
CSE2050 - Programming in a
Second Language

Assignment 3: Linked List Manipulation

February 27, 2018

1 Submission

• Due Date: March 2nd, 11:59pm

• Deliverable: listGCD.cpp

• Submit on Canvas.

2 Description

In this assignment, we expand the problem of computing the GCD of a sequence of integers
stored in a linked list (as discussed in Assignment 2 ) by providing the functionality of
adding and removing numbers (nodes) to/from that list. The goal is to build a Singly
Linked List (with a node structure similar to the one used in Assignment 2 ) to store a
number of integers (given), and calculating the GCD of those numbers. Providing the
following:

• New numbers can be added at a specific location in the list.

• Numbers can be removed from the list (either by providing their location, or their
value).

3 Implementation details

3.1 Input

The program reads input from a text file. The name of the input file is provided as the
only command line parameter (only the name of the file will be provided, not the full
path).

1

https://en.wikipedia.org/wiki/Linked_list


The input file contains sequences of positive integers on each line. The first integer
x in each sequence determines the operation to be performed, and the number of the
following integers in this sequence. possible formats:

input description
1 i v add node at index i, with value v
2 i remove node at index i
3 v remove first encountered node with value v
0 quit

For example, the input line: 1 3 4 tells the program to add a node (the first number,
x = 1) at index 3 (the second number, i = 3), with a value 4 (third number, v = 4).

The program ends if the line is 0 (no other values follow).
The number of these sequences is not known in advance, so your program should read

all the sequences until it encounters a zero, then it stops reading (the zero value is not
stored in the list).

It is important to make sure the loop used to read these values ends properly. Endless
loops are considered failed cases (0 points).

./listGCD filename.txt
a b c
d e
f g
h i j
...

3.2 Output

• For each sequence of numbers, the program prints out the following two lines:

– The first line shows the list’s GCD (single spaces). An example:

List GCD: 15

– The second line shows the contents of the list (separated by single spaces)
printed in the same order of input (the first number entered on the left). An
example:

List contents: 14 15 16

• If the list is empty (for example, after removing all the nodes), show the following:

List GCD: 0
List contents:

• On exit (when receiving the value 0), there is no output.

2



3.3 General notes

• Only implementations based on Dynamic Memory Allocation will receive full points.

• implement the node as a class with value as private field (you will need public getter
and setter methods to access it). It is also recommended to use constructor and
destructor methods.

• You may use any algorithm you prefer to calculate the GCD of the list.

• The index i is used to determine the node’s location in the list (starts from 0 for
the 1st node), and v represents the actual value for that node.

• When adding a new node (op code = 1), the index i has the following meanings:

– if i is 0, add first. The new node will be prepended to the beginning of the
current list (it becomes the first node), then head will point to the newly added
node.

– if i ≥ N (where N is the size of the list, i.e., the number of items currently in
the list), add last. The new created node will be added to the end of the list.

– otherwise, the new created node will be inserted at the specified index (becomes
the ith node).

• When removing a node giving its index i (op code = 2), if the index does not exist
(i ≥ N ), do nothing (do not remove, do not show error message).

• When removing a node giving its value v (op code = 3), remove the first occurrence
of that value in the list (the first encountered node with value v). If the value does
not exist, do nothing (do not remove, do not show error message).

• Managing Dynamic Memory Allocation properly (20% of this assignment’s grade)
requires avoiding issues like memory leaks. Depending on your OS and IDE, there
are some tools that can help identify some of these issues (like cppcheck).

• Same notes from previous assignments apply here as well (correct deliverable name,
runs on code01.fit.edu, output format is important, and make sure you use the
correct input source for data)

• Make sure you know where your IDE looks for files (the default directory). In
our testing, the input files will be in the same folder as your compiled files (the
executable).

3

https://en.wikipedia.org/wiki/Memory_leak
http://cppcheck.sourceforge.net/


3.4 Example

The following example, shows the program’s responses to input (all the responses are
shown in order):

• Running the program

./listGCD smaple1.txt

• Contents of sample1.txt

1 0 8
1 0 12
1 1 2
3 12
2 1
2 5
2 0
0

• Input line 1

1 0 8

This will create the following linked list,,

head
8

• Output 1

List GCD: 8
List contents: 8

• Input line 2

1 0 12

Inserting the value 12 at location 0 (first) changes the linked list as follows:

head
12 8

• Output 2

List GCD: 4
List contents: 12 8

4



• Input line 3

1 1 2

Value 2 will be inserted at index 1 (second node):

head
12 2 8

• Output 3

List GCD: 2
List contents: 12 2 8

• Input line 4

3 12

Delete first node that has value 12:

head
2 8

• Output 4

List GCD: 2
List contents: 2 8

• Input line 5

2 1

Deleting the second node (index 1):

head
2

• Output 5

List GCD: 2
List contents: 2

• Input line 6

2 5

5



Attempting to delete node at index 5 (an invalid index) will not actually change the
list.

head
2

• Output 6

List GCD: 2
List contents: 2

• Input line 7

2 0

This deletes the remaining node (the list becomes empty).

• Output 7

List GCD: 0
List contents:

• Input line 8

0

0 ends the program (no printing).

4 Sample input/output

4.1 Sample 1

Input file contents

1 0 16
1 1 18
1 1 12
2 1
1 2 14
3 12
3 5
1 0 1
0

6



Output

List GCD: 16
List contents: 16
List GCD: 2
List contents: 16 18
List GCD: 2
List contents: 16 12 18
List GCD: 2
List contents: 16 18
List GCD: 2
List contents: 16 18 14
List GCD: 2
List contents: 16 18 14
List GCD: 2
List contents: 16 18 14
List GCD: 1
List contents: 1 16 18 14

4.2 Sample 2

Input

1 0 24
1 1 12
1 2 6
1 2 18
1 4 3
3 12
2 2
0

Output

List GCD: 24
List contents: 24
List GCD: 12
List contents: 24 12
List GCD: 6
List contents: 24 12 6
List GCD: 6
List contents: 24 12 18 6
List GCD: 3
List contents: 24 12 18 6 3
List GCD: 3
List contents: 24 18 6 3
List GCD: 3

7



List contents: 24 18 3

4.3 Sample 3

Input

1 0 25
1 0 8
3 17
2 3
2 2
3 6
1 0 9
2 5
0

Output

List GCD: 25
List contents: 25
List GCD: 1
List contents: 8 25
List GCD: 1
List contents: 8 25
List GCD: 1
List contents: 8 25
List GCD: 1
List contents: 8 25
List GCD: 1
List contents: 8 25
List GCD: 1
List contents: 9 8 25
List GCD: 1
List contents: 9 8 25

4.4 Sample 4

Input

1 0 2
1 0 2
3 2
1 0 6
1 8 90
2 1
2 2

8



2 1
2 1
2 3
1 4 23
3 23
0

Output

List GCD: 2
List contents: 2
List GCD: 2
List contents: 2 2
List GCD: 2
List contents: 2
List GCD: 2
List contents: 6 2
List GCD: 2
List contents: 6 2 90
List GCD: 6
List contents: 6 90
List GCD: 6
List contents: 6 90
List GCD: 6
List contents: 6
List GCD: 6
List contents: 6
List GCD: 6
List contents: 6
List GCD: 1
List contents: 6 23
List GCD: 6
List contents: 6

5 Rubric

9



Criterion Possible
points

Excellent
(max. points)

Satisfactory
(partial points)

Unsatisfactory (no
points)

Compiles 5 % compiles on
code01.fit.edu with no
errors

does not compile

Runs 10 % runs on code01.fit.edu
with no run-time
errors (missing
files,..etc)

does not execute

Completion 25% all functions
implemented

some functions
implemented

Dynamic
Memory
allocation

20% implemented using
pointers/Dynamic
Memory allocation

implemented using
other memory access
methods

Avoiding
memory
leaks

15% freeing memory
correctly for all
pointers & dynamic
memory allocation
operations

code has memory
leaks

Test cases 25% passes all test cases
(correct output in the
correct format)

passes some test
cases

fails all test cases, or
has an endless loop.

10


	Submission
	Description
	Implementation details
	Input
	Output
	General notes
	Example

	Sample input/output
	Sample 1
	Sample 2
	Sample 3
	Sample 4

	Rubric

