
CSE2050 - Programming in a

Second Language

Assignment 2: Dynamic Memory

January 30, 2018

1 Submission

• Due Date: February 13th, 09:30am

• Deliverable: numberList.cpp

• Submit on Canvas.

2 Description

This problem is primarily about computing GCD and LCM of a sequence of integers stored
in a linked list. In this assignment, we will focus on classes and Dynamic Memory Allocation.
The goal is to build Singly Linked List with a variable number of integers, and perform some
mathematical operations on those numbers (as described below) using C++ .

The linked list consists of a number of identical Nodes, each of which contains (as shown in
Figure 1,) a pointer (*next) that points to the next node. The ”next” pointer of the last node
has a value of nullptr (represented below in Figure 2 with the right most node with an X).

The head pointer keeps track of the first node in the list, and we can reach the other nodes
by following the *next pointers.

3 Important Notes

Here are some points that we consider when grading your submission..

• Submit only your source code (.cpp and .h files). No other files are needed (or graded!).

Figure 1: A node

ptr

value

simplified

*next

1

http://www.cplusplus.com/doc/tutorial/classes/
http://www.cplusplus.com/doc/tutorial/dynamic/
https://en.wikipedia.org/wiki/Linked_list

Figure 2: An example of a linked list

head

12

0

27

0

80

0

21

0

• Make sure your code runs on our server (code01.fit.edu). Your program will be compiled
using the following flags:

g++ -Wall -g -std=c++11 -o numberList numberList.cpp

• To help the automated grading system to correctly read the results of your code, please
make sure you follow the format shown in the examples below (including extra spaces
and/or extra characters in the output will cause your results to be flagged as incorrect,
which will then have to be re-graded manually). Please do NOT print out any prompts
(like “Enter a number”,.. etc) or other comments (like “the result is”,..etc).

• Please make sure your program handles the input correctly. The problem description for
each assignment provides details about the method to use (e.g., from a file, or from the
command-line,..etc) and the format of that input. If, for example, the input is to be
provided from the command-line (as in this project), but your program can only read
input from standard input, it will fail our tests (will affect your grade).

4 Implementation details

4.1 Input

A variable number of integers is provided from the command line, as follows:

./numberList a b c d ...

The program receives these integers and uses them to create the linked list. Note that, for the
purpose of this assignment, the order you choose to store these numbers in the list does not
affect the results (why?).

More details on reading and handling command line arguments, can be found on cplus-
plus.com

4.2 Output

For each sequence of numbers from command line, the program prints out the following two
lines:

• The first line contains (separate the values with a single space):

1. the size of the list (number of nodes),

2. the product of all numbers,

3. the list’s GCD, and

4. the list’s LCM.

2

http://www.cplusplus.com/articles/DEN36Up4/
http://www.cplusplus.com/articles/DEN36Up4/

• The second line contains the simplified numbers (separated by single spaces) printed in
the reverse order (despite what we mentioned in class about the order not affecting the
results, these numbers are required to be printed in the reverse order).

Please note that the automated test cases are evaluated based on a character-by-character
comparison (i.e., don’t print other things, just the values mentioned above).

4.3 General notes

• Practicing how to find manually the GCD and LCM for lists of numbers can help greatly
implementing the most efficient (and the correct!) algorithm to solve these problems.

• Only implementations based on Dynamic Memory allocation will receive full points.

• The value field stores the number read from input, and the simplified field is to store the
simplified version of this number, with respect to the common GCD of the list (initialized
to zero).

• implement the node as a class with both value and simplified as private fields (you will
need public getter and setter methods to access these fields).

More on encapsulation and data hiding can be found here

• You may use any algorithm you prefer to calculate the GCD and the LCM of the list.

LCM of multipe numbers (i.e., >2) can be computed sequentially using an approach
similar to this:

lcm(a,b,c) = lcm(a,lcm(b,c))

• After creating the linked list with the provided integers (stored in reverse order, i.e., head
points to the the node with the last integer from command line), The following operations
are required:

– Get the size of the list (number of nodes in it),

– Get the product of all the numbers,

– Calculate the list GCD (i.e., for all the numbers in the list),

– Simplify all the numbers in the list (with respect to the common GCD), and

– Calculate the list LCM (i.e., for all the numbers in the list).

4.4 Example

For example, running the program with the following arguments..

./numberList 10 60 1000 50 20

Will create the linked list in Figure 3:
Note that, in this example:

1. the size of the list is 5

2. the product of all numbers is 600,000,000

3

https://www.tutorialspoint.com/cplusplus/cpp_data_encapsulation.htm

Figure 3: The linked list in example 4.4

head

20

2

50

5

1000

100

60

6

10

1

3. the list’s GCD is 10

4. the list’s LCM is 3000

And these values are shown in the required order and format in the corresponding output
sample below:

5 600000000 10 3000
2 5 100 6 1

5 Sample input/output

Each of the following examples shows the command used to execute the program (with the input
values) on the first line, and the results printed by the program for that input on the following
two lines.. Note also that, in this implementation, the list is stored (and printed) in the reverse
order of input.

./numberList 4 8 2 6
4 384 2 24
3 1 4 2

./numberList 3 300
2 900 3 300
100 1

./numberList 42 7 21 63 640
5 248935680 1 40320
640 63 21 7 42

*The product has been corrected for this sample..

./numberList 20 100 5 30 120 2500 45 70
8 283500000000000 5 315000
14 9 500 24 6 1 20 4

./numberList 1 2 3 4 5 6 7 8 9 10
10 3628800 1 2520
10 9 8 7 6 5 4 3 2 1

./numberList 10 20 7 48 32
5 2150400 1 3360
32 48 7 20 10

./numberList 17 11 13 19
4 46189 1 46189
19 13 11 17

4

6 Rubric

Criterion Possible
points

Excellent
(max. points)

Satisfactory (partial
points)

Unsatisfactory
(no points)

Delivery 10% on time, using correct file
name (see top)

wrong file name

Compiles 10% compiles on code01.fit.edu
with no errors

does not compile

Runs 10% runs on code01.fit.edu
with no run-time errors
(missing files,..etc)

does not execute

Completion 25% all functions implemented

Dynamic
Memory
allocation

20% implemented using
pointers/Dynamic
Memory allocation

implemented using
other memory access
methods

Test cases 25% passes all test cases
(correct output in the
correct format)

passes some test cases
(correct output in the
wrong format, or
contains extra
characters, ...etc

fails all test cases

5

	Submission
	Description
	Important Notes
	Implementation details
	Input
	Output
	General notes
	Example

	Sample input/output
	Rubric

