GAME PLAYING

CHAPTER 6
Outline

◊ Games

◊ Perfect play
 – minimax decisions
 – $\alpha-\beta$ pruning

◊ Resource limits and approximate evaluation

◊ Games of chance

◊ Games of imperfect information
Games vs. search problems

“Unpredictable” opponent \Rightarrow solution is a strategy specifying a move for every possible opponent reply

Time limits \Rightarrow unlikely to find goal, must approximate

Plan of attack:

- Computer considers possible lines of play (Babbage, 1846)
- Algorithm for perfect play (Zermelo, 1912; Von Neumann, 1944)
- Finite horizon, approximate evaluation (Zuse, 1945; Wiener, 1948; Shannon, 1950)
- First chess program (Turing, 1951)
- Machine learning to improve evaluation accuracy (Samuel, 1952–57)
- Pruning to allow deeper search (McCarthy, 1956)
<table>
<thead>
<tr>
<th>perfect information</th>
<th>deterministic</th>
<th>chance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>chess, checkers, go, othello</td>
<td>backgammon, monopoly</td>
</tr>
<tr>
<td>imperfect information</td>
<td>battleships, blind tictactoe</td>
<td>bridge, poker, scrabble nuclear war</td>
</tr>
</tbody>
</table>
Game tree (2-player, deterministic, turns)
Minimax

Perfect play for deterministic, perfect-information games

Idea: choose move to position with highest minimax value
= best achievable payoff against best play

E.g., 2-ply game:
Minimax algorithm

function Minimax-Decision(*state*) **returns** an action

inputs: *state*, current state in game

return the *a* in Actions(*state*) maximizing Min-Value(Result(*a*, *state*))

function Max-Value(*state*) **returns** a utility value

if Terminal-Test(*state*) **then return** Utility(*state*)

v ← $-\infty$

for *a*, *s* in Successors(*state*) **do** *v* ← Max(*v*, Min-Value(*s*))

return *v*

function Min-Value(*state*) **returns** a utility value

if Terminal-Test(*state*) **then return** Utility(*state*)

v ← ∞

for *a*, *s* in Successors(*state*) **do** *v* ← Min(*v*, Max-Value(*s*))

return *v*
Properties of minimax

Complete??
Properties of minimax

Complete?? Only if tree is finite (chess has specific rules for this).

NB a finite strategy can exist even in an infinite tree!

Optimal??
Properties of minimax

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete</td>
<td>Yes, if tree is finite (chess has specific rules for this)</td>
</tr>
<tr>
<td>Optimal</td>
<td>Yes, against an optimal opponent. Otherwise</td>
</tr>
<tr>
<td>Time complexity</td>
<td></td>
</tr>
</tbody>
</table>
Properties of minimax

Complete? Yes, if tree is finite (chess has specific rules for this)

Optimal? Yes, against an optimal opponent. Otherwise?

Time complexity? \(O(b^m) \)

Space complexity?
Properties of minimax

Complete?? Yes, if tree is finite (chess has specific rules for this)

Optimal?? Yes, against an optimal opponent. Otherwise??

Time complexity?? $O(b^m)$

Space complexity?? $O(bm)$ (depth-first exploration)

For chess, $b \approx 35$, $m \approx 100$ for “reasonable” games

\Rightarrow exact solution completely infeasible

But do we need to explore every path?
$\alpha-\beta$ pruning example

MAX

MIN

≥ 3

3 12 8
\(\alpha-\beta \) pruning example
\(\alpha - \beta \) pruning example

```
  MAX

  MIN

  3 ≥ 3
  12 ≤ 2
  8 X
  2 X
  14 ≤ 14
```

Chapter 6
α–β pruning example

MAX

MIN

3 12 8

3

3 ≥ 3

2 ≤ 2

14

14 ≤ 5

5
\(\alpha - \beta \) pruning example
Why is it called $\alpha-\beta$?

α is the best value (to MAX) found so far off the current path
If V is worse than α, MAX will avoid it \Rightarrow prune that branch
Define β similarly for MIN
The $\alpha-\beta$ algorithm

```
function Alpha-Beta-Decision(state) returns an action
    return the $a$ in ACTIONS(state) maximizing Max-Value(Result(a, state))
```

```
function Max-Value(state, $\alpha$, $\beta$) returns a utility value
    inputs: state, current state in game
            $\alpha$, the value of the best alternative for MAX along the path to state
            $\beta$, the value of the best alternative for MIN along the path to state
    if Terminal-Test(state) then return Utility(state)
    $v \leftarrow -\infty$
    for $a$, $s$ in Successors(state) do
        $v \leftarrow \text{Max}(v, \text{Min-Value}(s, \alpha, \beta))$
        if $v \geq \beta$ then return $v$
        $\alpha \leftarrow \text{Max}(\alpha, v)$
    return $v$
```

```
function Min-Value(state, $\alpha$, $\beta$) returns a utility value
    same as Max-Value but with roles of $\alpha$, $\beta$ reversed
```
Properties of $\alpha - \beta$

Pruning does not affect final result.

Good move ordering improves effectiveness of pruning.

With “perfect ordering,” time complexity $= O(b^{m/2})$

\Rightarrow doubles solvable depth.

A simple example of the value of reasoning about which computations are relevant (a form of metareasoning).

Unfortunately, 35^{50} is still impossible!
Resource limits

Standard approach:

- Use **Cutoff-Test** instead of **Terminal-Test**
 e.g., depth limit (perhaps add quiescence search)
- Use **Eval** instead of **Utility**
 i.e., evaluation function that estimates desirability of position

Suppose we have 100 seconds, explore 10^4 nodes/second
 ⇒ 10^6 nodes per move ≈ $35^8/2$
 ⇒ $\alpha-\beta$ reaches depth 8 ⇒ pretty good chess program
Evaluation functions

For chess, typically linear weighted sum of features

\[\text{Eval}(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s) \]

e.g., \(w_1 = 9 \) with
\(f_1(s) = \text{number of white queens} - \text{number of black queens} \), etc.
Digression: Exact values don’t matter

Behaviour is preserved under any monotonic transformation of \text{Eval}.

Only the order matters:
- payoff in deterministic games acts as an ordinal utility function
Deterministic games in practice

Checkers: Chinook ended 40-year-reign of human world champion Marion Tinsley in 1994. Used an endgame database defining perfect play for all positions involving 8 or fewer pieces on the board, a total of 443,748,401,247 positions.

Othello: human champions refuse to compete against computers, who are too good.

Go: human champions refuse to compete against computers, who are too bad. In go, $b > 300$, so most programs use pattern knowledge bases to suggest plausible moves.
Nondeterministic games: backgammon

Chapter 6
In nondeterministic games, chance introduced by dice, card-shuffling

Simplified example with coin-flipping:
Algorithm for nondeterministic games

Expectiminimax gives perfect play

Just like **Minimax**, except we must also handle chance nodes:

\[
\begin{align*}
\text{if } \text{state} & \text{ is a Max node then} \\
& \text{return the highest } \text{Expectiminimax-Value of Successors(} \text{state} \text{)} \\
\text{if } \text{state} & \text{ is a Min node then} \\
& \text{return the lowest } \text{Expectiminimax-Value of Successors(} \text{state} \text{)} \\
\text{if } \text{state} & \text{ is a chance node then} \\
& \text{return average of } \text{Expectiminimax-Value of Successors(} \text{state} \text{)}
\end{align*}
\]
Nondeterministic games in practice

Dice rolls increase b: 21 possible rolls with 2 dice
Backgammon ≈ 20 legal moves (can be 6,000 with 1-1 roll)

$$\text{depth } 4 = 20 \times (21 \times 20)^3 \approx 1.2 \times 10^9$$

As depth increases, probability of reaching a given node shrinks
 \Rightarrow value of lookahead is diminished

$\alpha-\beta$ pruning is much less effective

TDGammon uses depth-2 search + very good **Eval**
 \approx world-champion level
Digression: Exact values DO matter

Behaviour is preserved only by positive linear transformation of E_{VAL}

Hence E_{VAL} should be proportional to the expected payoff
Games of imperfect information

E.g., card games, where opponent’s initial cards are unknown.

Typically we can calculate a probability for each possible deal.

Seems just like having one big dice roll at the beginning of the game.*

Idea: compute the minimax value of each action in each deal,
then choose the action with highest expected value over all deals.*

Special case: if an action is optimal for all deals, it’s optimal.*

GIB, current best bridge program, approximates this idea by
1) generating 100 deals consistent with bidding information
2) picking the action that wins most tricks on average
Example

Four-card bridge/whist/hearts hand, MAX to play first

\[
\begin{array}{c|c|c|c}
6\spadesuit & 6\spadesuit & 8\spadesuit & 7\spadesuit \\
4\heartsuit & 2\heartsuit & 9\heartsuit & 3\heartsuit \\
\hline
8\clubsuit & 6\clubsuit & 7\clubsuit & \\
4\clubsuit & 2\clubsuit & 9\clubsuit & 3\clubsuit \\
\hline
6\diamondsuit & 6\diamondsuit & 7\diamondsuit & \\
4\diamondsuit & 2\diamondsuit & 3\diamondsuit & \\
\hline
6\heartsuit & 6\heartsuit & 7\heartsuit & \\
4\heartsuit & 3\heartsuit & \\
\hline
6\diamondsuit & 7\diamondsuit & \\
4\diamondsuit & 3\diamondsuit & \\
\end{array}
\]
Example

Four-card bridge/whist/hearts hand, MAX to play first

MAX: 6♥ 6♦ 8♠ 7♣
MIN: 4♥ 2♠ 9♣ 3♦

MAX: 6♥ 6♦ 7♠
MIN: 4♥ 2♠ 3♦

MAX: 6♥ 6♦ 7♠
MIN: 4♥ 3♦

MAX: 6♥ 7♠
MIN: 3♦

MAX: 6♥ 7♠
MIN: 0

MAX: 6♥ 7♠
MIN: 0
Example

Four-card bridge/whist/hearts hand, MAX to play first

MAX

MIN

MAX

MIN

MAX

MIN

Chapter 6
Commonsense example

Road A leads to a small heap of gold pieces
Road B leads to a fork:
 take the left fork and you’ll find a mound of jewels;
 take the right fork and you’ll be run over by a bus.
Commonsense example

Road A leads to a small heap of gold pieces
Road B leads to a fork:
 take the left fork and you’ll find a mound of jewels;
 take the right fork and you’ll be run over by a bus.

Road A leads to a small heap of gold pieces
Road B leads to a fork:
 take the left fork and you’ll be run over by a bus;
 take the right fork and you’ll find a mound of jewels.
Commonsense example

Road A leads to a small heap of gold pieces
Road B leads to a fork:
 take the left fork and you’ll find a mound of jewels;
 take the right fork and you’ll be run over by a bus.

Road A leads to a small heap of gold pieces
Road B leads to a fork:
 take the left fork and you’ll be run over by a bus;
 take the right fork and you’ll find a mound of jewels.

Road A leads to a small heap of gold pieces
Road B leads to a fork:
 guess correctly and you’ll find a mound of jewels;
 guess incorrectly and you’ll be run over by a bus.
Proper analysis

* Intuition that the value of an action is the average of its values in all actual states is **WRONG**

With partial observability, value of an action depends on the information state or belief state the agent is in.

Can generate and search a tree of information states.

Leads to rational behaviors such as
- Acting to obtain information
- Signalling to one’s partner
- Acting randomly to minimize information disclosure
Summary

Games are fun to work on! (and dangerous)

They illustrate several important points about AI

◊ perfection is unattainable \Rightarrow must approximate

◊ good idea to think about what to think about

◊ uncertainty constrains the assignment of values to states

◊ optimal decisions depend on information state, not real state

Games are to AI as grand prix racing is to automobile design