
CSE2050 - Programming in a

Second Language

Assignment 5: Inheritance

March 28, 2018

1 Submission

• Due Date: April 19th, 09:30am

• Submit on Canvas.

2 Description

In this assignment, we will use inheritance to extend a base (abstract) class Number to two
derived classes: Complex, and Rational.

• The base class is an abstract class (contains pure virtual methods, like toString(), as shown
below)

• The derived classes overload some basic arithmetic operations (+ - * etc..)

• The derived classes override methods from the base class, like print()

• The derived classes will also provide their own unique methods.

Number

Complex Rational

1



3 Implementation details

3.1 Base class (Number)

This is the parent class, and it is an abstract class.

• It does not contain any data fields.

• It contains pure virtual methods to be overridden by its children:

– string toString() returns the string representation of the number, for example,
“2/3”, or “(3 - 2i)” (without quotes).

– void print() prints the string representation on the standard output device (cout).

• Your code might look like this:

class Number {
public:

virtual string toString() =0;
virtual void print() =0;

Number() {
...
}

virtual ˜Number() {
...
}
...

};

class Rational: public Number {
...
};

class Complex: public Number {
...
};

int main() {
...
}

3.2 Derived classes

The derived classes Complex, and Rational overload some of the arithmetic operators, discussed
below.

3.2.1 class Complex

This class represents a complex number. It inherits from the base class Number. In addition to
defining the methods mentioned above, it also includes the following fields:

• a represents the real part of the number.

2



• b represents the imaginary part of the number.

Use the representation a + bi for both toString() and print() methods (where a is the real
part). Using operator overloading , implement methods for the following operators:

• Addition: operator+()

• Subtraction: operator-()

• Multiplication: operator*()

• Assignment: operator=()

3.2.2 class Fraction

This class represents a fractional number. It inherits from the base class Number. In addition
to defining the methods mentioned above, it also includes the following fields:

• a represents the numerator.

• b represents the denominator.

Use the representation a / b for the toString() method, simplify all rationals wherever it is
possible. Using operator overloading, implement methods for the following operators:

• Addition: operator+()

• Subtraction: operator-()

• Multiplication: operator*()

• Assignment: operator=()

3.3 main()

In your main method, define and initialize all the required objects to calculate the following
expressions, and print the output to the standard output device (cout). Print the result of each
expression on a separate line in the same order as below.

3.3.1 Complex numbers calculations

• (3− 4i)× (5 + 2i)

• (4 + 3i)− (1− 3i)

• (−2 + 7i) + (1− 2i)

3.3.2 Fraction numbers calculations

• 1
3
× 4

• 2
3
+ 2

5

• 3
4
− 1

4

3



4 Suggested extensions

You may try to extend your code to provide the following (no extra points will be rewarded):

• Use try-catch blocks in the code to catch potential issues (like division by zero, see below)

• Extend the code to do all arithmetic operations, including division.

• Extend the code to calculate more complex expressions, like:

? 1
3
× (4 + 2

5
)

? (−2 + 7i)− (1− 2i)× (3− 4i)

5 Rubric

Criterion Possible
points

Excellent
(max. points)

Satisfactory
(partial points)

Unsatisfactory (no
points)

Delivery 15 % on time late submission

Compiles 5 % compiles on code01.fit.edu
with no errors

does not compile

Runs 15 % runs on code01.fit.edu
with no run-time errors
(missing files,..etc)

does not execute

Operator
overloading

15% implemented correctly partially
implemented

not implemented

Inheritance
and
overriding

15% implemented correctly partially
implemented

not implemented

Test cases 35% passes all test cases
(correct output in the
correct format)

passes some test
cases

fails all test cases, or
has an endless loop.

4


	Submission
	Description
	Implementation details
	Base class (Number)
	Derived classes
	class Complex
	class Fraction

	main()
	Complex numbers calculations
	Fraction numbers calculations


	Suggested extensions
	Rubric

