model. 

Efforts to produce higher fidelity labels will 

need to be considered when making 

refinements to the automated augmentation 

pipeline. In addition, while YOLOv3 was able 

to detect some, select symbol classes with high 
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precision, it suffered at identifying the vast 

majority of Harapan symbols in the dataset. 

However, the results reported by the symbol 

classification module demonstrate that a 

combined object detection and classification 

approach are feasible.  

Future Work 

Our work identified several areas of potential 

future improvements and refinement. First, a 

Faster RCNN architecture trained with our 

active augmentation chain could be compared 

to the results output by Detecto trained without 

the active augmentation chain. Second, an 

attention mechanism such as VGG [27] 

employed in front of YOLO may serve to 

increase accuracy, precision, and recall in noisy 

images or images with more complex seals as 

attention mechanisms have been shown to 

increase accuracy in natural scene text detection 

[10] [11]. Third, the current approach could be 

adapted to feed cropped images or coordinate 

sets to an established OCR model such as 

Tesseract [28] for identification in conjunction 

with the Harappan font [29]. Fourth, additional 

affine transformations could be added to the 

active augmentation chain, such as 3-d Rotation 

and image cropping. Fifth, identifying methods 

of rotating bounding boxes and designing 

models to accept these rotated bounding boxes 

may help with preserving all truth labels when a 

rotation augmentation is performed. This is 

important because the small size of the dataset 

makes it important that all labels are preserved 

during an affine transformation. Currently, 

some of the labels are removed based on 

overlap with labels next to it. Rotating the 

labels with the original image would solve this 

problem. Finally, identifying methods for 

robustly training the model on a wider range of 

symbol classes will need to be found. Currently, 

the distribution of symbols classes in the 

dataset is too heavily weighted to a few, select 

symbol for the model to effectively learn 

representations for all the Harappan symbols. 

The simplest, but most difficult to implement, 

solution to this problem is to devise a 

“mechanical Turk” process that allows trained 

researchers in the field to label images of 

Harappan seals and tablets containing Indus 

Valley Characters.  
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