chapter 3 Consistency-Enforcing and Constraint Propagation

(a) (b)

Figure 3.12 A graph-coloring graph (a) before path-consistency and (b) after path-consistency.

constraint x; = x4. The path-consistent constraint network version of this
example is depicted in Figure 3.12(b). If we generate a path-consistent
network by applying pc-1 to the original network, the algorithm’s first
cycle applies revise-3 to four triplets, generating the two equality con-
straints. A full cycle will then be executed to verify that nothing changes.
This verification requires a second processing of each triplet. On the other
hand, if we enforce path-consistency by pc-2, we may be able to process
each triplet only once, assuming the right ordering is picked. If we apply
REVISE-3 first to (x1,x3,x2), that is, to the universal constraint between
x1 and x3, and then to (x2,x4, %)), each triplet would be processed just
once. o

Like its arc-consistent counterpart (Ac-3), pc-2 is not optimal, although we can
devise an optimal algorithm, akin to ac-4. It would require operating on the relation
level and maintaining supports for pairs of values. An algorithm exploiting such
low-level consistency maintenance, which we will call pc-4, is available (Mohr and
Henderson 1986),and its complexity bound is O(n*k3) or O(n?tk). It is an optimal
algorithm, since even verifying path-consistency has that lower bound; namely, it
is Q(nk3).

Regarding best-case performance, we observe that rc-1, pc-2, and pc-4 have
properties that parallel those of arc-consistency. Algorithms pc-1 and pc-2 can be
as good as O(n® - £) and O(n3 - k?), respectively, while algorithm pc-4 (which was
not presented explicitly) requires an order of O(n3£3) (or O(n3 -t - k)) even in the
best case because of its initialization (see Exercise 14).

Let’s conclude our introduction to path-consistency by giving an alternative
definition that may explain the origin of the term.

