
1

Automatic Isolation and Identification of Indus Valley Script
Graphemes in Curated Images

Brad Costa

bcosta2017@my.fit.edu

Peter Thomas

pthomas2019@my.fit.edu

Abstract

Dating to as far back as 6000 B.C.E., the Indus Valley Civilization left behind a trove of artifacts that

have given us a captivating puzzle to solve. Arguably chief among these is the decipherment of the

Indus Valley Script. Being able to automatically identify, and eventually decipher Indus Valley Script

graphemes in a lab or field setting would be of great benefit to scholars who study this fascinating slice

of our human heritage. In this paper we present an investigation into the use of existing pretrained

models to automatically locate and identify Indus Valley Script graphemes in curated images of both

seals and stamps. We present a brief survey of applicable approaches to similar problems, preliminary

results evaluating the “Detecto” Faster R-CNN and YOLOv3, selection of, and experiments with the

YOLOv3 model, and finally we present the results, and discuss avenues for further experimentation.

Introduction

The Indus Valley Script (IVS) [1] remains a

fascinating and enigmatic piece of Indus Valley

Civilization (A.K.A. the Harappan Civilization)

[2]. Dating to c. 6000 B.C.E. this society of the

Indus River valley left tantalizing clues about

their lives and culture. Artifacts range from the

mundane to the unique. Once thought to be

exceptionally peaceful and egalitarian, scholars

are challenging many aspects of earlier held

archeological conclusions [3]. Although many

decipherments of the IVS have been put forth,

there remains no scholarly consensus as to the

meaning behind the graphemes that are known

to make up the script [4]. Being able to quickly

decipher the hundreds of seals and stamps this

civilization left would go a long way towards

our understanding of their culture. To help

facilitate the eventual decipherment and the

application of the resultant new understandings

of the IVS and the culture that spawned it, an

automated system that can quickly and reliably

identify IVS graphemes would greatly aid both

desk-bound research and, it is our hope

eventually, in-situ field work.

Literature Survey

We conducted a search of literature focusing on

combinations of terms such as Indus Valley

Script, Harappan, OCR, and grapheme.

Approaches developed by Google researchers

have shown encouraging results for the

detection of characters in natural scenes [5] [6].

However, these approaches did not resonate as

completely applicable as DistBelief is built on

massive clusters of CPU cores running training

against millions of images pulled from

Google’s immense Street View databases. We

also reviewed approaches to detection and

translation of Egyptian hieroglyphic characters

[7] [8]. Both approaches rely on the hieroglyphs

being divided in a rigid columnar structure and

therefore would most likely not translate well to

mostly linear structure of IVS stamps and seals.

Of particular interest for future investigation is

the use of attention mechanisms in similar

problems to first identify regions in images

where text is most likely present and then feed

that information into additional layers [9] [10]

[11]. An additional avenue for future research is

to utilize novel methods to draw bounding

boxes around detected graphemes [12] [13].

Researchers have also applied Markov models

to analyze the structure of the IVS with

mailto:bcosta2017@my.fit.edu
mailto:pthomas2019@my.fit.edu

Automatic Isolation and Identification Costa Thomas

2

interesting results [14]. Ultimately, we settled

on an initial investigation of the Detecto and

YOLOv3 models running on the PyTorch and

TensorFlow frameworks respectively [15] [16]

[17] [18]. YOLOv3 showed better initial results

and was selected for further experimentation.

Images

Source images of seals and stamps were taken

from several sources. Primarily the Indus Script

Dictionary [19] and with permission from

Harappa.com [20]. Additional some images

were pulled from National Geographic and

ISTC websites [21] [22]. All together we were

able to utilize 232 source images. To further

augment images for training and validation we

developed a configurable script that applies

various transformations to base images (See

§Data Augmentation). Bounding box data with

labels was then created in two sets. The first set

labeled all characters in the images as the single

class “grapheme.” The second set labeled each

grapheme with its corresponding Harappan

character code based on Everson’s proposed

Universal Multiple-Octet Coded Character Set

[23]. Each Harappan character code takes the

form HXXX, where XXX is the three-digit

sequential character number. Those characters

that did not appear in the abridged set (abridged

in relation to all known IVS graphemes) were

labeled as “grapheme” so they could be

included or excluded based on class-name

filtering at the time of training. For training

purposes, six images were chosen at random

from the set of those images that did not

contain a single appearance, in our overall set,

of a given grapheme.

Model Selection

Prior to sourcing the 232 images we evaluated

both the Detect-o and YOLOv3 models on an

initially limited set of 26 images, 22 for

training, and 4 for validation. The Detecto

model was trained 2000 iterations over 20

epochs while YOLOv3 was trained with 2500

iterations over 10 epochs. Results are shown

in . YOLOv3 was selected due to its slightly

better results and for the ease of code

implementation and execution.

Data Augmentation

While CNNs have impressive representational

power in computer vision, they require vast

amounts of training data to generalize well to

real-world examples. This can be problematic

for many object detection problems, as there is

a large cost associated with sourcing large sets

of annotated images. This is especially true

with the Harappa grapheme dataset. There are

only a limited number of sources to draw

images of Harappan symbols from (mostly

seals and tablets stored by museums). The total

number of objects displaying Harappan

graphemes around the world is less than ~5000,

well below the tens of thousands of images that

comprise typical landmark object detection

datasets such as COCO and Pascal VOC [24]

[25]. In addition, finding annotators who are

qualified to accurately label the data is difficult.

Unlike with PASCAL VOC and COCO, which

contain mostly common place objects, there are

only a few qualified experts around the world

who have the knowledge and expertise needed

to identify these symbols. Even for a simple

detection task that does not seek to positively

identify each character, it can still be difficult

for an amateur annotator to differentiate what

portion of the seal forms the grapheme and

what is an engraving or damage. This makes

data annotations for the Harrapan dataset prone

to error, and noise that we can be ill-afforded

with such a small sample of images to train

from.

Data augmentation is a technique in machine

learning for artificially expanding the training

set so that it can better represent the distribution

of real-world data the model has yet to see.

With data augmentation, already collected

examples in the training set are modified with

some augmentation policy to subtly alter the

content of the original image. These types of

augmentations typically come in two flavors.

One is altering the pixel content of the image

by changing the saturation, bloom, or color of

Automatic Isolation and Identification Costa Thomas

3

Figure 1: Detecto and YOLOv3 Initial Results

the original image, as well as applying noise

filters that change the pixel values of the image

with some predefined random distribution,

typically, Gaussian. The other type of

augmentation category is affine transformation,

such as image rotation, translation, scaling,

cropping, and flipping the image around an axis

[26]. With image classification tasks, where the

labels are not tied to any position in the original

image, automatic data augmentation is simple.

The image can be altered without fear of also

changing the intended label. With object

detection tasks, however, augmentation is more

difficult. Applying affine transformations to the

image without also changing the bounding box

labels accordingly will result in an unusable

image.

It is possible to use hand-cranked methods to

apply data augmentation, such as using a

human labeler to apply the same set of

bounding boxes in a rotated image. However,

this does not scale well to larger applications. It

became evident early on that hand-labeled data

augmentation would be insufficient to generate

the large set of training needed to represent the

space of all image configurations in our

Harappan grapheme dataset.

To handle the expanded set of hand labeled

Harappan images as well as to scale for any

additional examples that may be added to the

dataset later, a data generator that applies

pixel and affine transformations automatically

was developed. The data generator can accept

any number of images at any size. In addition,

it is capable of handling both color and

grayscale imagery. During training, images are

read from disk as needed by the data generator.

The generator then automatically applies a set

of randomized augmentation policies to the

image. Because the augmentations and the

necessary label adjustments are generated

automatically, there is no limit to the number of

training instances that can be produced by the

generator. However, there is a limit to the

number of representations that are realizable

using the transforms listed here, and one must

take care that they do not generate a series of

images that are too like each other while using

the generator. The full set of augmentation

policies used by the data generator are listed

below with examples provided in Error!

Reference source not found. and

Figure 3.

Automatic Isolation and Identification Costa Thomas

4

Pixel Value Transforms

1. Noise Filters

2. Saturation

3. Bloom

4. Contrast

Affine Transformations

1. Rotation (-45 ˚ - 45˚)

2. Scaling

3. Translation (Up to
1

8
 of either x or y-dim

of image)

Figure 2: Pixel Augmentations

The bottom row has pixel-level transforms on them, while the top row is the untransformed original

image. The bottom image on the left had a Gaussian noise filter applied, while the right had a series of

different saturation, bloom and coloring effects applied.

Automatic Isolation and Identification Costa Thomas

5

Figure 3: Affine Transformations

As with Error! Reference source not found., the top row consists of unaltered images, while the

bottom images have selected affine transformation applied to them. The left column represents a

scaling transform, the middle a rotation transform, and the right a translation transform.

Automatic Isolation and Identification Costa Thomas

6

While developing the data and augmentation

generator, efforts had to be made to ensure that

any augmentation that was applied was

consistent with the domain of Harappa

graphemes that are likely to be encountered in

the real world. This limited the scope of

augmentation techniques that could be applied.

In particular, the orientation of the symbols

themselves are intrinsic to their meaning.

Mirror reflections of symbols, therefore, are

ruled out, as are extreme rotation transforms

(e.g., a 90° transform). The rotation transform

also has the potential of rotating graphemes

outside of the dimensions of the original image,

making those bounding box labels useless. A

function that removed bounding boxes that bled

out of the image by more than a third of their

area was used to remove labels in this category.

In addition, model constraints were also a factor

in how augmentations were applied. For

example, when a rotation transform is applied

to an image, ideally one would also apply the

same transform to the bounding boxes so that

they information content of the bounding box

matched that of the original image. However,

the model we used to perform the object

detection task, YOLOv3, uses a set of anchor

boxes to inform predictions that are generated

under the assumption that the image they are

being applied to is not rotated. Therefore, the

hypothesis generated by YOLOv3 is unable to

represent rotated bounding boxes.

We dealt with this by keeping the bounding

boxes parallel with the y-axis of the original

image. To do so, the minimum and maximum

values for both the x and y dimension of the

box were chosen to generate a new, enlarged

bounding box that was able to cover all the

original grapheme. This is not ideal, as the

resultant bounding boxes also cover other

features in the image that do not relate to the

grapheme. In addition, the enlarged bounding

boxes that were generated in this fashion tended

to overlap with each other, sometimes to a great

degree. It was feared that this might induce

some level of confusion in the model. The

representations it learned might overlap

multiple graphemes, resulting in single

detections covering multiple graphemes instead

of keeping them separate, which was desired.

The decision was made to apply non-max

suppression to rotated bounding boxes based on

Intersection-over-Union with their neighboring

bounding boxes, removing bounding boxes that

overlapped too much with each other. This

solution is also non-ideal, as some of the

symbols in the rotated image will not have an

associated bounding box attached to them

during training. Future research could explore

this problem by using or creating a model that

is effectively able to represent bounding boxes

in a rotated space.

Precision and Recall

While we initially utilized validation loss in our

initial model selection, validation loss cannot

be used as a metric to quantify the model’s

performance at a given detection task. The

validation loss provides some information into

how the model improves in performance as it is

exposed to more images during training, it

cannot be used to compare the performance of

the model at the given detection task with other

approaches. The loss function used by the

model is inherent to the model itself. This loss

function will differ with a model’s architecture,

as different models will optimize different

parameters to perform the same task.

Comparing a model’s validation loss with

another is, therefore, unproductive. We need

another set of metrics to provide a meaningful

measure of the model’s performance at the

detection task. This set of metrics is the

precision and recall of the model.

Precision is the ratio of true positives that the

model generates over the entire set of positive

predictions provided by the model. Positives

correspond to bounding boxes output by the

model that are deemed with some degree of

confidence to contain an object of interest

(OoI). True positives are positive predictions

that correspond with a real OoI in the image.

Automatic Isolation and Identification Costa Thomas

7

False positives are positive predictions that do

not contain a real object of interest in them. The

ratio of true positives to the total number of

positives generated by the model provides a

measure of “trust” in the predictions made by

the model. A high ratio, or precision, means that

most of the predictions made by the model are

accurate. Conversely, a low precision means

that the model generates false predictions at a

high frequency relative to true predictions.

Recall is a closely related metric that measures

the model’s ability to detect all the real OoI’s in

the image. Recall is defined as the ratio of true

positives over the sum of true positives and

false negatives generated by the model.

Negatives are bounding boxes that fall below

the confidence threshold required to rate it a

positive. They are therefore deemed to not

contain an OoI. False negatives are therefore

the bounding boxes that are deemed to be

negative that contain an OoI in them. A model

with high recall will therefore detect most of

the real OoI’s in the image with a high

probability. Conversely, a model with low recall

will detect few of the real OoI’s in the image.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑝

𝑇𝑝+𝐹𝑝
 (1)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑝

𝑇𝑝+𝐹𝑛
 (2)

where:

 𝑇𝑝 =True Positives

 𝐹𝑝 = False Positives

 𝐹𝑛 = False Negatives

At the heart of both metrics is the determination

of what predictions the model deems to be

positive or negative. This determination is

controlled by the confidence threshold set by

the user. For each prediction made by the

model, an associated confidence score is

assigned to the box that corresponds to the

probability that the bounding box contains an

actual OoI based on the probability distribution

learned by the model. Predictions with

confidence scores below the threshold are

determined to be negatives, while those above

the thresholds are deemed to be positives.

Setting a high confidence threshold will

therefore reduce the number of positive

predictions made by the model, increasing the

probability that an OoI will not be detected.

Lowering the threshold increases the chance

that all OoI’s are detected, but at the cost of

inducing false detections that contain nothing of

interest.

We desire a model that provides both a high

precision and high recall. However, a model’s

performance in one metric is usually inversely

proportional to its performance in the other. As

the model’s recall improves, the precision will

tend to degrade, and vice-versa. As both metrics

are functions of the confidence threshold, we

can increase one or the other by raising or

lowering the confidence threshold.

Unlike other OCR tasks, the background of a

typical sequence of IVS graphemes can contain

other features like those exhibited by the

symbols that we want to detect, such as animal

or human pictographs. This complicates the

recognition task, as there is a possibility that the

features that the model learns are also common

to the other etchings on the seal or stamp,

inducing a degree of confusion that increases

the chance that the model will output a false

positive. It is important that we can quantify the

tendency of the model to produce false

positives during detection.

YOLOv3

YOLOv3 is an object detection model that uses

a convolutional neural network feature

extractor with a fully connected layer prediction

head at the end that output scaling factors for

anchors to generate bounding boxes, object

confidence values, and class scores. What

distinguishes this model from its previous

iterations (YOLOv1 and v2) is the Darknet

feature extractor that forms the front end of the

model [16]. Darknet has 53 convolutional

layers and a fully connected layer at the end.

Automatic Isolation and Identification Costa Thomas

8

Figure 4: Darknet-53 Layers

While Darknet’s classification performance

tends to be lower than other state of the art

feature extractors such as Resnet-101 and

Resnet-152 [16], it still performs well on most

classification metrics. More importantly, it

contains fewer layers and, thus, fewer

parameters than either Resnet-101 or -152. This

makes it better suited for deployment as the

backbone of an object detection model being

used on an embedded system or other

environment with a constrained memory

footprint, such as a mobile phone. As the

envisioned end goal of this project is to deploy

an inference model to a mobile device (perhaps

with a symbol classifier on the backend that

accepts the cropped bounding boxes of the

inference model and outputs classifications),

the end state deployment environment was a

factor that needed to be considered when

choosing our model.

Yolov3 is like other state of the art object

detection models in that, instead of generating

new bounding boxes for images, it uses a set of

prior boxes generated before training begins.

The output of the model adjusts those priors to

generate its prediction bounding boxes. This

simplifies the detection task. Instead of having

to localize and generate a bounding box of

appropriate size to fit the object detection, the

network must learn to localize the OoI and

apply regressions to the provided anchor boxes.

To generate these anchors, YOLOv3 divides

input imagery into a grid of equally sized cells

at three different scales. Taking the bounding

boxes from the training set, a K-means

clustering algorithm is used to form clusters of

truth boxes based on their dimensions. The

three different scales of anchor size are based

on the clusters generated by the K-means

algorithm.

The object confidence values are a measure of

the probability that a bounding box contains an

object of interest based on the underlying

probability distribution learned by the model.

The confidence threshold at which a bounding

box is said to be a “positive” (i.e., a detection

by the model) is a value set by the user when

post processing the predictions of the model. If

we set the confidence threshold low, we’ll

increase the likelihood that all of the objects of

interest in the image will be detected. However,

a low confidence threshold also induces a risk

that we will accept bounding boxes that do not

contain an OoI in them (or a “false positive”).

Conversely, if we raise the confidence

threshold, we will the probability of generating

false positives goes down, but we lower the

probability that we will detect all the objects in

the image. This is a tradeoff that the model

implementer and end user need to consider

when using the trained model during inference.

Yolov3 has faster training times for models of

similar detection performance. The model

divides input images into different regions and

outputs objectness scores to each of those

regions with predicted regressions and classes.

Non-max suppression is applied to the set of

bounding boxes and predictions that have

higher IOU are removed based on which

prediction has the lower objectness score.

Automatic Isolation and Identification Costa Thomas

9

Unlike other benchmark object detection

models like Faster-RCNN, YOLOv3 does not

use any region proposal network to make its

predictions. Each input only makes a single

forward propagation through the network.

Because there is only one pass, YOLOv3 trains

faster than other models of comparable

detection performance. Class predictions for the

model are made with independent logistic

classifiers.

Training

YOLOv3 was trained for 40 epochs with 232

training images augmented to 5000 with the

active augmentation chain. An initial learning

rate of 1e-4 was used. During training, this

learning rate was slowly tapered off to a final

learning rate of 1e-6. This was so that, as the

model approached convergence, we could slow

the training of the model so that an optimum

local maxima could be identified. Validation

was performed on 13 images. This set of

imagery was not augmented to provide a good

baseline of the model’s performance on the

dataset as-is. Precision and recall curves were

generated for the validation set of imagery at

each epoch of training to give a good indication

of the progress of the model’s performance at

the object detection task.

Three different model configurations were

trained. First, the model was trained on a set of

weights initialized with a random normal

distribution centered around 0.0 with a standard

deviation of 0.01. The input data to this model

was the set of augmented training images with

three color channels. This model was the

baseline configuration (henceforth referred to

as the “baseline” model). Performance in this

configuration should give a good idea of

YOLOv3's suitability for the problem. Second,

a model was trained with the input imagery

converted to grayscale. This was to lower the

dimensionality of the input space and,

therefore, reduce the number of features that the

model needed to learn. It was hypothesized that

the most salient features that need to be learned

for grapheme detection would be contained

within the spatial dimensions of the image

rather than the color channels. Humans identify

different graphemes based on their shape, not

their color. Furthermore, the identity and

information conveyed by graphemes in the

image do not change when the image is

rendered in grayscale. Reducing the complexity

of the detection problem by removing the color

channels could outweigh the information lost

from doing so. To test this hypothesis, we

trained a model using grayscale imagery. All

other training hyperparameters were identical to

those used with the color model described

above.

 Finally, the model was trained with a set of

weights provided by the model developer that

had been pre-trained on the COCO dataset. The

COCO dataset consists of over 200,000 labeled

images that display objects from 80 different

object categories. Most of these categories are

everyday objects such as vehicles, animals, and

household items. This method of transfer

learning can help improve the performance of

object detection models on small datasets such

as the IVC dataset. The idea is that the model

learns general features of objects of interest in

imagery that can help the model even when

identifying object classes that it has never seen

before. This can improve the performance of

the model over a model that has to learn all

features needed to identify objects of interest

from scratch. It should be noted that there is

little cross-over between the domain of IVC

graphemes and the objects of interest in the

COCO dataset. Using the pre-trained COCO

weights did increase the object detection

performance of our model, but it is possible that

there are other datasets that could be used that

exhibit features closer to the ones that we wish

to identify in the IVC dataset. One possible

candidate is the Street View House Numbers

(SVHN) dataset, a landmark dataset that

formed the foundation of early research in the

use of Convolutional Neural Networks in

Optical Character Recognition. The difference

in dimensionality between the IVC and SVHN

datasets would have to be bridged in some way

(SVHN images are only 32x32, while the

Automatic Isolation and Identification Costa Thomas

10

average image in the IVC dataset is 400x400),

but, if we could overcome the gap in input-

space dimensions, the features learned training

on the SVHN image set may transfer more

effectively to the IVC detection problem. In any

case, the model that was trained with the

COCO pre-trained weights performed

significantly better than the other two

configurations, demonstrating that transfer

learning will be a critical component of

developing an IVC detector that is able to

recognize graphemes with the precision needed

for researchers in the field. This is even more

important if we wish to train the model to not

only recognize the broad class of IVC

graphemes, but also the individual characters

themselves.

Figure 5: Training (left) and Validation (right)

losses for the baseline model.

Note that training had reached convergence at

around epoch 20. This was consistent with the

observed training behavior in Detecto as well. It

is unlikely that there is any benefit for training

greater than 25 epochs (though this might

change should more labeled data become

available).

Figure 6: Training (left) and Validation (right)

losses for the Grayscale model.

It was hard to track the progress of the

grayscale model during validation, as the loss

function began to report NaN values halfway

through training. We have not found a

definitive reason for why this might be the case.

However, the convolutional layers of the

detection head for YOLOv3 use leak-Rectified

Linear Unit (ReLU) activation functions, which

are prone to cause NaN values if untuned. This

is because the gradient for a ReLU function is

always one for inputs greater than zero.

Depending on the kernel weights for the filters

of the convolutional layers, this can cause the

backpropagated gradient to “explode” (I.e.,

exponentially trend to infinity or negative

infinity), resulting in “dead weights” in the

network that prevent the model from improving

its learned representation any further. It is

possible that the model was tuned to work

specifically with colored imagery and given the

same set of hyperparameters for grayscale

imagery, will result in early onset of dead

weights. Lowering the learning rate by a factor

of 10 (so to 1e-5) should help rectify this

problem.

Automatic Isolation and Identification Costa Thomas

11

Figure 7: Training (left) and Validation (right)

for model trained with COCO weights.

The model with pretrained weights takes longer

to reach convergence than the baseline model.

This is possibly because it was still extracting

salient features from the imagery where the

baseline model was unable to do so.

Results

Figure 8: Precision-Recall curves for baseline

model (left) and grayscale model (right) for

best epoch of training (epoch 22 for baseline

model and epoch 20 for grayscale).

Figure 9: Precision-Recall curve for model

pretrained with COCO for best epoch of

training (epoch 20)

To produce the precision and recall curves for

each model, the precision and recall for each

validation image were calculated over a range

Automatic Isolation and Identification Costa Thomas

12

of confidence values from a set of 11 equally

spaced intervals in the range [0.0, 1.0]. These

calculations not only generated precision and

recall for each model, but also the number of

true positives, false positives, and false

negatives that were generated. Based on the

precision and recall curves generated for each

model, the best epoch for training could be

determined based on the area under the curve.

The greater the area under the curve, the higher

the precision of the model over all values of

recall and, thus, the better the model was at

keeping the number of generated false positives

low while simultaneously detecting all the truth

objects in the image.

It should be noted that, due to the lack of data

available for the validation portion of model

training, it was impossible to generate

continuous precision-recall curves. This makes

it difficult to definitively determine which

model performed the best based on precision

and recall alone. The outliers in the validation

set could skew the precision and recall in a

fashion that is not representative of the

distribution of the real-world data.

Nevertheless, general trends could still be

determined from the precision and recall

displayed by the models during all epochs of

training that allowed us to determine which

model performed the best at the task.

The best precision and recall curves were

selected from each model during training based

on area under the curve to determine which

epoch demonstrated the model’s best

performance. It was found that the best epoch

for the COCO model and the grayscale model

was epoch 20, while, for the color model, the

best epoch was 22. The precision and recall

curves for those epochs of training are

displayed in Figure 8 and Figure 9.

Based on the statistics charted by these curves,

the COCO model had the best performance on

the object detection task. It had a consistently

high precision over all values of recall, which

can be seen in its PR-curve (Figure 9). The

precision for the model only began to decrease

after a recall value of 0.8. This can be

interpreted as “the model will produce mostly

true detections while detecting, on average,

80% of the objects in the image”. If we want to

increase the detection probability by lowering

the confidence threshold, we risk generating

false positives after this point. The detection

performance of the COCO model can be

attributed to the domain knowledge that it had

learned previously when training on COCO,

which seems to transfer over to the domain of

IVC graphemes well. As noted earlier, this

would indicate that transfer learning is probably

the most lucrative avenue to pursue when

improve performance on the detection task.

Another result of note is that the grayscale

model seemed to outperform the baseline

model. Though both models had, on average, a

lower precision than the COCO model (I.e.,

were generating more false positives during

validation), the grayscale model maintained a

higher precision over a greater range of recall

values than the color model. This was true even

after the validation losses of the grayscale

model began to produce NaN values, showing

that, even with the dead weights in the gray

scale model, the model’s representation of the

detection task was still more precise with the

color model. This should be improved with

hyperparameter tuning to prevent the spread of

dead weights in the grayscale model. This

seems to be clear evidence that there are

performance gains to be had in lowering the

input dimensions of the problem by removing

the color channels. Based on this and the

performance of the model trained with COCO

weights, an approach that could be tried to

further improve the detection performance of

the model is to perform transfer learning on a

dataset closer to the domain of IVC graphemes

(potentially the SVHN dataset mentioned

earlier) and cast the instances of that dataset

into grayscale as well.

Comparison with Detecto Approach

For the final comparison between our approach

with YOLOv3 with the actively generated

augmentation chain and last semester’s

Automatic Isolation and Identification Costa Thomas

13

approach using Detector (Faster-RCNN with

Resnet 50 feature extractor), we trained the

Detecto model for 20 epochs on our expanded

training dataset as well as the augmented data

that was in the previous semester’s dataset (we

were unable to apply our augmentation chain to

Detecto training, as its model architecture is

implemented in PyTorch while ours is in

TensorFlow) and collected metrics on the 13

images in the expanded validation set. The

validation set contained 73 ground truth

bounding boxes in total. Each model’s ability to

output a prediction that corresponding with

each of these boxes (true positives) was

measured as well as any boxes the model

produced that did not match a corresponding

truth object in the image (false positives). The

confidence score and the IOU threshold for

both models was set at the same value, 0.5. We

found that Detecto outperformed our model in

all metrics of object detection. Furthermore, it

seems that Detecto, even without the active

augmented training data, was able to generate

accurate predictions for data that it had never

seen before (i.e., unlabeled data that we

collected off the internet).

 Truth

Object

False Object

Detected 108 0

Undetected 0 N/A
Table 1: Detecto’s Detections vs Truth Boxes.

The rows correspond to whether the model

detected an object, while the columns

correspond to whether the detection

corresponded with a truth object or not. The top

left cell is the number of True Positives, the top

right cell is the number of false negatives, and

the bottom left cell is false positives (the

bottom right cell, true negatives, cannot be

measured in an object detection model, as all

portions of the image that do not contain a

prediction would be counted as a false

negative). Impressively, Detecto was able to

generate predictions for all of the truth boxes in

the validation set. In addition, it was able to do

so without generating any false positives.

It is worth noting that, in Detecto’s and

YOLO’s metrics, the number of true positives

will be higher than the true number of objects

in the images because overlapping detections

will both be treated as true or false positives by

the metrics module. A simple fix is to not only

compare IOUs between the truth boxes, but to

also compare IOUs between other predictions

so that those predictions can be removed before

metrics values are calculated, perhaps with non-

max suppression.

This is not entirely unexpected. Detecto’s

Resnet feature extractor has more parameters

than Darknet and is capable of learning more

complex representations of the problem

domain. In addition, Faster R-CNN splits the

detection problem into two components: 1.

Region Proposal Generation to localize

locations of interest in the image, and 2. Object

Classification and Regression to generate more

accurate predictions for the identified object

class [34]. What was surprising was that

Detecto was able to outperform our model even

with the actively augmented training data.

There are two reasons for why this might be the

case. One is, as mentioned earlier, a more

accurate representation of the problem domain

can be learned by the Faster R-CNN model.

The other is that, since the augmented data used

by the Detecto group was hand labeled, a

higher proportion of labels were conserved after

the affine transformation was applied and the

labels that were preserved were of a higher

fidelity than those that were automatically

generated. We would still recommend

(admittedly, with some bias) using our data

augmentation approach going forward. It is

easily scalable and can handle new data

instances more effectively than the hand labeled

approach. In addition, it is easier to generate

new affine transformations and apply them to

the data pipeline with our approach. However,

there is room for improvement. Methods for

applying higher fidelity labels could be

investigated. One method that could be

explored is using a different bounding box

coordinate scheme (possibly using an additional

bounding box parameter, ϴ, which measures

Automatic Isolation and Identification Costa Thomas

14

the angle of the center line of the bounding box

from the y-axis). Most of the standard object

detection models in use today cannot be used to

learn representations using this bounding box

coordinate scheme. Many of the standard

models (YOLO, Faster R-CNN, and Single

Shot Detector (SSD)) use anchor boxes like the

ones mentioned during our description of

YOLOv3. While these anchor boxes help the

model perform the object detection task, it also

restricts the possible representations the model

can learn. One approach that could be tried is to

use a convolutional neural network architecture

to output regression values for the rotated

bounding box. In practice, this approach tends

to result to inaccurate results due to the

sensitivity of the angle prediction.

the showing that further research into using the

Faster-RCNN architecture as a grapheme-

detector may be worth looking into. This

research would have to also examine the

tradeoffs for the longer training times for

Faster-RCNN as well as the larger number of

parameters that would need to be stored in

memory when performing inference with the

model, an important factor to consider when

deploying the model to a constrained memory

environment.

 Truth Object False Object

Detected 305 26

Undetected 21 N/A

Table 2: YOLOv3’s Detections vs Truth Boxes.

In contrast to Detecto, YOLOv3 generates

many predictions at a much lower confidence,

resulting in many overlapping true positives. In

addition, YOLOv3 is more prone to generating

false positives and misses more of the truth

boxes than Detecto. The conclusion is that a

Faster R-CNN architecture would provide both

a higher precision and recall for the detection

problem than YOLOv3. Adding a Faster R-

CNN architecture from the TensorFlow model

API could be a next step.

Symbol Class Results

After statistics had been gathered for the object

detection models, an additional YOLOv3 model

was trained on the set of images that had been

labeled with the symbol’s classes given by

Everson [23]. In total, there were 185 symbol

classes that covered most of the graphemes in

the image (those that were not assigned a

specific symbol class were assigned to the

general class “grapheme”). In total, there were

1265 different instances in the training set and

34 instances in the validation set. Most of the

symbol classes in the data consisted of a

singleton, and only a handful had more than ten

instances. Q naïve approach was attempted by

our model which tried to learn on the whole set

of 185 symbol classes to provide a baseline for

future detection and classification efforts. A

more refined approach in the future could select

only those symbols that appear a statistically

significant number of times in the dataset.

Despite these limitations, those class instances

that did show appear in the dataset were

identified with YOLOv3 with a surprisingly

high precision. The exception to this is

“grapheme”, as this was an overarching

category encompassing many different symbols

exhibiting a range of features that overlapped

highly with other symbol categories.

Automatic Isolation and Identification Costa Thomas

15

Figure 10: Distribution of symbol instances in the dataset.

Most symbol instances appeared only once in the training dataset. Augmentation helps this somewhat,

but not to a degree necessary to recognize low frequency data with any kind of precision. The class

instances that appeared most frequently in the data, most notably ‘H311’ (116 instances in the dataset),

‘H127’ (72 instances in the dataset) are labeled with relatively high precision.

Symbol ID Appearances in the Training Dataset

H311 116

H127 72

“grapheme” 44

H060 44

H148 38

H376 37

H091 36

H070 31

H189 30

H368 27

Table 3: Ten most common classes that appeared in the training dataset and the number of times they

appear.

The YOLOv3 COCO configuration was selected for the classification task due to its performance on

the object detection task. All training configurations were kept the same between the classification

model and the detection model, with the only difference being the addition of the symbol classes in the

dataset and the reduction of epochs from 40 to 30. Additionally, the configurations for the

augmentation pipeline for the training of this model was the same as with the previous models.

Automatic Isolation and Identification Costa Thomas

16

Figure 11: Training loss (left) and validation loss (right) for the YOLOv3 model trained on symbol

classes.

It should be noted that the model seems to reach convergence at a much later stage than when it was

performing object detection, due to the increased complexity of the task. Running for the full 40 epochs

for the next set of training runs may give us a better picture of when the model reaches the desired

optimum.

The resulting model fails to identify most of the symbol classes in the image. However, the few symbol

classes that appeared in the dataset with a frequency are classified with surprising accuracy. It is

important to caveat this statement, however. The metrics we used to evaluate the model’s performance

on the symbol classes were only gathered on the validation set, which consisted of only six images,

insufficient to provide a full picture of the model’s performance on the set of real-world IVC imagery.

What the metrics do show is that there is potential for the detection and the classification tasks to be

performed simultaneously, given enough data instances. As noted, transfer learning on a related dataset

(SVHN) should help performance in this area tremendously.

The metrics used to evaluate the performance of the model were the number of true positives, false

positives, and false negatives the model generated while performing the detection task. This analysis

was constrained to the ten symbol classes that appeared in the training dataset with the highest

frequency (given in figure 13). The confidence threshold used to classify a model’s detection as a

‘positive’ was set at 0.5, as with the detection task, and the IOU threshold that was used to determine

whether a detection should be classified as a ‘True Positive’ was set at 0.5. Here are the results for the

ten classes:

 Truth Object False Object

Detected 25 0

Not Detected 0 N/A

Table 4: Detection results for symbol class H311.

As with the detection task, the rows coincide with a model detection, while the columns correspond to

whether there was a truth object at the site of the detection or not. The top left cell consists of True

Positives, the top right cell False Positives, the bottom left cell False Negatives, and the bottom right

true negatives. Based on these results, the model successfully detected all of the H311 symbols in the

validation set and generated no false detections for this symbol class.

 Truth Object False Object

Detected 6 0

Not Detected 0 N/A

Table 5: Detections for Symbol H127

Automatic Isolation and Identification Costa Thomas

17

 Truth Object False Object

Detected 12 1

Not Detected 0 N/A

Table 6: Detections for class “Grapheme”

 Truth Object False Object

Detected 6 0

Not Detected 0 N/A

Table 7: Detections for Symbol H060

 Truth Object False Object

Detected 13 0

Not Detected 0 N/A

Table 8: Detections for Symbol H148

 Truth Object False Object

Detected 6 0

Not Detected 0 N/A

Table 9: Detections for Symbol H148

 Truth Object False Object

Detected 8 0

Not Detected 0 N/A

Table 10: Detections for Symbol H148

The other three symbols (H070, H189, and H368) were not present in the validation dataset.

As can be seen, the symbols that appeared with a high frequency in the training dataset were detected

by YOLOv3 with a high precision (Note: Some of the numbers reported here are repeat detections,

which is the same bug as was present in the object detection module. To report an accurate result, non-

max suppression should be applied on the predicted bounding boxes to reduce the chance of repeat

detection). This provides some confidence that an object detection model like YOLOv3 (and Faster R-

CNN, if it were trained on the same dataset) could be used to also perform classification on high

frequency graphemes with a high degree of accuracy.

Conclusion

In this paper we presented YOLOv3 as

candidate model for the identification and

classification of Indus Valley Script graphemes

in curated images. We utilized 232 source

images of Indus Valley Script seals and stamps.

Further, we augmented the dataset with a

custom data generator that applies a

configurable set of pixel augmentations and

affine transformations to create thousands of

training images. In spite of this active

augmentation chain, YOLOv3 still performed at

worse at the object detection task than Detecto,

showing that the Faster-RCNN architecture is

better suited to identifying Indus Valley

Graphemes than YOLOv3. It also revealed that

our current data augmentation pipeline was not

rigorous enough to overcome the greater

detection power of the Faster R-CNN model.

Efforts to produce higher fidelity labels will

need to be considered when making

refinements to the automated augmentation

pipeline. In addition, while YOLOv3 was able

to detect some, select symbol classes with high

Automatic Isolation and Identification Costa Thomas

18

precision, it suffered at identifying the vast

majority of Harapan symbols in the dataset.

However, the results reported by the symbol

classification module demonstrate that a

combined object detection and classification

approach are feasible.

Future Work

Our work identified several areas of potential

future improvements and refinement. First, a

Faster RCNN architecture trained with our

active augmentation chain could be compared

to the results output by Detecto trained without

the active augmentation chain. Second, an

attention mechanism such as VGG [27]

employed in front of YOLO may serve to

increase accuracy, precision, and recall in noisy

images or images with more complex seals as

attention mechanisms have been shown to

increase accuracy in natural scene text detection

[10] [11]. Third, the current approach could be

adapted to feed cropped images or coordinate

sets to an established OCR model such as

Tesseract [28] for identification in conjunction

with the Harappan font [29]. Fourth, additional

affine transformations could be added to the

active augmentation chain, such as 3-d Rotation

and image cropping. Fifth, identifying methods

of rotating bounding boxes and designing

models to accept these rotated bounding boxes

may help with preserving all truth labels when a

rotation augmentation is performed. This is

important because the small size of the dataset

makes it important that all labels are preserved

during an affine transformation. Currently,

some of the labels are removed based on

overlap with labels next to it. Rotating the

labels with the original image would solve this

problem. Finally, identifying methods for

robustly training the model on a wider range of

symbol classes will need to be found. Currently,

the distribution of symbols classes in the

dataset is too heavily weighted to a few, select

symbol for the model to effectively learn

representations for all the Harappan symbols.

The simplest, but most difficult to implement,

solution to this problem is to devise a

“mechanical Turk” process that allows trained

researchers in the field to label images of

Harappan seals and tablets containing Indus

Valley Characters.

Automatic Isolation and Identification Costa Thomas

19

References

[1] W. contributors, "Indus script," Wikipedia, The Free Encyclopedia., 20 April 2021. [Online].

Available: https://en.wikipedia.org/w/index.php?title=Indus_script&oldid=1018936730.

[Accessed 21 April 2021].

[2] W. contributors, "Indus Valley Civilisation," Wikipedia, The Free Encyclopedia., 14 April 2021.

[Online]. Available:

https://en.wikipedia.org/w/index.php?title=Indus_Valley_Civilisation&oldid=1017685693.

[Accessed 21 April 2021].

[3] E. Cork, "Peaceful Harappans? Reviewing the evidence for the absence of warfare in the Indus

Civilisation of north-west India and Pakistan (c. 2500-1900 BC).," Antiquity, vol. 79, no. 304, p.

411+, 2005.

[4] M. S. Sharma, "Why we still can't crack the Indus script.," The Times of India, p. N/A, 9 February

2020.

[5] I. J. Goodfellow, Y. Bulatov, J. Ibarz, S. Arnoud and V. Shet, "Multi-digit Number Recognition

from Street View Imagery using Deep Convolutional Neural Networks," 2013.

[6] J. Dean, G. S. Corrado, R. Monga, K. Chen, M. Devin, Q. V. Le, M. Z. Mao, M. Ranzato, A.

Senior, P. Tucker, K. Yang and A. y. Ng, "Large Scale Distributed Deep Networks," in Advances

in Neural Information Processing Systems 25, Lake Tahoe, 2012.

[7] R. Elnabawy, R. Elias and M. A.-M. Salem, "Image Based Hieroglyphic Character Recognition,"

in 14th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS),

Las Palmas de Gran Canaria, Spain, 2018.

[8] R. Elnabawy, R. Elias, M. A.-M. Salem and S. Abdennadher, "Extending Gardiner’s code for

Hieroglyphic," Multimedia Tools and Applications, vol. 80, p. 3391–3408, 2021.

[9] J. Ba, V. Mnih and K. Kavukcuo, "Multiple Object Recognition with Visual Attention.," in ICLR,

San Diego, 2015.

[10] L. Dong, D. Zhou and H. Liu, "A Weakly Supervised Text Detection Based on Attention

Mechanism," in 10th International Conference, ICIG, Beijing, China, 2019.

[11] W. Li, K. Liu, L. Zhang and F. Cheng, "Object detection based on an adaptive attention

mechanism.," Scientific Reports, vol. 10, no. 1, p. N/A, 1 December 2020.

[12] P. Keserwani, A. Dhankha, R. Saini and P. P. Roy, "Quadbox: Quadrilateral Bounding Box

Based," IEEE Access, vol. 9, pp. 36802-36818, 2021.

[13] Z. Zhong, L. Sun and Q. Huo, "An Anchor-Free Region Proposal Network for Faster R-CNN

based Text Detection," International Journal on Document Analysis and Recognition, vol. 22, no.

3, pp. 315-327, 2019.

[14] R. P. N. Rao, N. Yadav, M. N. Vahia, H. Joglekar, R. Adhikari and I. Mahadevan, "A Markov

model of the Indus script," Proceedings of the National Academy of Sciences of the United States

of America, vol. 106, no. 33, pp. 13685-13690, 2009.

[15] A. Bi, "detecto," [Online]. Available: https://pypi.org/project/detecto/. [Accessed 2021].

[16] J. Redmon and A. Farhadi, "YOLOv3: An Incremental Improvement," ArXiv CoRR, vol.

abs/1804.02767, p. N/A, 2018.

[17] T. Contributors, PyTorch, 2019.

Automatic Isolation and Identification Costa Thomas

20

[18] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean,

M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, R. Jozefowicz, Y. Jia and L,

TensorFlow: A System for Large-Scale Machine Learning, 2015.

[19] S. M. Sullivan, Indus Script Dictionary, Suzanne Redalia.

[20] O. Khan, J. Turner, I. Aronovsky, M. W. Iqbal, V. Dave, N. Zubair and A. Bhandari,

"Harappa.com," [Online]. Available: https://www.harappa.com/. [Accessed 2021].

[21] "Revealing India and Pakistan’s Ancient Art and Inventions," National Geographic, 17 April

2013. [Online]. Available: https://blog.nationalgeographic.org/2013/04/17/revealing-india-and-

pakistans-ancient-art-and-inventions/. [Accessed 2021].

[22] "Grade 5 Discovers 5000 Years Old Artefacts!," International School of Turks & Caicos, 30

January 2013. [Online]. Available: http://www.internationalschooltci.com/grade-5-discovers-

5000-years-old-artefacts/. [Accessed 2021].

[23] M. Everson, Proposal for encoding the Indus script in Plane 1 of the UCS, ISO/IEC, 1999.

[24] T.-Y. Lin, G. Patterson, M. R. Ronchi, Y. Cui, M. Maire, S. Belongie, L. Bourdev, R. Girshick, J.

Hays, P. Perona, D. Ramanan, L. Zitnick and P. Dollar, "COCO Dataset 2020," 2020. [Online].

Available: https://cocodataset.org/#home. [Accessed 2021].

[25] Deep AI, Inc., "Pascal VOC Dataset," Deep AI, Inc., 2012. [Online]. Available:

https://deepai.org/dataset/pascal-voc. [Accessed 2021].

[26] B. Zoph, E. D. Cubuk, G. Ghiasi, T.-Y. Lin, J. Shlens and Q. V. Le, "Learning Data Augmentation

Strategies for Object Detection," 2019.

[27] E. Coto and A. Zisserman, "VGG Image Classification Engine," Oxford, 2017. [Online].

Available: https://www.robots.ox.ac.uk/~vgg/software/vic/. [Accessed 2021].

[28] A. Kay, "Tesseract: an open-source optical character recognition engine," Linux Journal, vol.

2007, no. 159, p. N/A, 2007.

[29] A. Parpola, "A Free Complete Indus Font Package Available," Harappa.com, 6 April 2017.

[Online]. Available: https://www.harappa.com/blog/free-complete-indus-font-package-available.

[Accessed 2021].

[30] A. Parpola, Deciphering the Indus script, New York: Press Syndicate of the University of

Cambridge, 1994.

[31] X. Yang, D. He, Z. Zhou, D. Kifer and C. L. Giles, "Learning to Read Irregular Text with

Attention Mechanisms," in International Joint Conference on Artificial Intelligence, Melbourne,

Australia, 2017.

[32] A. Vaswani, N. Shazeer, N. Parmer, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser and I.

Polosukhin, "Attention Is All You Need," in 31st Conference on Neural Information Processing

Systems, Long Beach, CA, USA, 2017.

[33] Z. Wojna, A. Gorban, D.-S. Lee, K. Murphy, Q. Yu, Y. Li and J. Ibarz, "Attention-based

Extraction of Structured Information from Street View Imagery," in Proceedings - 14th IAPR

International Conference on Document Analysis and Recognition, Kyoto, Japan, 2017.

[34] X. Zhu, D. Cheng, Z. Zhang, S. Lin and J. Dai, "An Empirical Study of Spatial Attention

Mechanisms in Deep Networks," in 2019 IEEE/CVF International Conference on Computer

Vision (ICCV), Seoul, Korea (South), 2019.

[35] G. Li, Z. Song and Q. Fu, "A New Method of Image Detection for Small Datasets under the

Framework of YOLO Network," in 2018 IEEE 3rd Advanced Information Technology, Electronic

and Automation Control Conference(, Chongqing,China, 2018.

Automatic Isolation and Identification Costa Thomas

21

[36] N. Yadav, H. Joglekar and R. P. N. Rao, "Statistical analysis of the Indus script using n-grams,"

PLoS ONE, vol. 5, no. 3, pp. 1-16, 2010.

[37] N. Islam, Z. Islam and N. Noor, "A Survey on Optical Character Recognition System," Journal of

Information & Communication Technology (JICT), vol. 10, no. 2, 2016.

[38] S. Daggumati and P. Z. Revesz, "Data Mining Ancient Script Image Data Using Convolutional

Neural Networks," in Proceedings of the 22nd International Database Engineering and

Applications Symposium, IDEAS 2018, Villa San Giovanni, Italy, 2018.

[39] S. Palaniappan and R. Adhikari, "Deep Learning the Indus Script," 2017.

