INFORMED SEARCH ALGORITHMS

CHAPTER 4, SECTIONS 1–2
Outline

◊ Best-first search
◊ A* search
◊ Heuristics
A strategy is defined by picking the **order of node expansion**
Best-first search

Idea: use an evaluation function for each node
- estimate of “desirability”

⇒ Expand most desirable unexpanded node

Implementation:
fringe is a queue sorted in decreasing order of desirability

Special cases:
 greedy search
 A* search
Romania with step costs in km

- Bucharest: 0
- Craiova: 160
- Dobrogea: 242
- Eforie: 161
- Fagaras: 178
- Giurgiu: 77
- Hirsova: 151
- Iasi: 226
- Lugoj: 244
- Mehadia: 241
- Neamţ: 234
- Oradea: 380
- Pitesti: 98
- Rimnicu Vâlcea: 193
- Sibiu: 253
- Timisoara: 329
- Urziceni: 80
- Vaslui: 199
- Zerind: 374

Chapter 4, Sections 1–2
Greedy search

Evaluation function $h(n)$ (heuristic)

$=\text{estimate of cost from } n \text{ to the closest goal}$

E.g., $h_{\text{SLD}}(n) = \text{straight-line distance from } n \text{ to Bucharest}$

Greedy search expands the node that \textit{appears} to be closest to goal
Greedy search example

Arad
366
Greedy search example

Chapter 4, Sections 1-2
Greedy search example
Greedy search example
Properties of greedy search

Complete??
Properties of greedy search

Complete?? No–can get stuck in loops, e.g., with Oradea as goal,
Iasi → Neamt → Iasi → Neamt →
Complete in finite space with repeated-state checking

Time??
Properties of greedy search

Complete? No—can get stuck in loops, e.g.,

Iasi → Neamt → Iasi → Neamt →

Complete in finite space with repeated-state checking

Time? $O(b^m)$, but a good heuristic can give dramatic improvement

Space??
Properties of greedy search

Complete? No—can get stuck in loops, e.g.,
Iasi \rightarrow Neamt \rightarrow Iasi \rightarrow Neamt \rightarrow
Complete in finite space with repeated-state checking

Time? $O(b^m)$, but a good heuristic can give dramatic improvement

Space? $O(b^m)$—keeps all nodes in memory

Optimal?
Properties of greedy search

Complete? No—can get stuck in loops, e.g.,
Iasi \rightarrow Neamt \rightarrow Iasi \rightarrow Neamt \rightarrow
Complete in finite space with repeated-state checking

Time? $O(b^m)$, but a good heuristic can give dramatic improvement

Space? $O(b^m)$—keeps all nodes in memory

Optimal? No
A* search

Idea: avoid expanding paths that are already expensive

Evaluation function $f(n) = g(n) + h(n)$

$g(n) =$ cost so far to reach n
$h(n) =$ estimated cost to goal from n
$f(n) =$ estimated total cost of path through n to goal

A* search uses an admissible heuristic
i.e., $h(n) \leq h^*(n)$ where $h^*(n)$ is the true cost from n.
(Also require $h(n) \geq 0$, so $h(G) = 0$ for any goal G.)

E.g., $h_{SLD}(n)$ never overestimates the actual road distance

Theorem: A* search is optimal
A* search example

\[366 = 0 + 366 \]
A* search example

Arad

Sibiu
393 = 140 + 253

Timisoara
447 = 118 + 329

Zerind
449 = 75 + 374

Chapter 4, Sections 1-2
A* search example

- Arad
- Fagaras
- Oradea
- Sibiu
- Timisoara
- Zerind

Distances:
- Arad to Sibiu: 646 (280+366)
- Arad to Fagaras: 415 (239+176)
- Arad to Oradea: 671 (291+380)
- Arad to Rimnicu Vilcea: 413 (220+193)
- Sibiu to Timisoara: 447 (118+329)
- Sibiu to Zerind: 449 (75+374)
A* search example

Chapter 4, Sections 1-2
A* search example
A* search example
Suppose some suboptimal goal G_2 has been generated and is in the queue. Let n be an unexpanded node on a shortest path to an optimal goal G_1.

\[f(G_2) = g(G_2) \text{ since } h(G_2) = 0 \]
\[> g(G_1) \text{ since } G_2 \text{ is suboptimal} \]
\[\geq f(n) \text{ since } h \text{ is admissible} \]

Since $f(G_2) > f(n)$, A* will never select G_2 for expansion.
Optimality of A* (more useful)

Lemma: A* expands nodes in order of increasing \(f \) value

Gradually adds “\(f \)-contours” of nodes (cf. breadth-first adds layers)
Contour \(i \) has all nodes with \(f = f_i \), where \(f_i < f_{i+1} \)
Properties of A*

Complete??
Properties of A*

Complete? Yes, unless there are infinitely many nodes with $f \leq f(G)$

Time??
Properties of A*

Complete?? Yes, unless there are infinitely many nodes with $f \leq f(G')$

Time?? Exponential in [relative error in $h \times$ length of soln.]

Space??
<table>
<thead>
<tr>
<th>Properties of A*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete</td>
</tr>
<tr>
<td>Time</td>
</tr>
<tr>
<td>Space</td>
</tr>
</tbody>
</table>
| **Optimal** | }
Properties of A*

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete</td>
<td>Yes, unless there are infinitely many nodes with $f \leq f(G)$</td>
</tr>
<tr>
<td>Time</td>
<td>Exponential in $[\text{relative error in } h \times \text{length of soln.}]$</td>
</tr>
<tr>
<td>Space</td>
<td>Keeps all nodes in memory</td>
</tr>
<tr>
<td>Optimal</td>
<td>Yes—cannot expand f_{i+1} until f_i is finished</td>
</tr>
</tbody>
</table>

- A* expands all nodes with $f(n) < C^*$
- A* expands some nodes with $f(n) = C^*$
- A* expands no nodes with $f(n) > C^*$
Proof of lemma: Consistency

A heuristic is consistent if

\[h(n) \leq c(n, a, n') + h(n') \]

If \(h \) is consistent, we have

\[
\begin{align*}
 f(n') &= g(n') + h(n') \\
 &= g(n) + c(n, a, n') + h(n') \\
 &\geq g(n) + h(n) \\
 &= f(n)
\end{align*}
\]

I.e., \(f(n) \) is nondecreasing along any path.
Admissible heuristics

E.g., for the 8-puzzle:

\[h_1(n) = \text{number of misplaced tiles} \]
\[h_2(n) = \text{total Manhattan distance} \]

(i.e., no. of squares from desired location of each tile)

\[
\begin{array}{ccc}
7 & 2 & 4 \\
5 & 6 & \\
8 & 3 & 1 \\
\end{array}
\hspace{1cm}
\begin{array}{ccc}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & \\
\end{array}
\]

\[
\begin{array}{c}
h_1(S) = ?? \\
h_2(S) = ??
\end{array}
\]
Admissible heuristics

E.g., for the 8-puzzle:

\(h_1(n) = \) number of misplaced tiles
\(h_2(n) = \) total Manhattan distance

(i.e., no. of squares from desired location of each tile)

\[h_1(S) = 6 \]
\[h_2(S) = 4+0+3+3+1+0+2+1 = 14 \]
Dominance

If $h_2(n) \geq h_1(n)$ for all n (both admissible) then h_2 dominates h_1 and is better for search.

Typical search costs:

- $d = 14$ \[\text{IDS} = 3,473,941 \text{ nodes} \]
 \[A^*(h_1) = 539 \text{ nodes} \]
 \[A^*(h_2) = 113 \text{ nodes} \]

- $d = 24$ \[\text{IDS} \approx 54,000,000,000 \text{ nodes} \]
 \[A^*(h_1) = 39,135 \text{ nodes} \]
 \[A^*(h_2) = 1,641 \text{ nodes} \]

Given any admissible heuristics h_a, h_b,

\[h(n) = \max(h_a(n), h_b(n)) \]

is also admissible and dominates h_a, h_b
Relaxed problems

Admissible heuristics can be derived from the exact solution cost of a relaxed version of the problem.

If the rules of the 8-puzzle are relaxed so that a tile can move anywhere, then $h_1(n)$ gives the shortest solution.

If the rules are relaxed so that a tile can move to any adjacent square, then $h_2(n)$ gives the shortest solution.

Key point: the optimal solution cost of a relaxed problem is no greater than the optimal solution cost of the real problem.
Well-known example: **travelling salesperson problem** (TSP)
Find the shortest tour visiting all cities exactly once

Minimum spanning tree can be computed in $O(n^2)$
and is a lower bound on the shortest (open) tour
Summary

Heuristic functions estimate costs of shortest paths

Good heuristics can dramatically reduce search cost

Greedy best-first search expands lowest h
 - incomplete and not always optimal

A* search expands lowest $g + h$
 - complete and optimal
 - also optimally efficient (up to tie-breaks, for forward search)

Admissible heuristics can be derived from exact solution of relaxed problems