
CSE2050 - Programming in a
Second Language

Assignment 1: Rational Numbers

January 17, 2018

1 Submission

• Due Date: January 30th, 9:30am

• Deliverable: rational.cpp (case sensitive)

• Submit on Canvas.

2 Description

The goal of this assignment is to implement a C++ program that can perform basic math-
ematical operations on rational numbers (represented as fractions in the form a

b
; b 6= 0)

using a number of functions (described below). These operations include:

• Adding two fractions.

• Subtracting one fraction from another.

• Multiplying two fractions.

• Dividing one fraction by another.

• reducing a fraction to its simplest form (i.e., when the greatest common divisor
(GCD) of its numerator and denominator is 1).

3 Important Notes

Here are some points that we consider when grading your submission..

• Submit only your source code (rational.cpp). No other files are needed (or graded!).

1

https://en.wikipedia.org/wiki/Rational_number

• Make sure your code runs on our server (code01.fit.edu). Your program will be
compiled using the following flags:

g++ −Wall −g −std=c++11 −o r a t i o n a l r a t i o n a l . cpp

• To help the automated grading system to correctly read the results of your code,
please make sure you follow the format shown in the examples below (including
extra spaces and/or extra characters in the output will cause your results to be
flagged as incorrect, which will then have to be re-graded manually). Please do not
print out any prompts (like “Enter a number”,.. etc) or other comments (like “the
result is”,..etc).

• Please make sure your program handles the input correctly. The problem description
for each assignment provides details about the method to use (e.g., from a file, or
from the command-line,..etc) and the format of that input. If, for example, the input
is to be provided from the command-line (as in this project), but your program can
only read input from standard input, then it will fail our tests (will affect your
grade).

4 Implementation details

4.1 Input

As shown in the examples below, the program receives 5 integers from the command line
as follows:

. / r a t i o n a l n1 d1 n2 d2 op code

The first two integers (n1 and d1) represent the first fraction ((n1
d1

). The second pair (n2
and d2) represent the second fraction ((n2

d2
). The last integer (op code) determines the

operation to be performed on those two fractions. op code can have one of the following
values:

op code operation
1 Addition ((n1

d1
+ n2

d2
))

2 Subtraction ((n1
d1
− n2

d2
))

3 Multiplication ((n1
d1
× n2

d2
))

4 Division ((n1
d1
÷ n2

d2
))

For details on how to read and handle command line arguments, you can refer to
cplusplus.com

2

http://www.cplusplus.com/articles/DEN36Up4/

4.2 Output

The program prints out a fraction (in the lowest terms) that represents the result of the
requested operation, followed by the new line character (as shown in the examples below).

Please note that there are no spaces preceding or contained within this fraction. To
pass the automated test cases, your output should match the examples character-by-
character (i.e., don’t print other things, just the fraction).

4.3 Suggested functions

The functions you need to implement this assignment might include the following:

1.
int GCD(int a , int b)

This function calculates the gcd of a and b using Euclid’s algorithm (recursively).
Other (non recursive) methods to calculate the gcd might not receive full mark (one
of the goals of this assignment is to practice recursion).

2.
int LCM(int a , int b)

Calculates the least common multiple (LCM) of the two numbers a and b.

3.
void s i m p l i f y (int n , int d)

Reduces the numerator and the denominator (n and d) to the lowest possible values
using their gcd. But, can we change the values of function parameters?

4.
bool i s i n l o w e s t t e r m s (int n , int d)

Returns true if the fraction n
d

is already in the lowest terms, returns false otherwise.

5.
s t r i n g r a t i o n a l t o s t r i n g (int n , int d)

Returns a string representation of the fraction in the form n/d. Only add the ”/”
and the denominator if the latter is not 1. The return value does not contain any
spaces or other characters.

6.
s t r i n g r a t i o n a l a d d i t i o n (int n1 , int d1 , int n2 , int d2)

Adds two fractions (n1
d1

+ n2
d2

) (you can call the LCM() function to calculate the
LCM of the denominators d1 and d2). Returns the result as a string in the required
format (can we return the result as two separate integers instead?).

7.
s t r i n g r a t i o n a l s u b t r a c t i o n (int n1 , int d1 , int n2 , int d2)

3

https://en.wikipedia.org/wiki/Greatest_common_divisor#Using_Euclid.27s_algorithm

Subtracts two fractions (n1
d1
− n2

d2
) and returns the result as a string. Can we utilize

the rational addition() function to calculate this?
8.

s t r i n g r a t i o n a l m u l t i p l i c a t i o n (int n1 , int d1 , int n2 , int d2)

Multiplies two fractions (n1
d1
× n2

d2
). Returns the result as a string.

9.
s t r i n g r a t i o n a l d i v i s i o n (int n1 , int d1 , int n2 , int d2)

Divides two fractions (n1
d1
÷ n2

d2
). Returns the result as a string.

10.
int main ()

Reads and parses command-line arguments, calls the appropriate method to perform
the requested operation, and prints the result on the standard output device (cout).
The program terminates after printing this output.

5 Sample input/output

Each of the following examples shows the command used to execute the program (with
the input values) on the first line, and the result printed by the program for that input
on the second line.

. / r a t i o n a l 3 4 1 2 2
1/4

. / r a t i o n a l 2 5 1 10 1
1/2

. / r a t i o n a l 2 5 1 10 3
1/25

. / r a t i o n a l 2 5 10 20 2
−1/10

. / r a t i o n a l 40 100 5 2 3
1

. / r a t i o n a l −3 5 1 9 3
−1/15

. / r a t i o n a l 4 1 2 2 4
4

. / r a t i o n a l 3 6 −2 5 1
1/10

4

6 Rubric

Criterion Possible
points

Excellent
(max. points)

Satisfactory (partial
points)

Unsatisfactory
(no points)

Delivery 10% on time, using correct
file name (see top)

wrong file name

Compiles 10% compiles on
code01.fit.edu with no
errors

does not
compile

Runs 10% runs on code01.fit.edu
with no run-time errors
(missing files,..etc)

does not execute

Completion 25% all functions
implemented

Calculating
GCD

10% implemented Euclid’s
algorithm (recursively)

implemented another
non-recursive
algorithm

Output
format

10% correct output in the
correct format

correct output in the
wrong format (not
simplified, contains
extra characters,
...etc)

wrong output

Test cases 25% passes all test cases passes some test cases fails all test
cases

5

	Submission
	Description
	Important Notes
	Implementation details
	Input
	Output
	Suggested functions

	Sample input/output
	Rubric

