
Automated Hierarchical Density Shaving: A
Robust Automated Clustering and Visualization

Framework for Large Biological Data Sets
Gunjan Gupta, Alexander Liu, and Joydeep Ghosh

Abstract—A key application of clustering data obtained from sources such as microarrays, protein mass spectroscopy, and

phylogenetic profiles is the detection of functionally related genes. Typically, only a small number of functionally related genes cluster

into one or more groups, and the rest need to be ignored. For such situations, we present Automated Hierarchical Density Shaving

(Auto-HDS), a framework that consists of a fast hierarchical density-based clustering algorithm and an unsupervised model selection

strategy. Auto-HDS can automatically select clusters of different densities, present them in a compact hierarchy, and rank individual

clusters using an innovative stability criteria. Our framework also provides a simple yet powerful 2D visualization of the hierarchy of

clusters that is useful for further interactive exploration. We present results on Gasch and Lee microarray data sets to show the

effectiveness of our methods. Additional results on other biological data are included in the supplemental material.

Index Terms—Mining methods and algorithms, data and knowledge visualization, clustering, bioinformatics.

Ç

1 INTRODUCTION

IN many real-world clustering problems, only a subset of
the data needs to be clustered, while the rest should be

ignored. For example, consider gene-expression data sets
that measure expression levels of genes compared to a
control across a few thousand genes over several micro-
array experiments. The experiments typically focus on a
specific “theme” such as stress response. Only the genes
involved in the corresponding active biological processes
show correlated behavior. Correlated genes are better
identified via clustering or biclustering when the data from
nonpertinent genes are either manually removed before
cluster analysis or are pruned during the clustering process
itself.

Other types of biological data with similar properties
include protein mass spectroscopy (with gel electrophor-
esis) [19], protein arrays [40], and phylogenetic profile data
[35]. Though protein mass spectroscopy technology differs
greatly from protein arrays, the data sets produced can
have the same format; each data point represents a protein,
while the features represent the expression level of a
protein across multiple experiments or samples. The goal
of clustering is to find protein-protein interactions. In
phylogenetic profile data, each data point represents a
gene; the feature space consists of evolutionary conserva-
tion levels of genes shared across multiple species. In this
paper, we will address mainly gene-expression data sets;

the accompanying supplemental material contains addi-
tional experiments on additional types of data, including
phylogenetic profile data.

A wide variety of parametric approaches [5] have been
applied to exhaustively cluster a data set based on the
assumption that each cluster is a member of some
parametric family (e.g., Gaussians). However, in problems
where the subset of data that clusters well is small
compared to the overall data set, the “don’t care” points
can overwhelm a method that optimizes over all the data
points. In contrast, certain nonparametric clustering algo-
rithms (e.g., [15] and [1]) that use kernel density estimation
[29] at each data point to find dense clusters are capable of
clustering only a subset of the data.

In 1968, Wishart [44] proposed an algorithm called
Hierarchical Mode Analysis (HMA) that used kernel density
estimation to yield a compact hierarchy of dense clusters
while disregarding data in sparse regions. HMA seems to
have gotten lost in time and is not known to most current
researchers. One reason could be that HMA is slow ðOðn3ÞÞ
and memory intensive ðOðn2ÞÞ and predated the era of
downloadable public-domain code. Interestingly enough, a
specific setting of HMA as described in [44] yields results
identical to DBSCAN [15], a widely used algorithm that was
independently proposed almost three decades later.

In this paper, we present a framework called Automated
Hierarchical Density Shaving (Auto-HDS) that builds upon
the HMA algorithm and greatly broadens its scope and
effectiveness. Key improvements include

1. creating a faster ðOðn2ÞÞ and much more memory
efficient ðOðn lognÞÞ algorithm appropriate for larger
data sets,

2. the ability to use a variety of distance metrics
including Pearson Distance, a biologically relevant
distance measure,

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 7, NO. 2, APRIL-JUNE 2010 223

. G. Gupta is with the Amazon.com, PO Box 14403, Seattle, WA 98114.
E-mail: gunjan@ideal.ece.utexas.edu.

. A. Liu and J. Ghosh are with the Department of Electrical and Computer
Engineering, University of Texas, 1 University Station C0803, Austin,
TX 78712. E-mail: {aliu, ghosh}@ece.utexas.edu.

Manuscript received 15 Jan. 2006; revised 3 July 2007; accepted 15 Feb. 2008;
published online 7 Mar. 2008.
For information on obtaining reprints of this article, please send e-mail to:
tcbb@computer.org, and reference IEEECS Log Number TCBB-0214-1206.
Digital Object Identifier no. 10.1109/TCBB.2008.32.

1545-5963/10/$26.00 � 2010 IEEE Published by the IEEE CS, CI, and EMB Societies & the ACM

3. a robust unsupervised model selection that discovers
small clusters of varying densities while simulta-
neously pruning large amounts of irrelevant data,

4. a novel effective visualization of the resulting cluster
hierarchy,

5. an extension of runt pruning [42] that enables
interactive near-real-time clustering, and

6. a Java-based implementation that is available for
free download and incorporates several additional
features to support interactive clustering and
exploration.

Certain high-throughput biological data sets have sev-
eral characteristics/requirements that match the abilities of
Auto-HDS, including

1. pertinent clusters within the data sets often vary in
density; for example, a large number of somewhat
weakly correlated genes could form a group that is
as important as a small number of highly correlated
genes,

2. biological subprocesses may result in subclusters
within clusters, best revealed by a multilevel
technique,

3. a large number of irrelevant genes or other biological
entities may be present, and

4. a fully unsupervised setting is desirable as there
is little or no labeled data for selecting model
parameters such as number of clusters.

This also increases the usefulness of interactively visualiz-
ing and examining the cluster hierarchy for cluster
comprehension and selection. Note that this complete set
of desiderata that Auto-HDS addresses cannot be fulfilled
satisfactorily by other existing clustering methods.

To date, applications of Auto-HDS on gene-expression
data have shown good results. Our Java-based imple-
mentation, Gene Density Interactive Visual Explorer
(Gene DIVER), is especially useful for practitioners. It
exploits an efficient heap data structure and a serial-
ization API to provide a memory-efficient, scalable, and
platform-independent implementation of our framework.
Gene DIVER also includes a sophisticated SWING-based
visualization and interactive user interface, with special
features for exploring clustered genes using the latest
information from two online biological databases.

A subset of the work presented in this paper appeared in
[22] and [23]. More details on some aspects of this paper,
especially algorithms, can be found in a related technical
report [21] and dissertation [19].

Notation. Boldfaced variables, e.g., x, represent vectors,
whose ith element is denoted by either xi or xðiÞ. Sets of
vectors are represented by calligraphic uppercase alphabets
such as X and are enumerated as either fxigni¼1 or fxðiÞgni¼1,
where xi or xðiÞ are the individual elements. jXj represents
the size of set X . Boldfaced capital letters such as M
represent 2D matrices. IR and IRd represent the domain of
real numbers and a d-dimensional vector space, respectively.

2 RELATED WORK

Clustering has a very long and storied history [16], [28]
and has been extensively studied and applied across a

wide range of disciplines. This has naturally resulted in a
very wide variety of clustering approaches, from informa-
tion theoretic [11] to graph theoretic [41] to those inspired
by network flows [14]. Specific applications have inspired
particular approaches, e.g., biclustering methods for
microarray data analysis [33], [3] and directional gen-
erative models for text [4]. This rich heritage is largely
due to not only the wide applicability of clustering but
also the “ill-posed” nature of the problem and the fact that
no single method can be best for all types of data/
requirements. To keep this section short, we will concen-
trate only on work most pertinent to this paper: density-
based approaches and certain techniques tailored for
biological data analysis.

A variety of density-based methods have been devel-
oped that use different notions of density to identify
clusters. One of the most widely cited density-based
algorithms is DBSCAN [15]. In DBSCAN, if a point has at
least MinPts points within a distance of �, then all these
points are assigned to the same cluster. DBSCAN is
particularly well suited for low-dimensional data for which
fast database indexing methods can be used. Different
choices of � and MinPts can give dramatically different
clusterings; choosing these parameters are a potential pitfall
for the user. OPTICS [1] proposed a visualization to make it
easier to select these parameters and also supports the
discovery of a hierarchy on which additional interactive
exploration can be done.

As mentioned earlier, HMA [44] was a pioneering
approach for finding a few dense regions in the data. It
searched for “modes” or local peaks of the underlying
multivariate distribution without restricting this distribu-
tion to any particular parametric shape. It could also
overcome “chaining,” a problem that occurs when two
valid clusters are connected by a chain of spurious points,
which adversely affected some popular methods of its time,
most notably single-link hierarchical clustering.

A remarkable feature of HMA is its ability to provide a
highly compact hierarchy that depicts the (hierarchical)
relationship among the different modes/dense regions in
the data. The compactness fundamentally stems from its
ability to ignore the less dense or “don’t care” points while
building the hierarchy. In many ways, HMA was ahead of
its time; one of the cluster labeling and selection methods
suggested in [44] results in an algorithm whose output is
identical to that of DBSCAN. Furthermore, the method in
[44] also contains a solution for selecting DBSCAN’s
� parameter, which is otherwise difficult to choose
particularly for high-dimensional data sets. We describe
HMA in more detail in Section 3.2.

DHC [30] proposes a hierarchical grouping of biological
time-series data that can be used to visually browse similar
genes. Although the general idea and motivation of [30]
seem related to what we propose in this paper, the
algorithms and the key issues that our method resolves
are significantly different. The cluster hierarchy built by
DHC uses a heuristic of attraction that assumes that the data
is uniformly distributed in the original d-dimensional space.
However, high-dimensional data often resides in much
lower dimensional manifolds [43].

224 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 7, NO. 2, APRIL-JUNE 2010

Note that since most density-based algorithms, including
both DBSCAN and DHC, have difficulties with high-
dimensional inputs, typically, a feature selection/extraction
preprocessing step needs to be employed first to reduce the
dimensionality when clustering high-dimensional data with
a density-based algorithm. In contrast, in our experiments,
we were able to apply Hierarchical Density Shaving (HDS)
directly to the original input space and still obtain good
results.

Specialized algorithms have been proposed that ad-
dress other issues with clustering biological data [31],
[38], [12], [10]. For example, discovering overlapping gene
clusters is important since many genes participate in
multiple biological processes [2], [33]. Gene Shaving [26]
repeatedly applies Principal Component Analysis in a
greedy fashion to find small subsets of correlated genes
and allows them to belong to multiple clusters. For each
discovered subset, Gene Shaving shaves a fraction of the
least relevant genes at each iteration. We reuse the word
“shaving” in Auto-HDS in the same context. However,
Gene Shaving is different from our method in many
ways. Gene Shaving uses the Squared euclidean distance
to measure loss. This measure is not appropriate for
characterizing additive and multiplicative coexpression
patterns [10]. While Gene Shaving requires the number of
clusters k as an input, Auto-HDS finds k automatically.
Gene Shaving greedily finds overlapping clusters one at a
time; the next cluster is found by using orthogonalized
residue obtained after removing the previous cluster. In
contrast, HDS finds all the clusters from a hierarchy built
by one shaving sequence. HDS performs shaving on
points ordered by density, whereas Gene Shaving orders
and shaves genes that have the least correlation with the
principal component.

Table 1 compares some existing approaches with our
framework using key features that are relevant for cluster-
ing large high-dimensional biological data sets.

3 PRELIMINARIES

3.1 Distance Measure

Consider a set X ¼ fxigni¼1 � IRd of data points for which a
relevant symmetric distance measure dSðxi;xjÞ is available
or readily computable.1 Let MS denote the corresponding
n� n symmetric distance matrix, i.e., MSði; jÞ ¼ dSðxi;xjÞ.
The algorithms described in this paper only require MS as
input; an explicit embedding of the data points in IRd is not
required. For a given dS and a positive number r�, the (local)
density �r�ðxÞ at any given point x is proportional to the
number of points in X that are within r� of x:2

�r�ðxÞ / y 2 X : dSðy;xÞ � r�f gj j: ð1Þ

Note that a “rectangular” kernel has been chosen, leading to
certain computational advantages later on.

3.2 Hierarchical Mode Analysis

The HMA algorithm uses the notion of density defined by
(1) to discover the distinct modes corresponding to the
dense regions in X . Given an integer n� < n, HMA
examines the radii of spheres centered at each point and
containing n� points and sequentially marks the points as
being “dense” in ascending order of the corresponding
sphere sizes. Each successive “dense” point is also given a
cluster identity, which either indicates membership to a
previously formed cluster or the creation of a new cluster.

GUPTA ET AL.: AUTOMATED HIERARCHICAL DENSITY SHAVING: A ROBUST AUTOMATED CLUSTERING AND VISUALIZATION... 225

TABLE 1
Salient Characteristics of HDS and Other Related Methods

For large high-dimensional biological data sets. “TC” stands for time complexity.
aFor navg� < n= logðnÞ.
bFor navg� < n= logðnÞ.
cGene DIVER implementation.
dAs implemented by [15] using indexing; the current popular usage. A modification that works well for high-dimensional results in the DS algorithm
(Section 4).
eWe have not found any large-scale applications.
fPearson distance enables application to a variety of biological data sets.
gAs tested and applied popularly.
hSame as DBSCAN.
iAs a consequence of using PCA.
jAlso applicable with cosine similarity and euclidean distance.
kAll the selected clusters need not have the same density.

1. Popular choices for dS include the euclidean distance and “1 minus
Pearson correlation.”

2. Including x itself.

Note that n� serves as a scale parameter [9] and governs the
smoothness of the solution. The key steps are

1. Using the distance matrix MS , determine the
distances dn�ðxÞ from each point x to its n�th nearest
point.

2. Sort the distances dn� in ascending order. The
smallest distance in dn� is the distance between the
“densest” point and its n� nearest neighbors. This
densest point forms the first cluster mode.

3. The next dense point is the point with the next
smallest value in dn� ; r� is set to this value. The
algorithm takes one of three actions:

i The new point does not lie within r� of another
dense point, in which case it initializes a new
cluster mode.

ii The point lies within r� of dense points from one
cluster only, and the point is added to this
cluster.

iii The point is within r� of dense points from
multiple clusters. In this case, the clusters
concerned are fused into one, and the point
joins the fused cluster.

4. A note is kept of the nearest neighbor distance
between clusters. Whenever r� exceeds the distance
between two clusters, the two clusters merge into a
single cluster.

5. Steps 3 and 4 are iterated until all points are
clustered. Note that at the end of the ith iteration,
the i densest points have been assigned cluster
labels.

For the set of labeled points G, at the end of the ith iteration
of HMA, it can be shown that two dense points x, y 2 G
belong to the same cluster if dSðx;yÞ < r�. Consequently, if
there exists a chain of points x1;x2; . . . ;xm�1;xm in G such
that fdSðxl;xl�1Þ < r�gml¼2, then x1 and xm also belong to the
same cluster.

HMA produces a cluster hierarchy that describes the
relationship between clusters in different iterations. When a
point forms a new cluster mode, this corresponds to the
birth or emergence of a cluster; when two clusters merge,
this corresponds to two parent clusters joining to form a
child cluster. If a point simply joins one existing cluster,
then that cluster expands. HMA is able to find a very
compact hierarchy of clusters that corresponds to the actual
“modes” or generating distributions, based on its ability to
treat less dense points as “don’t care” points or outliers at
any given stage.

4 DENSITY SHAVING (DS)

The cluster labels in the ith iteration of HMA cannot be
found without the cluster labels from the previous iteration.
We now introduce an algorithm called DS, which can
directly find the same clustering as any arbitrary iteration of
HMA. Along with the distance matrix MS and n�, DS takes
an additional input parameter fshave, the fraction of least
dense points to shave or exclude from consideration. The
parameter r� is computed using r� ¼ dn�ðncÞ, where dn� is
defined as in step 2 of HMA, and nc ¼ dnð1� fshaveÞe is the

total number of points assigned cluster labels. The output of

the algorithm consists of k clusters labeled 1 to k formed by

the set G of nc densest points and a “don’t care” set O
containing the remaining points that are labeled zero.

DS works by applying a graph traversal process to

discover the clusters formed by the nc densest points. It
simply uses the fact that two points x1 and xm 2 G are in the

same cluster if and only if there exists a chain of dense
points x1;x2; . . . ;xm�1;xm such that fdSðxl;xl�1Þ < r�gml¼2.

This is achieved by first determining the set G and then

assigning cluster labels to the points in G such that the
chaining rule described above is obeyed. Details of the

algorithm, including its pseudocode, are contained in [21].
By using heap sort to find the neighbors within r� of dense

points, an implementation of DS with a time complexity of
Oðmaxðn2; nnavg� logðnÞÞÞ is possible,3 where navg� is the

average neighborhood size within distance r� of the dense

points.
The ability of DS to estimate an r� corresponding to fshave

automatically is very useful in practice, especially when

using Pearson Distance (which scales between zero and
two, see the Appendix), where there is no intuitively

obvious value of r� to select. For example, in our

experiments on very high-dimensional data, we found that
the difference in the value of r� when clustering 10 percent

less points is usually small (e.g., �0.01 for clustering 500
versus 550 points for Gasch genes (see Table 2)) and does

not follow volumetric intuitions of a uniform distribution.
While DS can be applied as a stand-alone clustering

algorithm, we mainly use DS to construct the HDS

algorithm described in Section 5.
Connection between DBSCAN, DS, and HMA. The ith of

the n iterations of HMA corresponds to an r� equal to the
ith smallest value in dn� and results in three types of points:

1) a set of dense points that have cluster labels, 2) a set of
nondense points that are within r� of at least one dense

point, and 3) the rest of the nondense points. If each point in

the second set is instead given the same cluster label as its
nearest dense point (in a specific order to break ties as

suggested in [44]), the resulting clustering is identical to
that of the DBSCAN algorithm. Thus, DS (and the

corresponding iteration of HMA with i ¼ nc) obtains the
same clustering as DBSCAN for points of type 1 but does

not cluster points of type 2, whereas DBSCAN clusters

points of both types 1 and 2. Thus, in DBSCAN, it is
possible to label points that are not dense but rather are on

the periphery of a dense neighborhood.

226 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 7, NO. 2, APRIL-JUNE 2010

3. Section 8 describes an implementation based on this approach.

TABLE 2
A Summary of the Data Sets Used

Mic. stands for gene-expression data from microarray experiments, Euc.
stands for euclidean distance, dp stands for Pearson distance (see (5) in
the Appendix), and D is the distance function used for clustering.

If one were to build a hierarchy using DBSCAN instead
of DS (as described in the next section), there are an
additional number of problems. In the hierarchy, DBSCAN
can let a less dense point be incorporated before a more
dense point. In addition, the neighborhoods of DBSCAN are
order dependent since a nondense point can be the
neighbor of more than one dense point. Moreover, there is
no way to control the number of points that are clustered by
DBSCAN except by trial and error, whereas in DS, this
number is directly provided by specifying fshave.

5 HIERARCHICAL DS (HDS)

In this section, we develop a technique called HDS that
finds a good approximation of the HMA hierarchy and runs
much more quickly than HMA. Conceptually, the core of
HDS can simply be thought of as several calls of DS that
calculate selected iterations of HMA. HDS exploits the
ability of DS to independently compute any iteration of
HMA. This allows HDS to compute only a key subset
of HMA iterations. It further exploits the fact that since the
HMA iteration cluster labels are nested, any subset of HMA
iterations also forms a hierarchy.

Broadly speaking, HDS consists of two stages. First, DS is
run several times4 to compute a subset of the iterations in
the HMA hierarchy. Conceptually, n� is given as input and
held fixed across all runs of DS while fshave is varied. This
creates a set of cluster labels stored in a matrix L, where
Lði; jÞ is the label of the ith point on the jth run of HDS.
Thus, a column of L corresponds to a particular iteration of
HDS. The second stage of HDS involves remapping of the
labels in L so that they correspond to the labels in the HMA
hierarchy. We also apply an additional step to further
smooth and denoise the cluster hierarchy in L, resulting in a
refined version of the HMA hierarchy referred to as the
HDS hierarchy.

Note that because each run of DS is independent, the
iterations of HDS can be run in any order. The HDS
hierarchy is created in a top-down manner as compared to
the HMA hierarchy, which is created bottom-up. The
reason for this will be explained in the next section.

5.1 HDS Iterations and Initial Hierarchy
Construction

Instead of going through all n iterations of the full HMA
hierarchy, HDS uses a geometric scale to select a subset of
these iterations. At each HDS level, the set of dense points
from the previous level is reduced (“shaved”) by a constant
fraction rshave ð0 < rshave � 1Þ. This exponential shaving pro-
cess has the ability to perform finer shavings as clusters get
smaller, thus preserving the ability to discover small-scale
but highly dense structures. Exponential shaving also
naturally leads to a scale-free model selection method
described in Section 6.

For the exponential shaving method, the number of
points ncðtÞ to cluster after t shavings is given by

ncðtÞ ¼ n� ð1� rshaveÞt
� �

: ð2Þ

That is, the clusters obtained on the tth iteration of HDS is
equivalent to running DS with fshave ¼ 1� ð1� rshaveÞt and
some n� given as input. Note that consecutive values of t
can result in the same values of ncðtÞ, particularly as t gets
larger. We ignore such duplicates and only call the DS
routine for unique values of ncðtÞ. The cluster labels output
by the jth DS run (i.e., the jth iteration of HDS) are saved in
the jth column of label matrix L.

The final HDS iteration corresponds to the first t that

gives nc ¼ 1. If we denote this t by tmax, then from (2),

tmax ¼ d� logðnÞ
logð1�rshaveÞe. Note that because duplicate nc values

are possible, the actual number of columns in L can be

smaller than tmax.
HDS versus HMA iterations. Although each distinct

iteration of HDS could be computed in any order, they
are organized by decreasing values of ncðtÞ. The first
iteration of HDS maps to the last iteration of HMA; HMA
iterations are bottom-up, whereas HDS iterations are
defined top-down.

While conceptually, HDS consists of at most

d� logðnÞ
logð1�rshaveÞe calls to DS (and indeed, we have described

it in these terms in the above section), there are various

ways of speeding up HDS compared to this naive

implementation. Two such methods, leading to 1) recursive

and 2) streaming algorithms, are described in detail in [21]

and [19], respectively. It is computationally advantageous

for these variants if the HDS hierarchy is defined top-down,

which is one of the main reasons for the difference from the

bottom-up creation of the HMA hierarchy.

5.2 Extracting a Smoothed HMA Hierarchy

We now describe the second conceptual step of HDS:
relabeling the cluster label matrix L to correspond to the
cluster hierarchy that would have been obtained using
HMA while applying further denoising, resulting in an
HDS cluster hierarchy. In addition to denoising, the HMA
and HDS cluster hierarchy need different interpretations
due to the different directions in which they build the
hierarchies. In the HDS hierarchy, points are removed from
each cluster at each successive iteration. If a cluster splits
into two distinct clusters, one can think of this as a parent
cluster dividing into two child clusters; alternatively, this
can be thought of as a cluster splitting into subcluster
structures. If points are removed from a cluster but no
splitting has occurred, then the clusters in the two iterations
can be considered the same cluster viewed under different
density requirements. If all points from a cluster are
removed, one can think of this as a cluster “disappearing.”
Thus, the number of clusters can increase, stay the same, or
decrease as one progresses through the cluster hierarchy.

Although the first step of HDS produces a subset of the
full HMA iterations, the labels are not based on labels in
previous iterations. Hence, there is no correspondence
between the different iterations computed during the first
stage of HDS. Thus, a relabeling of L needs to be performed.
Such a relabeling can also be viewed as a “compaction” of
the hierarchy generated by HDS since the total number of
cluster IDs in the hierarchy is reduced.

GUPTA ET AL.: AUTOMATED HIERARCHICAL DENSITY SHAVING: A ROBUST AUTOMATED CLUSTERING AND VISUALIZATION... 227

4. Computationally efficient implementations of HDS do not actually run
DS repeatedly but result in the same clustering; we describe HDS in this
manner since this version of HDS is most easily understood.

In addition, we add a refinement that allows the cluster
hierarchy learned by HDS to be even more compact and
noise tolerant compared to the HMA cluster hierarchy. Let
any very small child cluster be called a particle. Specifically,
we define a particle as any dense child cluster of size less
than npart points. Particles are ignored when compacting L.

Starting from the second column of L (i.e., the second
iteration of HDS), relabeling of L proceeds as follows:

1. Find the unique cluster IDs at iteration j� 1.
2. Repeat the following for each of the clusters found in

step 1:

2.1. If all points belonging to a cluster in iteration
j� 1 are either

a. clustered in the same cluster in iteration j,
b. are assigned to the don’t care set O, or
c. are assigned to a cluster that is a particle,

then we assign the child cluster at iteration j the
label of the parent cluster at iteration j� 1. That
is, one can view the cluster on iteration j as a
continuation of the corresponding cluster on
iteration j� 1, barring those points that are now
part of O or a particle.

2.2. If the condition in step 2.1 is not satisfied, then a
cluster has split into two or more child clusters.
Each of these child clusters is assigned a new
cluster ID.

The relabeled label matrix LHDS output by this procedure
represents a smoothed HMA hierarchy, which we refer to
as the HDS hierarchy (see Fig. 3a for an example of LHDS).

For npart ¼ 0, the relabeled HDS hierarchy is identical to
a subset of the HMA hierarchy. A larger npart acts as a
smoothing parameter, somewhat similar to the effect
produced by a larger n�. However, there is a subtle but
important difference between the two; while n� performs
density smoothing, resulting in less significant dense
regions getting ignored (Fig. 1), npart has a smoothing effect
on the HDS hierarchy, preventing inclusion of insignificant
child clusters. The use of npart in HDS is also similar to runt
pruning used in [42].

Since the hierarchy compaction process is extremely fast
ðOðn lognÞÞ, npart can be selected interactively5 by the user
to smooth clustering. In Section 7, we describe an
illustrative example of how this can be achieved in
conjunction with a visualization framework. These proper-
ties make interactive HMA-type analysis for finding small
dense regions practical on much larger data sets.

The supplemental material (which can be found on the
Computer Society Digital Library at http://doi.ieeecompu
tersociety.org/10.1109/TCBB.2008.32) associated with Gup-
ta et al. [24] contains a simple running example of the process
described in this section needed to transform L into LHDS .

6 MODEL SELECTION

We now describe a method for performing automatic model
selection on the clusters found by HDS. In this context,

model selection refers to the ability to automatically select

the number and location of the “best” clusters. We

introduce a novel stability criterion in order to rank the

clusters and a simple algorithm for selecting the best

clusters in terms of this ranking.

6.1 Ranking Clusters

The compact hierarchy generated using the process

described in Section 5.2 makes it easier to select clusters.

For many applications, such a hierarchy by itself may be the

end goal. However, in the absence of any supervision, a

notion of cluster quality that we call stability can be used to

rank clusters, where a higher stability gives a higher rank to

a cluster. We define stability as the number of levels a

cluster exists in the HDS hierarchy.
To derive the formula for stability, we first calculate the

number of shavings required to reach the jth iteration of

HDS. Starting from n points, the number of shavings t at the

rate of rshave required to get nc points in HDS iteration t can

be derived using (2):

t ¼ logðncÞ � logðnÞ
logð1� rshaveÞ

: ð3Þ

Therefore, for a given cluster C, the stability can be

calculated as the number of shavings between the first and

the last iteration that a cluster appears in:

StabðCÞ ¼
log nec
� �

� logðnÞ
logð1� rshaveÞ

�
log ns�1

c

� �
� logðnÞ

logð1� rshaveÞ

¼
log nec
� �

� log ns�1
c

� �

logð1� rshaveÞ
;

ð4Þ

228 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 7, NO. 2, APRIL-JUNE 2010

5. In contrast, modifying n� for smoothing is too slow to be interactive for
large problems.

Fig. 1. The effect on clustering when n� is changed from (a) 5 to (b) 50,
showing the robustness of DS with respect to parameter n�. “o”
represent dense points, and “þ” are outliers. Increasing n� by small
amounts results in a smoothing effect on the density estimation that
prunes the smallest dense regions and grows the larger ones, thus
preserving the large-scale structures in the clustering. Data: Sim-2 (see
Section 9.1).

where s is the iteration of HDS where C first appears, and
e is the last iteration where C survives (after which it
either splits into child clusters or disappears completely).
This notion of cluster stability has the following properties
that makes ranking of clusters of various sizes and
densities using stability robust and meaningful: 1) when
ordering clusters by cluster stability, the ordering is
independent of the shaving rate, and 2) it has the property
of Scale Invariance of Stability. That is, Ordering clusters
by stability results in the same ordering as when ordering
clusters by the fraction of data shaved from the entire data
set between the first iteration where C appears and the last
iteration before C disappears. The first property follows
from the fact that the denominator in (4) is a constant for
all clusters C. The second property is due to the fact that
since the fraction of data shaved between two levels is
constant, the fraction of points shaved between StabðCÞ
levels is also constant and is given by the equation
fCshave ¼ ð1� rshaveÞ

StabðCÞ, which can be derived from (4).
Note that if one were to use a linear shaving rate, i.e.,

shaving off the same number of points in each iteration, the
second property would no longer hold true. This is one of
the main reasons why we have chosen an exponential
shaving rate instead of a linear shaving rate.

Because of our definition of cluster stability, we can now
discover all the significant clusters in the relabeled
hierarchy and can compare all clusters with each other,
including clusters of different sizes, different densities, and
parent and children clusters.

6.2 Selecting Clusters

Picking the most stable clusters proceeds iteratively as
follows: First, make a list of all clusters eligible for selection
(i.e., all clusters that are not particles). Second, pick the
eligible cluster with the largest stability. Third, mark all
parent and child clusters of the selected cluster as ineligible.
Repeat steps 2 and 3 until there are no more eligible
clusters.

The cluster members of the selected clusters are all the
points assigned to that cluster on the first level the cluster
appears in the HDS hierarchy. The points in the “don’t
care” set O are all the points that do not belong to any of the
selected clusters.

HDS is able to select clusters that satisfy different notions
of density, which is not possible using DS. An illustrative
example highlighting this difference is given in Fig. 2,
where HDS and DS are applied to the Sim-2 data set. For
example, in Fig. 2c, DS is used to cluster 580 points, while in
Fig. 2i, HDS with model selection is used to cluster
610 points. While the number of clustered points is roughly
the same, HDS is able to find a larger variety of clusters
since it allows different notions of density.

7 VISUALIZATION WITH HDS

Each row of the n� niter matrix LHDS representing the HDS
hierarchy contains the cluster label of each point in all the
HDS iterations. We now sort the rows of LHDS using a
dictionary sort such that we give higher precedence to
labels with smaller column indices. An example of the effect
of this sorting is shown on a toy example in Fig. 3.

A simple yet powerful visualization of the HDS
hierarchy can be achieved by plotting this sorted matrix,
assigning separate colors to each distinct value in the
matrix, and a background color to the values that are zero.
Fig. 2g shows such a visualization for the 2D Sim-2 data,
while Fig. 4a shows the same for the 6,151-dimensional
Gasch data. Figs. 2h and 4b show visualization of clusters
selected as described in Section 6 and labeled with their
stability.

We call the combination of HDS, model selection, cluster
selection, and visualization the Auto-HDS framework.

Note that just as in HMA, for a range of iterations of HDS
(for example, Fig. 2d versus Fig. 2e), the number of clusters
often does not change, and each of the clusters at iteration
j� 1 simply loses some points to the “don’t care” cluster at
iteration j. However, since HDS uses exponential shaving,
the iterations of HDS are on a log scale (x-axis) as compared
to HMA and therefore show the smaller denser clusters
well. Furthermore, the length of the clusters approximately
corresponds to the stability of the clusters, while the relative
separation of two points or clusters along the y-axis is
proportional to their distance in the original space, since
dense points in the same clusters are closer in the dictionary
sort; the process of labeling used by HDS results in a novel
and amazingly simple projection of high-dimensional data
density and clusters onto a 2D space that is at the same time
tightly integrated with the clustering methodology.

The Auto-HDS visualization also enables easy visual
verification of the cluster selection process. The cluster
selection process selects clusters from the first level that
they occur. This can be seen in the toy example in Fig. 3b,
where the first level of cluster 4 occurs at the fourth column
from left; thus, the member points of cluster 4 are x3, x8,
and x9. Another example of the cluster selection process
with visualization is shown in Figs. 2g and 2h. Fig. 2g shows
the relabeled and sorted HDS hierarchy on the Sim-2 data,
while Fig. 2h shows the corresponding clusters selected
automatically, along with their stability values. Fig. 2i
shows the clusters corresponding to Fig. 2h in the original
2D euclidean space. It can be seen that Auto-HDS finds five
clusters and a compact hierarchy with only eight nodes and
that the results match remarkably well with the actual
dense regions and their relative positions in the Sim-2 data.

It is important to note why the hierarchy produced by
Auto-HDS (e.g., in the Sim-2 example above) is extremely
compact, a key property that distinguishes it from traditional
hierarchical clustering methods. The Auto-HDS hierarchy at
any level corresponds to only the dense subset of the data;
that is, at any given level, the least dense points are assigned
to the “don’t care” set. Therefore, the number of clusters does
not grow rapidly as one moves up or down the Auto-HDS
levels; as we move up the levels, new clusters only appear
when a cluster splits and old less dense clusters disappear. In
contrast, traditional bottom-up hierarchical methods such as
Agglomerative clustering often end up discovering numer-
ous spurious clusters. A well-known example in bioinfor-
matics is a program called Cluster (http://rana.lbl.gov/
EisenSoftware.htm), which uses traditional agglomerative
(hierarchical) clustering. When used along with TreeView
(http://rana.lbl.gov/EisenSoftware.htm), biologists can
prune the hierarchy and extract small relevant gene clusters
but only through a tedious manual process driven by
intuition.

GUPTA ET AL.: AUTOMATED HIERARCHICAL DENSITY SHAVING: A ROBUST AUTOMATED CLUSTERING AND VISUALIZATION... 229

Auto-HDS visualization can also aid in choosing the two
HDS smoothing parameters n� and npart. It is possible to
prevent small insignificant clusters from being found by
selecting either a larger value ofn� or npart. If the user changes

npart, Auto-HDS clustering can be updated fairly quickly
(usually interactively within seconds), since the hierarchy
compaction process is very fast. In contrast, changing n�
requires the regeneration of the HDS clustering. It is

230 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 7, NO. 2, APRIL-JUNE 2010

Fig. 2. (a)-(f) Effect of DS applied with varying nc (fshave) for n� ¼ 20, resulting in a hierarchy of clusters. For n� ¼ 20 and npart ¼ 5, HDS visualization
after (g) cluster identification and (h) cluster selection are shown. Unlike DS, Auto-HDS can discover (i) clusters of different densities. The fourth row
shows Auto-HDS results for n� ¼ 7: (j) shows the degradation of hierarchy compaction with npart ¼ 0, and (k) shows hierarchy compaction and
cluster selection using npart ¼ 30 that result in (l) clusters very similar to those in (i). An rshave of 0.1 was used for HDS. Data set: Sim-2 (see
Section 9.1).

therefore possible to choose a very small n� to start with,
obtain a noisy clustering, and then slowly increase npart until
the clusters obtained stop changing substantially. Once the
clustering appears stable and satisfactory, the user can then
use this npart to select a larger n� and run the HDS clustering
from scratch. An example of using this approach for finding
good clustering on the Sim-2 data is shown in Figs. 2g, 2h, 2i,
2j, 2k, and 2l, where a small n� was first used to generate a
“noisy” hierarchy (Fig. 2j) and was subsequently smoothed
using a larger npart (Fig. 2k). A larger n� was later found to be
sufficient for obtaining a good hierarchy (Fig. 2h). The
hierarchy of clusters found using the two alternatives, i.e., a
larger n� versus a larger npart, shows very similar clustering
results (Fig. 2i versus Fig. 2l), organized in a very similar
topology (Fig. 2h versus Fig. 2k).

To summarize, the visualization provides a powerful
compact informative hierarchy and a spatially relevant
2D projection of a high-dimensional density distribution.
While many visualization tools are built on top of clustering
results, the Auto-HDS visualization directly corresponds to
the clustering methodology. The visual feedback provided
also allows the user to go back, if desired, and adjust the
smoothing parameters npart and n�. Typically, however, the
results are quite stable over a range of smoothing parameter
values.

8 GENE DIVER: A SCALABLE JAVA

IMPLEMENTATION

The Gene DIVER product website is at http://www.ideal.
ece.utexas.edu/~gunjan/genediver.

The results presented in this paper were mostly
produced using a Recursive HDS implementation in
Matlab, which is ideal for rapid prototyping and testing.6

We also implemented a highly scalable and memory-
efficient version of Auto-HDS in Java called Gene DIVER.
With an OðnÞ memory usage, Gene DIVER is scalable on
modest computers for reasonably large clustering problems
and provides a sophisticated SWING-based user interface
that not only makes it usable by nonprogrammers but also
provides the ability to perform interactive clustering. The
Java implementation allows Gene DIVER to run on most

platforms. Some of the features in Gene DIVER that make it
highly usable for clustering in bioinformatics include

1. low memory usage by processing only one row at a
time,

2. ability to reuse previous clustering results on a given
data set, resulting in much faster clustering when
parameters are updated by the user,

3. allowing the user to skip clustering the least dense
data, which again helps in speeding up clustering,

4. ability to select from various distance measures,
5. ability to use a user-supplied distance matrix,
6. allowing a user to interactively browse relevant

clusters of genes, including browsing functional
categories matching a given gene cluster using
FunSpec [37],

7. ability to explore individual genes in a cluster using
BioGRID (http://www.thebiogrid.org/), a recently
updated and popular database of gene functions for
many genomes, and

8. ability to “zoom” the visualization to individual
clusters, a feature especially useful for high-
throughput biological data sets where individual
pure gene clusters are often small, while the number
of genes can be large.

Gene DIVER also provides a command-line interface that
enables other applications to call Gene DIVER.

The supplemental material (which can be found on
the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TCBB.2008.32) accompa-
nying this paper provides more details on using Gene
DIVER [25]. These include instructions on how to use the
Gene DIVER user interface, descriptions of the visualiza-
tion features, details of the biological databases that can
be accessed automatically via Gene DIVER, and more
comments on selecting parameters to explore and cluster
data sets.

9 EXPERIMENTAL EVALUATION

9.1 Data Sets

We tested our framework on two real and one artificial
data sets. In Table 2, which summarizes the properties of
these data sets, true k corresponds to the number of known
classes in the data set, while kA refers to the number of
clusters automatically found by Auto-HDS. The Sim-2 data
set was generated using five 2D Gaussians of different
variances (which roughly correspond to the clusters in
Fig. 2i) and a uniform distribution. Two of the Gaussians
had relatively small mass, and one of them had very low
variance. This data set is useful for verifying algorithms
since the true clusters and their spatial distributions are
known exactly. The Gasch data set [17], a widely used
benchmark for testing clustering algorithms on microarray
data, consists of 6,151 genes of yeast Saccharomyces cervisiae
responding to diverse environmental conditions over
173 microarray experiments. These experiments were
designed to measure the response of the yeast strain over
various forms of stress such as temperature shock, osmotic
shock, starvation, and exposure to various toxins. Each
experiment was categorized into one of 12 different
categories based on the experiment label. Many of the

GUPTA ET AL.: AUTOMATED HIERARCHICAL DENSITY SHAVING: A ROBUST AUTOMATED CLUSTERING AND VISUALIZATION... 231

Fig. 3. Example of the dictionary sort on LHDS for n ¼ 10, niter ¼ 8, and

npart ¼ 0. (a) The unsorted label matrix LHDS . (b) The result of the

sorting.

6. Recursive HDS is a computationally efficient version of the HDS
described in [21].

categories such as “temperature,” “cold shock,” and “heat

shock” are closely related. Furthermore, each of the

173 experiments have a description associated with them.

The Lee data set [32] consists of 591 gene-expression

experiments on yeast obtained from the Stanford Micro-

array database [18] (http://genome-www5.stanford.edu/)

and also contains a Gold standard based on Gene Ontology

(GO) annotations (http://www.geneontology.org). The

232 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 7, NO. 2, APRIL-JUNE 2010

Fig. 4. (a) and (b) Demonstration of Auto-HDS clustering and visualization of Gasch experiments showing the effectiveness of the 2D projection of
the 6,151-dimensional Gasch data; related clusters form “siblings” that are located close to each other; their size, density, and stability differences
are easy to compare. ARI comparisons of DS with other methods on the (j) Gasch and (k) Sim-2 data sets. (f) and (i) Sibling clusters discovered by
Auto-HDS on the Gasch data set. (d),(e), (g), and (h) Expression patterns across 591 experiments (x-axis) for genes of the clusters discovered by
Auto-HDS are highly correlated. (c) The same trend is visible across the 182 genes clustered from the Lee data set using n� ¼ 4, and they are shown
using a popular red-green format used for visualizing gene-expression data; red represents underexpressed genes, while green implies
overexpressed genes. The x-axis represents the 591 experiments, while the y-axis represents the 182 genes. Within the plot are three subplots; the
top and middle plots respectively are shown before and after sorting genes using rows of HDS label matrix L, while the bottom row consists of
182 random genes for comparison. (l) Comparison of DS with other benchmarks on the Lee data set using Overlap Lift. Results for MaxBall K-Means
were averaged over 100, 10, and 3 trials for the Sim-2, Gasch, and Lee data sets.

Gold standard contains 121,406 pairwise links (out of a
total of 15,744,466 gene pairs) between 5,612 genes in the
Lee data that are known to be functionally related. The
Gold standard was generated using levels7 6-10 of the GO
biological process.

9.2 Evaluation Criteria

We use the following three criteria for performing evalua-
tions against labeled data (note that the labels were only
used for evaluations; Auto-HDS, DS, and all benchmarks
were executed in a completely unsupervised setting):

1. Adjusted Rand Index (ARI). This criterion was
proposed in [27] as a normalized version of Rand
Index and returns 1 for a perfect agreement between
clusters and class labels and 0 when the clustering is
as bad as random assignments. ARI can be used on
the Gasch Array and the simulated Sim-2 data set
since the true class labels are available.

2. P Value. We use P value to evaluate individual
clusters of Yeast genes for the Lee data set. Funspec8

is a popular Yeast database query interface on the
Web that computes cluster P values for individual
clusters using the hypergeometric distribution,
representing the probability that the intersection of
a given list of genes with any given functional
category occurs by random chance.

3. Overlap Lift. The GO annotation Gold standard
provides labels for the Lee data set in the form of
a set of pairwise links between functionally related
genes; one could also view these labels as an
undirected graph. It is not possible to use ARI
with such a set of labels. Furthermore, the P value
described above is only relevant for individual
clusters. For evaluating the overall clustering
quality on the Lee data set using the GO
annotation Gold standard, we can compute the
statistical significance of all the clusters simulta-
neously using Overlap Lift, which we introduce as
follows: A cluster containing w genes in one cluster
creates wðw� 1Þ=2 links between genes, since every
point within the cluster is linked to every other
point. Therefore, k clusters of size fwjgkj¼1 would
result in a total of lc ¼

Pk
j¼1 wjðwj � 1Þ=2 links. The

fraction of pairs in the Gold standard that are
linked flinked is known (e.g., for the Lee data set,
flinked ¼ 121;406=15;744; 466 ¼ 0:007711). If we con-
struct a null hypothesis as randomly picking
lc pairs out of nðn� 1Þ=2 possible pairs, we can
expect lnull ¼ flinkedlc pairs to be correctly linked. A
good clustering should result in more correctly
linked pairs than lnull. If ltrue is the number of
correct links observed (which will always be � lc)
in our clustering, then the Overlap Lift is com-
puted as the ratio ltrue=lnull, which represents how
many more times correct links are observed as
compared to random chance. A larger ratio implies
better clustering.

Note that the points in the background or the “don’t
care” clusters were excluded from the evaluation.

9.3 Benchmark Algorithms

Most labeled evaluation measures for clustering are
sensitive to the number of clusters discovered and the
percentage of data clustered. To get around this problem,
we ensure that the benchmark algorithms use the same nc
and k as our methods by applying the following procedure
that we call MaxBall:

1. For a given benchmark clustering algorithm, find
k clusters fCjgkj¼1, where k corresponds to the
number of clusters found by DS for a particular nc.

2. Compute cluster center cj for cluster Cj as the mean
of the cluster’s member points.

3. Assign each of the n points to the cluster center
among fcjgkj¼1 that is closest9 to it.

4. Select nc points closest to their assigned cluster
centers as the final clustering. Reassign the remain-
ing ðn� ncÞ points to the “don’t care” set.

Using MaxBall, we modified K-Means and Agglomerative
clustering as follows:

K-Means. Since the centers output by K-Means are means
of the k clusters generated, we can directly apply step 3 of
MaxBall to obtain a clustering of nc points. We refer to the
resultant algorithm as MaxBall K-Means. Since K-Means uses
the Squared euclidean distance, it is not suitable for
clustering gene-expression data. However, it is easy to
modify K-Means to work with Pearson Distance, a biologi-
cally relevant measure ((5) in the Appendix). This modifica-
tion is similar to that of spherical K-Means [13], except that
the recomputed centers are required to be z-scored (just as
the points are z-scored in (5) in the Appendix) after each
iteration. This modified version of K-Means is used to run
experiments on Lee and Gasch data sets.

Agglomerative. One way to obtain k clusters from
Agglomerative clustering is to split the cluster dendrogram
at a level that gives exactly k clusters. Applying the MaxBall
procedure to clusters found using Agglomerative Single
Link results in MaxBall-SL, while other variants such as
Agglomerative Complete Link and Average Link result in
MaxBall-CL and MaxBall-AL, respectively. The perfor-
mances of average- and complete-link derivatives were
comparable to that of the single-link derivate. Therefore, for
brevity, we present results on Auto-HDS for Single Link
and Complete Link and for DS against Single Link. The
MaxBall procedure was also applied on DS in order to
compare it with Auto-HDS.

DBSCAN. For the sake of discussion, we define coverage
as the fraction of points clustered (i.e., nc=n). As discussed
earlier, the clustering obtained using DBSCAN is similar to
that of DS and identical to a special case of HMA described
in [44]. However, in contrast with DS, it is not possible to
control the coverage directly in DBSCAN, which is essential
for a fair comparison against other methods. Therefore, for
the two DBSCAN parameters, we set MinPts to four as
recommended in [15] and then perform a search for an Eps
that results in the desired fraction of data in clusters.

Comparing DS and Auto-HDS with benchmarks. For
DS, comparisons with other benchmarks were performed
across a range of coverages. Since varying the coverage for

GUPTA ET AL.: AUTOMATED HIERARCHICAL DENSITY SHAVING: A ROBUST AUTOMATED CLUSTERING AND VISUALIZATION... 233

7. Note that the term “level” is used here only in the context of the GO
annotation and should not be confused with levels of HDS.

8. http://funspec.med.utoronto.ca/. 9. Using the same distance measure as that used by DS.

DS results in varying k, the corresponding k is used as an
input to the benchmark algorithms except for DBSCAN.

For Auto-HDS, which is a deterministic algorithm, it is
not possible to vary nc; the corresponding k and nc output
by Auto-HDS are used along with the MaxBall procedure
described earlier to obtain the results summarized in
Table 3, except for DBSCAN for which we used the same
procedure to control the coverage as that for DBSCAN
comparisons with DS. Note that the number of clusters k
cannot be controlled for DBSCAN.

9.4 Results

General results. Figs. 4j and 4k compare DS with
the other three benchmark algorithms on the Gasch and
Sim-2 data set using ARI over a range of fraction of data
clustered (x-axis), respectively, while Fig. 4l shows a
performance comparison on the Lee data set using
Overlap Lift. In general, for lower coverages that
correspond to dense regions, DS tended to perform very
well. Auto-HDS, which selects clusters automatically,
performed better than the other methods for detecting
the most significant dense regions in the data, and the
discovered k matched well with the number of classes
(Table 2). Furthermore, Auto-HDS clusters also matched
well with the true labels in the target classes. This can be
seen in the highly correlated expression patterns across
gene experiments (e.g., Figs. 4d, 4e, 4g, and 4h), when
evaluating against known functional categories (Table 4)
or class labels (Figs. 4f, 4i, 2i, and 2l and Table 3). It
should be stressed that since k is discovered by our
framework and is given as an input to the benchmarks
(except for DBSCAN where it is not possible to directly
control k), they are not a viable alternative to our
framework for finding dense regions automatically. Also,
DBSCAN tended to oversplit the clusters for the Sim-2
data set, resulting in a much larger number of clusters
(between 17 and 48) than the number of classes, which
was five.

Robust model parameters. Auto-HDS is also very robust
to the choice of the two major model parameters n� and
npart (Fig. 2i versus Fig. 2l). For high-dimensional gene-
expression data, usually small values for both work well.
Furthermore, rshave is only a speed parameter and does not
affect the shape of the HMA hierarchy discovered; smaller
values of the shaving rate rshave give slightly higher
resolution hierarchies and more precise cluster boundaries.
For all experiments, we used rshave in the range of 0.01
and 0.05.

Clustering Gasch experiments. The hierarchy found by
Auto-HDS on the extremely high-dimensional Gasch data

set is quite compact and easy to interpret (Fig. 4a). Many of
the 11 clusters discovered by Auto-HDS (Fig. 4b) contain
highly correlated experimental descriptions, while others
that form siblings have closely related descriptions. For
example, a particularly interesting pair of sibling clusters A
and B are shown in Figs. 4f and 4i. Both clusters contain
heat shock experiments. However, the heat shock experi-
ments in cluster A involve a constant heat (37 degrees) and
variable time, while the heat shock experiments in cluster B
involve variable heat and constant time. Additional such
examples can be found at our website.

Clustering genes, Lee. Automating clustering for biolo-
gical data sets in general, and gene-expression data sets in
particular, is a hard problem that motivated the design of
Auto-HDS. One of the critical issues facing biologists
analyzing the vast stream of biological data is that obtaining
pure gene clusters often requires significant manual prun-
ing of the clustering results. With n� ¼ 4 and npart ¼ 2, Auto-
HDS found nine clusters in the Lee data set formed by 182
out of 5,612 genes. After pruning such vast numbers of
genes, most of the clusters were very pure when evaluated
using FunSpec and show very small P values. Some of the
high-purity clusters with extremely low P values are
summarized in Table 4. More details on these clusters are
available online on our website. The most surprising among
these clusters is Cluster 6, where 111 out of the 120 genes in
the cluster belong to a known biological process category
—Cytoplasmic ribosomes that has only 138 known members.
Given that there are 5,612 genes to pick from, this accuracy
is remarkable.

Another popular approach for quickly verifying the
quality of gene-expression clustering is by visualizing the
clustered genes in the original feature space. For four of
the clusters in Table 4, Figs. 4d, 4e, 4g, and 4h show the
gene-expression level of a sample of genes from the
corresponding cluster across 591 experiments in the Lee
data set. Clearly, the genes are highly correlated. A high
degree of correlation is also visible in the middle subplot
in Fig. 4c, where all the 182 genes were sorted using the
discovered HDS hierarchy.

9.5 Additional Results

Expanded results from the above set of experiments are
available online.10 Additional experiments have been
performed by other researchers on other types of biological
data using the Gene DIVER software. Work by one of the
authors and a colleague on clustering phylogenetic data is

234 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 7, NO. 2, APRIL-JUNE 2010

10. http://www.ideal.ece.utexas.edu/~gunjan/hds/readme.html.

TABLE 3
Comparisons of the Benchmarks with Auto-HDS Using ARI on

Gasch and Sim-2 Data

For Gasch data, k ¼ 11, and the coverage was 62.4 percent. For Sim-2
data, k ¼ 5, and the coverage was 48.4 percent.

TABLE 4
Example High-Purity Clusters from Auto-HDS, Lee Data Set

Note that Funspec returns multiple categories (column 3) with low
P values for a given cluster; ðx=yÞ stands for the coverage, where we
found x out of y known members of a category.

included in the supplemental material (which can be found
on the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TCBB.2008.32) [36]. The
goal of the experiments is to identify coconserved func-
tional gene groupings by clustering phylogenetic profiles of
20 different species of yeast. Similar to the results presented
above, the results on this data set indicate that Auto-HDS
can find compact pure clusters that can be easily explored
and potentially utilized for predicting new functions for less
understood genes. In comparison, traditional methods that
do not prune out noise are less easily interpretable.

In addition, [7] utilizes Gene DIVER to construct a
3D map of human and mouse genomes. The authors use
Gene DIVER to identify salient regions in the map and to
validate the preservation of these regions in the map across
the two species.

10 POSSIBLE EXTENSIONS TO AUTO-HDS

One extension of traditional clustering algorithms is
semisupervised clustering, which is able to make use of
various kinds of labeled information. This information may
be in the form of class labels or various kinds of constraints
(e.g., must-link constraints, which list points that must be in
the same cluster) [6]. A semisupervised Auto-HDS is
possible.

The selection of most stable clusters in Auto-HDS is
currently constrained to avoid selecting a parent and a child
cluster simultaneously. This strategy maximizes the num-
ber of most stable and distinct clusters discovered and,
when clustering genes, is well suited for selecting all of the
most specific functional groupings of genes identified in the
data. However, other equally valid selection approaches
exist that would be better suited for other cluster mining
goals. For example, if the goal is to find the most stable
clusters and their topology, then performing an uncon-
strained selection of the k most stable clusters would result
in a set of clusters that are related to each other in a
hierarchical manner—a concept that is exploited in [7].

Finding overlapping gene clusters is also of great
interest to biologists. Though the splitting criteria used in
Auto-HDS results in nonoverlapping clusters, it is possible
to extend the final set of selected clusters by selecting a
splitting point from an earlier HDS iteration, resulting in
overlapping clusters. We are currently working toward
incorporating a user-interactive version of this process into
Gene DIVER. Other features in the works include the ability
to automatically label clusters with known gene function
annotations and the ability to cluster and visualize gene
network data.

Finally, there is a connection between Auto-HDS (and
density-based clustering in general) and outlier detection
algorithms that seek to find rarely occurring events. In
particular, the local outlier factor [8] is an outlier detection
technique that uses a notion of density to define outliers.
While density-based clustering and outlier detection are not
the same problem, it is worth investigating whether one can
adapt techniques used in Auto-HDS (e.g., visualization) for
outlier detection problems.

11 CONCLUDING REMARKS

In this paper, we have introduced Auto-HDS, a framework
that is well suited for unsupervised learning on large data

sets such as those in bioinformatics, where the solutions of
interest are often hidden in a small subset of the data. A key
property of our framework is the ability to find a compact
hierarchy of clusters. This stems from the ability to ignore
less dense points while generating the hierarchy. Auto-HDS
is also able to automatically discover the size, the number,
and the location of dense clusters. In particular, remarkably
pure clusters of functionally related genes have been
discovered by Auto-HDS from both microarray data and
phylogenetic profile data.

The Gene DIVER product, a highly scalable and
memory-efficient implementation of Auto-HDS, includes
several key innovations that make interactive clustering of
large biological data sets practical on modest computers.
This tool is already being used by other researchers, and we
hope that it will eventually become a popular and versatile
clustering tool for bioinformatics applications.

APPENDIX

PEARSON DISTANCE FOR BIOLOGICAL DATA SETS

An example of a symmetric distance measure is Pearson
Distance ðdpÞ [20] computed as ð1� pÞ, where p is the Pearson
Correlation, a popular similarity measure for clustering
gene-expression and other biological data [39], [34]. It can
be shown that Pearson Distance is equal to the Squared
euclidean distance between z-scored11 points normalized by
2ðd� 1Þ:

dpðx;yÞ ¼
kzðxÞ � zðyÞk2

2ðd� 1Þ ; ð5Þ

where z represents the z-scoring function. Pearson Correla-
tion is popular among biologists for clustering genes since it
captures correlation that is invariant to linear scaling; it is
useful for a variety of high-throughput biological data sets
such as gene expression, protein expression, phylogenetic
profiles, and protein mass spectroscopy, among others. We
use the Pearson Distance on the biological data presented in
this paper. In particular, it is reasonable to do so with HMA
(and for our Auto-HDS framework derived from HMA) for
the following reasons: 1) the triangle inequality property is
exploited indirectly in the graph-traversal process that
connects the clusters in HMA, 2)

ffiffiffi
d
p

p gives a semimetric
that is the euclidean distance between z-scored points, and
3) the clustering using

ffiffiffi
d
p

p and dp would be identical for the
density kernel used in HMA (1) since the relative ordering
between points is the same for

ffiffiffi
d
p

p and dp. For the same
reasons, it can be shown that (1� cosine similarity) [13]
would also be an appropriate distance measure with HMA
and Auto-HDS.

ACKNOWLEDGMENTS

This research was supported by US National Science
Foundation Grants IIS-0325116, IIS-0307792, and IIS-
0713142. The authors are grateful to Edward Marcotte,
Insuk Lee, and Kriston L. McGary (http://polaris.icmb.
utexas.edu) for providing many valuable insights.

GUPTA ET AL.: AUTOMATED HIERARCHICAL DENSITY SHAVING: A ROBUST AUTOMATED CLUSTERING AND VISUALIZATION... 235

11. Normally performed between points across a dimension. Here, we
perform it between dimensions for each data point.

REFERENCES

[1] M. Ankerst, M.M. Breunig, H.-P. Kriegel, and J. Sander, “OPTICS:
Ordering Points to Identify the Clustering Structure,” Proc. ACM
SIGMOD ’99, pp. 49-60, 1999.

[2] A. Banerjee, S. Basu, C. Krumpelman, J. Ghosh, and R. Mooney,
“Model Based Overlapping Clustering,” Proc. ACM SIGKDD ’05,
pp. 100-106, 2005.

[3] A. Banerjee, I. Dhillon, J. Ghosh, S. Merugu, and D. Modha, “A
Generalized Maximum Entropy to Bregman Co-Clustering and
Matrix Approximation,” J. Machine Learning Research, vol. 8.

[4] A. Banerjee, I. Dhillon, J. Ghosh, and S. Sra, “Clustering on
the Unit Hypersphere Using Von Mises-Fisher Distributions,”
J. Machine Learning Research, vol. 6, pp. 1345-1382, 2005.

[5] A. Banerjee, S. Merugu, I. Dhillon, and J. Ghosh, “Clustering
with Bregman Divergences,” J. Machine Learning Research, vol. 6,
pp. 1705-1749, 2005.

[6] S. Basu, A. Banerjee, and R.J. Mooney, “Semi-Supervised Cluster-
ing by Seeding,” Proc. 19th Int’l Conf. Machine Learning (ICML ’02),
pp. 27-34, 2002.

[7] M. Bellis and J. Hennetin, “Application of Gene DIVER to the
Study of Geometrical Representations of Gene Expression
Covariation,” IEEE/ACM Transaction Computational Biology and
Bioinformatics, supplement 3, 2008.

[8] M.M. Breunig, H.-P. Kriegel, R.T. Ng, and J. Sander, “LOF:
Identifying Density-Based Local Outliers,” Proc. ACM
SIGMOD ’00, pp. 93-104, 2000.

[9] S.V. Chakaravathy and J. Ghosh, “Scale Based Clustering
Using a Radial Basis Function Network,” IEEE Trans. Neural
Networks, vol. 2, no. 5, pp. 1250-1261, Sept. 1996.

[10] H. Cho, I.S. Dhillon, Y. Guan, and S. Sra, “Minimum Sum-Squared
Residue Co-Clustering of Gene Expression Data,” Proc. Fourth
SIAM Int’l Conf. Data Mining (SDM ’04), pp. 114-125, Apr. 2004.

[11] I. Dhillon, S. Mallela, and D. Modha, “Information-Theoretic
Co-Clustering,” Proc. ACM SIGKDD ’03, pp. 89-98, 2003.

[12] I.S. Dhillon, E.M. Marcotte, and U. Roshan, “Diametrical Cluster-
ing for Identifying Anti-Correlated Gene Clusters,” Bioinformatics,
vol. 19, pp. 1612-1619, 2003.

[13] I.S. Dhillon and D.S. Modha, “Concept Decompositions for
Large Sparse Text Data Using Clustering,” Machine Learning,
vol. 42, no. 1-2, pp. 143-175, Jan.-Feb. 2001.

[14] A. Enright, S. Van Dongen, and C. Ouzounis, “An Efficient
Algorithm for Large-Scale Detection of Protein Families,” Nucleic
Acids Research, vol. 30, no. 7, pp. 1575-1584, 2002.

[15] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A Density-Based
Algorithm for Discovering Clusters in Large Spatial Databases
with Noise,” Proc. ACM SIGKDD ’96, pp. 226-231, 1996.

[16] B. Everitt, Cluster Analysis. Heinemann Educational Books, 1974.
[17] A.P. Gasch et al., “Genomic Expression Programs in the Response

of Yeast Cells to Environmental Changes,” Molecular Biology of the
Cell, vol. 11, no. 3, pp. 4241-4257, Dec. 2000.

[18] J. Gollub et al., “The Stanford Microarray Database: Data
Access and Quality Assessment Tools,” Nucleic Acids Research,
vol. 31, pp. 94-96, 2003.

[19] G. Gupta, “Robust Methods for Locating Multiple Dense Regions
in Complex Datasets,” PhD dissertation, Univ. of Texas at Austin,
Dec. 2006.

[20] G. Gupta and J. Ghosh, “Robust One-Class Clustering Using
Hybrid Global and Local Search,” Proc. 22nd Int’l Conf. Machine
Learning (ICML ’05), pp. 273-280, Aug. 2005.

[21] G. Gupta, A. Liu, and J. Ghosh, “Automatic Hierarchical Density
Shaving and Gene DIVER,” Technical Report IDEAL-TR05, Dept.
Electrical and Computer Eng., Univ. of Texas at Austin, http://
www.lans.ece.utexas.edu/techreps.html, 2006.

[22] G. Gupta, A. Liu, and J. Ghosh, “Clustering and Visualization of
High-Dimensional Biological Datasets Using a Fast HMA
Approximation,” Proc. Artificial Neural Networks in Eng. Conf.
(ANNIE ’06), Nov. 2006.

[23] G. Gupta, A. Liu, and J. Ghosh, “Hierarchical Density Shaving: A
Clustering and Visualization Framework for Large Biological
Datasets,” Proc. IEEE ICDM Workshop Data Mining in Bioinformatics
(DMB ’06), pp. 89-93, Dec. 2006.

[24] G. Gupta, A. Liu, and J. Ghosh, “An Extended Example of
Creating LHDS ,” IEEE/ACM Trans. Computational Biology and
Bioinformatics, supplement 4, 2008.

[25] G. Gupta, A. Liu, and J. Ghosh, “Gene DIVER: Gene Density
Interactive Visual ExploreR,” IEEE/ACM Trans. Computational
Biology and Bioinformatics, supplement 1, 2008.

[26] T. Hastie et al., “Gene Shaving as a Method for Identifying
Distinct Sets of Genes with Similar Expression Patterns,” Genome
Biology, vol. 1, pp. 1-21, 2000.

[27] L. Hubert and P. Arabie, “Comparing Partitions,” J. Classification,
pp. 193-218, 1985.

[28] A.K. Jain and R.C. Dubes, Algorithms for Clustering Data. Prentice
Hall, 1988.

[29] H. Jenq-Neng, L. Shyh-Rong, and A. Lippman, “Nonparametric
Multivariate Density Estimation: A Comparative Study,” Science,
vol. 42, no. 10, pp. 2795-2810, Oct. 1994.

[30] D. Jiang, J. Pei, and A. Zhang, “DHC: A Density-Based
Hierarchical Clustering Method for Time Series Gene Expression
Data,” Proc. Third IEEE Int’l Symp. BioInformatics and BioEngi-
neering (BIBE ’03), p. 393, 2003.

[31] L. Lazzeroni and A.B. Owen, “Plaid Models for Gene Expression
Data,” Statistica Sinica, vol. 12, no. 1, pp. 61-86, Jan. 2002.

[32] I. Lee, S.V. Date, A.T. Adai, and E.M. Marcotte, “A
Probabilistic Functional Network of Yeast Genes,” Science,
vol. 306, pp. 1555-1558, 2004.

[33] S.C. Madeira and A.L. Oliveira, “Biclustering Algorithms for
Biological Data Analysis: A Survey,” IEEE/ACM Trans. Computa-
tional Biology and Bioinformatics, vol. 1, no. 1, pp. 24-45, Jan.-Mar.
2004.

[34] R. Mansson, P. Tsapogas, M.A. et al., “Pearson Correlation
Analysis of Microarray Data Allows for the Identification of
Genetic Targets for Early B-Cell Factor,” J. Biological Chemistry,
vol. 279, no. 17, pp. 17905-17913, Apr. 2004.

[35] E.M. Marcotte, I. Xenarios, A.M. van Der Bliek, and D. Eisenberg,
“Localizing Proteins in the Cell from Their Phylogenetic
Profiles,” Proc. Nat’l Academy of Sciences USA, vol. 97, no. 22,
pp. 12115-12120, Oct. 2000.

[36] K.L. McGary and G. Gupta, “Discovering Functionally Related
Genes in Yeast Using Gene DIVER on Phylogenetic Profile
Data,” IEEE/ACM Trans. Computational Biology and Bioinformatics,
supplement 2, 2008.

[37] M.D. Robinson, J. Grigull, N. Mohammad, and T.R. Hughes,
“FunSpec: A Web-Based Cluster Interpreter for Yeast,” BMC
Bioinformatics, vol. 35, no. 3, Nov. 2002.

[38] E. Segal, B. Taskar, A. Gasch, N. Friedman, and D. Koller, “Rich
Probabilistic Models for Gene Expression,” Bioinformatics, vol. 17,
no. 1, pp. 243-252, 2003.

[39] R. Sharan and R. Shamir, “Click: A Clustering Algorithm with
Applications to Gene Expression Analysis,” Proc. Eighth Int’l Conf.
Intelligent Systems for Molecular Biology (ISMB ’00), pp. 307-316,
2000.

[40] D. Stoll, J. Bachmann, M.F. Templin, and T.O. Joos, “Microarray
Technology: An Increasing Variety of Screening Tools for
Proteomic Research,” Drug Discovery Today: TARGETS, vol. 3,
no. 1, pp. 24-31, Feb. 2004.

[41] A. Strehl and J. Ghosh, “Relationship-Based Clustering and
Visualization for High-Dimensional Data Mining,” INFORMS J.
Computing, vol. 15, no. 2, pp. 208-230, 2003.

[42] W. Stuetzle, “Estimating the Cluster Tree of a Density by
Analyzing the Minimal Spanning Tree of a Sample,” J. Classifica-
tion, vol. 20, pp. 25-47, 2003.

[43] J.B. Tenenbaum, V. de Silva, and J.C. Langford, “A Global
Geometric Framework for Nonlinear Dimensionality Reduction,”
Science, vol. 290, pp. 2319-2323, 2000.

[44] D. Wishart, “Mode Analysis: A Generalization of Nearest
Neighbour Which Reduces Chaining Effects,” Proc. Colloquium
Numerical Taxonomy, pp. 282-308, Sept. 1968.

Gunjan Gupta received the PhD degree from
the Department of Electrical and Computer
Engineering, University of Texas at Austin, in
2006. His research interests include data mining
and learning in situations where the data is
large, high-dimensional, and noisy. He has
worked as a data miner for over a decade at
several companies, including Standard and
Poors, i2 Technologies, and Infosys Technolo-
gies. He is currently a machine learning scientist

at Amazon.com, Seattle, Wash. He is a member of the IEEE.

236 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 7, NO. 2, APRIL-JUNE 2010

Alexander Liu received the BS, MS, and PhD
degrees in electrical and computer engineering
from the University of Texas at Austin in 2001,
2004, and 2009, respectively. He has been
supported by a number of fellowships, including
the Texas Excellence Award for Scholarship and
Leadership, a Microelectronics and Computer
Development Fellowship, and the Thrust Fellow-
ship. His research interests include data mining,
particularly cost-sensitive learning.

Joydeep Ghosh received the BTech degree
from the Indian Institute of Technology (IIT),
Kanpur, in 1983 and the PhD degree from the
University of Southern California in 1988). He
joined the faculty of the University of Texas at
Austin (UT-Austin) in 1988, where he is currently
the Schlumberger centennial chair professor of
electrical and computer engineering in the
Department of Electrical and Computer Engi-
neering. He is the founder-director of the

Intelligent Data Exploration and Analysis Laboratory (IDEAL). He has
authored or coauthored more than 200 refereed papers, including more
than 50 full-length journal articles. He has received 10 best paper
awards, including the 2005 UT-Coop Society’s Best Research Paper
across all departments, the Best Theory Paper at SDM 04, the Best
Applications Paper at ANNIE ’97, and the 1992 Darlington Award for
best paper among all IEEE CAS publications. He is a program cochair
for 2006 SIAM International Conference on Data Mining, and the
founding chair of the IEEE Computer Intelligence Society’s Technical
Committee on Data Mining. He is a fellow of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

GUPTA ET AL.: AUTOMATED HIERARCHICAL DENSITY SHAVING: A ROBUST AUTOMATED CLUSTERING AND VISUALIZATION... 237

