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Figure 7.2 Algorithm WALKSAT.
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DE|:|NITION {path-consistent constraint)

A constraint R;; is path-consistent, relative to the path of length m through

the nodes (i = ig, 41,...,im = j), if for any pair (a;, ;) € Ry there is
a sequence of values a; € Dj, such that (a;=aiy, ai)) € Rigiy, (dig, aiy) €
Rigiy, - -, and (@i, _, @i, =) € Riy_yip- 8

For a constraint graph that is complete, the two definitions can be shown to
be the same. However, if we require path-consistency in Definition 3.4 to hold
relative to only real paths in the constraint graph, then the two above-referenced
definitions are not the same (see Exercise 15).

Higher Levels of i-Consistency

Arc- and path-consistency algorithms process subnetworks of size 2 and 3,
respectively. We're now ready to generalize the concept of local consistency to
subnetworks of size i. In this case nonbinary constraints also come into play.

DEFINITION  (i-consistency, global consistency)

35

Given a general network of constraints R = (X, D, C), a relation Rg € C
where |S| = i — 1 isi-consistent relative to a variable y not in S iff for every
t € Rs, there exists a value a € Dy, such that (z, a) is consistent. A network
is i-consistent iff given any consistent instantiation of any i — 1 distinct
variables, there exists an instantiation of any ith variable such that the i
values taken together satisfy all of the constraints among the i variables. A
network is strongly i-consistent iff it is j-consistent for all j < i. A strongly
n-consistent network, where n is the number of variables in the network,
is called globally consistent. o

Globally consistent networks are characterized by the property that any con-
sistent instantiation of a subset of the variables can be extended to a consistent
instantiation of all of the variables without encountering any dead-ends.

EXAMPLE  Consider the constraint network for the 4-queens problem. We see that the

3.8

network is 2-consistent since, given that we have placed a single queen on
the board, we can always place a second queen on any remaining column
such that the two queens do not attack each other. This network is not 3-
consistent, however; given the consistent placement of two queens shown
in Figure 3.13(a), there is no way to place a queen in the third column that
is consistent with the previously placed queens. Similarly, the network is
not 4-consistent (Figure 3.13(b)). )
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((x, red), (v, blue)), no color for z will be consistent with both (x, red) and
(y, blue). Indeed, we can infer something about this network: since our
domain size is 2, x # y and y # z imply x = z, but x = z is not explicit in
this network. Not only that, it contradicts another explicit constraint. e

The consistency level violated here is called path-consistency, requiring consis-
tency relative to paths of length 3 (the path from x to y that goes through z). It
is interesting to note that in the minimal network path-consistency is maintained;
any consistent pair of values can be consistently extended by any third variable
(see Exercise 6).

In general, the notion of path-consistency involves inferences using subnet-
works having three variables. However, since the original definition of path-
consistency involves only binary constraints, it is relevant only to the binary
constraints of the network. An extension of the definition to nonbinary constraints
is presented later; it constitutes only a minor change that is relevant when the
network also has ternary constraints.

DEFINITION (path-consistency)

3.3

Given a constraint network R= (X, D, C), a two-variable set {x;,x;} is
path-consistent relative to variable x;, if and only if for every consistent
assignment ((x;, a;), (xj, a;)) there is a value aj, € D}, such that the assign-
ment ((x;, a;), (x, ax)) is consistent and ((xy, ap), (x;, aj)) is consistent.
Alternatively, a binary constraint R;; is path-consistent relative to x, iff for
every pair (a;, a;) € Ry;, where a; and a; are from their respective domains,
there is a value @, € Dy such that (a;,a,) € Ry, and (a,a;) € Ry A
subnetwork over three variables {xi, x;, %} is path-consistent iff for any
permutation of (4,7, k), Ry is path-consistent relative to x;. A network is
path-consistent iff for every R;; (including universal binary relations) and
for every k # i,j Ry is path-consistent relative to xj,. °

Pictorially, a connected pair of points in the matching diagram (denoting a
legal pair of values in Ryy) satisfies path-consistency iff the connected pair can be
extended to a triangle with a third value as is shown in Figure 3.8(b). When a
three-variable subnetwork is not path-consistent, we can enforce path-consistency
by making the necessary inferences. So, if in the input specification there is no
constraint between x and y (meaning that everything is allowed), we can deduce a
new constraint by the length-3 path from x to y through z. In this case, the necessary
inferences are adding binary constraints or tightening binary constraints {deleting
tuples from the relation). In the coloring example (see the matching diagram in
Figure 3.8(a)), if we attempt to make R, path-consistent relative to z, this implies
emptying the constraint Ry, and declaring inconsistency.

Alternatively, consider again the network of three variables {x,y,z} where
all variables have the same domain and the equality constraints Ry, : x = z and
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X é ®Y

(a) )

Figure 3.8 (a) The matching diagram of a two-value graph-coloring problem. (b) Graphical picture of
path-consistency using the matching diagram.

REVISE-3((x, y), Z)

Input: A three-variable subnetwork over (x, v, z), Rxy, Ayz Axz.
Output: Revised Ay, path-consistent with z.

1. for each pair (a, b) € Ry

2. if no value ¢ € D; exists such that (a, ¢) € Axzand (b, ¢) € Ry
3. then delete (a, b} from Ryy.

4. endif

5. endfor

Figure 3.9 REVISE-3.

Ry, : ¥ = z. To make this network path-consistent, we should infer and add to the
network the constraint Ry : x = y.

To use an analog of REVISE for arc-consistency, we define a procedure REVISE-
3((x,v), z) (Figure 3.9). This procedure takes a pair of variables (x,y) and their
constraint that we wish to modify, R,y (and which can also be the universal con-
straint), and a third variable, z, and returns the loosest constraint R;, that satisfies
path-consistency. REVISE-3 tests if each pair of consistent values in Ry, can be
extended consistently to a value of z, and if not, it deletes the violating pair.

REVISE-3((x, ¥), z) can be expressed succinctly as the composition

Ry < Ry N 7txy(Ryz X D X Ryy) (3.1b)
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{r, b} {r,b}
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Figure 3.12 A graph-coloring graph (a) before path-consistency and (b) after path-consistency.

constraint x = x4. The path-consistent constraint network version of this
example is depicted in Figure 3.12(b). If we generate a path-consistent
network by applying pc-1 to the original network, the algorithm's first
cycle applies rEvise-3 to four triplets, generating the two equality con-
straints. A full cycle will then be executed to verify that nothing changes.
This verification requires a second processing of each triplet. On the other
hand, if we enforce path-consistency by pc-2, we may be able to process
each triplet only once, assuming the right ordering is picked. If we apply
REVISE-3 first to (x1,%3,%2), that is, to the universal constraint between
x1 and x3, and then to (x2,%4,%1), each triplet would be processed just
once. .

Like its arc-consistent counterpart (Ac-3), pc-2 is not optimal, although we can
devise an optimal algorithm, akin to Ac-4. It would require operating on the relation
level and maintaining supports for pairs of values. An algorithm exploiting such
low-level consistency maintenance, which we will call pc-4, is available (Mohr and
Henderson 1986),and its complexity bound is O(n3k3) or O(n3tk). It is an optimal
algorithm, since even verifying path-consistency has that lower bound; namely, it
is Q(n3k3).

Regarding best-case performance, we observe that pc-1, pc-2, and pc-4 have
properties that parallel those of arc-consistency. Algorithms pc-1 and pc-2 can be
as good as O(n® - t) and O(n? - k?), respectively, while algorithm pc-4 (which was
not presented explicitly) requires an order of O(n*k?) (or O(n® - t - k)) even in the
best case because of its initialization (see Exercise 14).

Let's conclude our introduction to path-consistency by giving an alternative
definition that may explain the origin of the term.
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DEFINITION (path-consistent constraint)

3.4

3.4

A constraint R;; is path-consistent, relative to the path of length m through
the nodes (i = ig, i1,...,im = j), if for any pair (a;,4;) € Rjj there is
a sequence of values ay € Dj such that (a;=ai, ;) € Riyiy, (g, aiy) €
Rioilf ey and (aim_l, A =a]-) € Rim_lim' L]

For a constraint graph that is complete, the two definitions can be shown to
be the same. However, if we require path-consistency in Definition 3.4 to hold
relative to only real paths in the constraint graph, then the two above-referenced
definitions are not the same (see Exercise 15).

Higher Levels of i-Consistency

Arc- and path-consistency algorithms process subnetworks of size 2 and 3,
respectively. We're now ready to generalize the concept of local consistency to
subnetworks of size i. In this case nonbinary constraints also come into play.

DEFINITION (i-consistency, global consistency)

3.b

EXAMPLE
3.8

Given a general network of constraints R = (X, D, C), a relation Rg € C
where |S| = i — 1 is i-consistent relative to a variable y not in S iff for every
t € Rg, there exists a value a € Dy, such that (¢, a) is consistent. A network
is i-consistent iff given any consistent instantiation of any i — 1 distinct
variables, there exists an instantiation of any ith variable such that the i
values taken together satisfy all of the constraints among the i variables. A
network is strongly i-consistent iff it is j-consistent for all j < i. A strongly
n-consistent network, where » is the number of variables in the network,
is called globally consistent. .

Globally consistent networks are characterized by the property that any con-
sistent instantiation of a subset of the variables can be extended to a consistent
instantiation of all of the variables without encountering any dead-ends.

Consider the constraint network for the 4-queens problem. We see that the
network is 2-consistent since, given that we have placed a single queen on
the board, we can always place a second queen on any remaining column
such that the two queens do not attack each other. This network is not 3-
consistent, however; given the consistent placement of two queens shown
in Figure 3.13(a), there is no way to place a queen in the third column that
is consistent with the previously placed queens. Similarly, the network is
not 4-consistent (Figure 3.13(b)). °
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REVISE can also be described using composition; namely, lines 1, 2, and 3 can
be replaced by

D; < D;nN ﬂi(Rij X Dj) (3.1a)

In this case, D; stands for the one-column relation over x;. (Consult Section 1.3 for
the definitions of the join and project operators.) Remember that the subscript i is
shorthand for variable x;.

Arc-consistency may be imposed on some pairs of variables, on all pairs from
some subset of variables, or over an entire network. Arc-consistency of a whole
network is accomplished by applying the rRevisE procedure to all pairs of variables,
although applying the procedure just once to each pair of variables is sometimes
not enough to ensure the arc-consistency of a network, as we see in the following
example.

EXAMPLE  Consider now the matching diagram of the three-variable constraint net-
3.2 work depicted in Figure 3.3(a). Without knowing the nature of the
constraint between y and x, we can see that the two are arc-consistent

relative to one another because each value in the domains of the two

variables can be matched to an element from the other. However, their
arc-consistency is violated in the process of making the adjacent constraints

arc-consistent. Specifically, to make {x, z} arc-consistent, we must delete
a value from the domain of x, which will leave y no longer arc-consistent
relative to x. Consequently, REVISE may need to be applied more than once
to each constraint until there is no change in the domain of any variable in
the network. °

(2)

Figure 3.3 (a) Matching diagram describing a network of constraints that is not arc-consistent. (b) An
arc-consistent eguivalent network.
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3.2 Arc-Consistency

Note that the minimal network has the following local consistency property: any
value in the domain of a single variable can be extended consistently by any
other variable (this follows immediately from Proposition 2.2). This property is
termed arc-consistency, and it can be satisfied by nonminimal networks as well.
Arc-consistency can be enforced on any network by an efficient computation that,
because of its local and distributed character, is often called propagation.

The following example more clearly demonstrates the notion of arc-
consistency. We speak both of a constraint being arc-consistent (or not) relative
to a given variable and of a variable being arc-consistent (or not) relative to other
variables. In both cases, the underlying meaning is the same.

EXAMPLE  Consider the variables x and y, whose domains are Dy = Dy = {1, 2,3}, and

3.1

the single constraint Ry, expressing the relation x <y. The constraint Ryy is
depicted in a matching diagram' in Figure 3.1(a), where the domain of each
variable is an enclosed set of points, and arcs connect points that correspond
to consistent pairs of values. (Note: This type of diagram should not be
confused with the constraint graph of the network.) Because the value 3 €
D, has no consistent matching value in Dy, we say that the constraint Ryy is
not arc-consistent relative to x. Similarly, R,y is not arc-consistent relative
to y, since y = 1 has no consistent match in x. In matching diagrams, a
constraint is not arc-consistent if any of its variables have lonely values.

Now, if we shrink the domains of both x and y such that Dy = {1, 2} and
Dy = {2,3)}, then x is arc-consistent relative to y, and y is arc-consistent
relative to x. The matching diagram of the arc-consistent constraint net-
work is depicted in Figure 3.1(b). If we shrink the domains even further
to Dy = {1} and Dy = {2}, we will still have an arc-consistent constraint.
However, the latter is no longer equivalent to the original constraint since
we may have deleted solutions from the whole set of solutions. o

DEFINITION (arc-consistency)

3.2

Given a constraint network R = (X, D, C), with R;j € C, a variable x; is
arc-consistent relative to x; if and only if for every value a; € D; there exists
a value a; € Dj such that (a;, 4;) € Rij. The subnetwork (alternatively, the
arc) defined by {x;,x;} is arc-consistent if and only if x; is arc-consistent
relative to x; and x; is arc-consistent relative to x;. A network of constraints
is called arc-consistent iff all of its arcs (e.g., subnetworks of size 2) are
arc-consistent. °

1. Also called a microstructure (Jégou 1993).

3.2 Arc-Consistency b5

X y X y
x<y x<y
(@ (b)

Figure 3.1 A matching diagram describing the arc-consistency of two variables x and y: (a) The vari-

ables are not arc-consistent. {b) The domains have been reduced, and the variables are
now arc-consistent.

REVISE((x;), X;)

Input: A subnetwork defined by two variables X = {x;, x}, a distinguished
variable x;, domains D; and Dj, and constraint Rj.

Output: D;, such that x; is arc-consistent relative to x;.

1. foreach aj e D;

2. if there is no a; € D; such that (a;, a) € Rj
3. then delete a; from D;

4. endif

5. endfor

Figure 3.2 The REVISE procedure.

As we saw in the earlier example, we can make a binary constraint arc-
consistent by shrinking the domains of the variables in its scope. If a value does not
participate in a solution of a two-variable subnetwork, it will clearly not be part of
a complete solution. But how do we ensure that we only eliminate values that will
not affect the set of the network’s solutions? The simple procedure REVISE((x:), X;),
shown in Figure 3.2, if applied to two variables, x; and x;, returns the largest domain
D; of x; for which x; is arc-consistent relative to x;. It simply tests each value of x;
and eliminates those values having no match in x;.

Since each value in D; is compared, in the worst case, with each value in D,
REVISE has the following complexity:

PROPOSITION The complexity of ReviSE is O(k?), where k bounds the domain size. o




