Context-Free Languages

- The class of context-free languages generalizes over the class of regular languages, i.e., every regular language is a context-free language.
- The reverse of this is not true, i.e., every context-free language is not necessarily regular. For example, as we will see $\{0^k1^k | k \ge 0\}$ is context-free but not regular.
- Many issues and questions we asked for regular languages will be the same for context-free languages:

Machine model – PDA (Push-Down Automata) Descriptor – CFG (Context-Free Grammar) Pumping lemma for context-free languages (and find CFL's limit) Closure of context-free languages with respect to various operations Algorithms and conditions for finiteness or emptiness

- Some analogies don't hold, e.g., non-determinism in a PDA makes a difference and, in particular, deterministic PDAs define a subset of the context-free languages.
- We will only talk on non-deterministic PDA here.

- Informally, a Context-Free Language (CFL) is a language generated by a Context-Free Grammar (CFG).
- What is a CFG?
- Informally, a CFG is a set of rules for deriving (or *generating*) strings (or sentences) in a language.
- Note: A grammar generates a string, whereas a machine accepts a string

• Example CFG:

<sentence> -> <noun-phrase> <verb-phrase></verb-phrase></noun-phrase></sentence>	(1)
<noun-phrase> -> <proper-noun></proper-noun></noun-phrase>	(2)
<noun-phrase> -> <determiner> <common-noun></common-noun></determiner></noun-phrase>	(3)
<proper-noun> -> John</proper-noun>	(4)
<proper-noun> -> Jill</proper-noun>	(5)
<common-noun> -> car</common-noun>	(6)
<common-noun> -> hamburger</common-noun>	(7)
<determiner> -> a</determiner>	(8)
<determiner> -> the</determiner>	(9)
<verb-phrase> -> <verb> <adverb></adverb></verb></verb-phrase>	(10)
<verb-phrase> -> <verb></verb></verb-phrase>	(11)
<verb> -> drives</verb>	(12)
<verb> -> eats</verb>	(13)
<adverb> -> slowly</adverb>	(14)
<adverb> -> frequently</adverb>	(15)

• Example Derivation:

<sentence></sentence>	<sentence> => <noun-phrase> <verb-phrase></verb-phrase></noun-phrase></sentence>	
	=> <proper-noun> <verb-phrase></verb-phrase></proper-noun>	by (2)
	=> Jill <verb-phrase></verb-phrase>	by (5)
	=> Jill <verb> <adverb></adverb></verb>	by (10)
	=> Jill drives <adverb></adverb>	by (12)
	=> Jill drives frequently	by (15)

- Informally, a CFG consists of:
 - A set of replacement *rules*, each having a Left-Hand Side (LHS) and a Right-Hand Side (RHS).
 - Two types of symbols; *variables* and *terminals*.
 - LHS of each rule is a *single* variable (no terminals).
 - RHS of each rule is a string of *zero or more* variables and terminals.
 - A *string* consists of only terminals.

• Formally, a <u>Context-Free Grammar</u> (CFG) is a 4-tuple:

 $\mathbf{G} = (\mathbf{V}, \mathbf{T}, \mathbf{P}, \mathbf{S})$

- V A finite set of variables or non-terminals
- T A finite set of *terminals* (V and T do not intersect: *do not use same symbols*) This is our \sum
- P A finite set of *productions*, each of the form A $\rightarrow \alpha$, where A is in V and α is in $(V \cup T)^*$

Note that α may be ε

S - A starting non-terminal (S is in V)

• Example CFG for $\{0^k1^k \mid k \ge 0\}$:

 $G = ({S}, {0, 1}, P, S)$ // Remember: G = (V, T, P, S)

P:

- (1) $S \rightarrow 0S1$ or just simply $S \rightarrow 0S1 | \epsilon$ (2) $S \rightarrow \epsilon$
- Example Derivations:

 $S \implies 0S1 (1) S \implies \varepsilon (2)$ => 01 (2) $S \implies 0S1 (1) => 00S11 (1) => 000S111 (1) => 000S111 (1) => 000111 (2)$

• Note that G "generates" the language $\{0^k1^k \mid k \ge 0\}$

• Example CFG for ?:

 $G = ({A, B, C, S}, {a, b, c}, P, S)$

P:

(1)	S -> ABC	
(2)	$A \rightarrow aA$	$A \rightarrow aA \mid \epsilon$
(3)	Α -> ε	
(4)	$B \rightarrow bB$	$B \rightarrow bB \mid \epsilon$
(5)	$B \rightarrow \epsilon$	
(6)	$C \rightarrow cC$	$C \rightarrow cC \mid \epsilon$
(7)	C -> ε	

• Example Derivations:

(1))
(1)

- $\Rightarrow \epsilon$ (7) $\Rightarrow aaBC$ (3)
 - \Rightarrow aabBC (4)
 - \Rightarrow aabC (5)
 - \Rightarrow aabcC (6)
 - \Rightarrow aabc (7)
- Note that G generates the language $a^*b^*c^*$

Formal Definitions for CFLs

- Let G = (V, T, P, S) be a CFG.
- **Observation:** "->" forms a relation on V and $(V \cup T)^*$
- **Definition:** Let *A* be in *V*, and *B* be in $(V \cup T)^*$, A -> B be in *P*, and let α and β be in $(V \cup T)^*$. Then:

$$\alpha A\beta => \alpha B\beta$$

In words, $\alpha A\beta$ *directly derives* $\alpha B\beta$, or in other words $\alpha B\beta$ follows from $\alpha A\beta$ by the application of exactly one production from *P*.

• **Observation:** "=>" forms a relation on $(V \cup T)^*$ and $(V \cup T)^*$.

• **Definition:** Suppose that $\alpha_1, \alpha_2, \dots, \alpha_m$ are in $(V \cup T)^*$, m ≥ 1 , and

$$\alpha_1 \Longrightarrow \alpha_2$$
$$\alpha_2 \Longrightarrow \alpha_3$$
$$\vdots$$
$$\alpha_{m-1} \Longrightarrow \alpha_m$$

Then $\alpha_1 => * \alpha_m$

In words, α_m follows from α_1 by the application of *zero or more* productions. Note that: $\alpha =>* \alpha$.

- **Observation:** "=>*" forms a relation on $(V \cup T)^*$ and $(V \cup T)^*$.
- **Definition:** Let α be in $(V \cup T)^*$. Then α is a *sentential form* if and only if $S \implies \alpha$.
- **Definition:** Let G = (V, T, P, S) be a context-free grammar. Then the *language generated* by G, denoted L(G), is the set:

 $\{w \mid w \text{ is in } T^* \text{ and } S \Rightarrow w\}$

• **Definition:** Let *L* be a language. Then *L* is a *context-free language* if and only if there exists a context-free grammar *G* such that L = L(G).

• **Definition:** Let G_1 and G_2 be context-free grammars. Then G1 and G2 are *equivalent* if and only if $L(G_1) = L(G_2)$.

- **Theorem:** Let *L* be a regular language. Then *L* is a context-free language. (or, RL \subseteq CFL)
- **Proof:** (by induction)

We will prove that if *r* is a regular expression then there exists a CFG *G* such that L(r) = L(G). The proof will be by induction on the number of operators in *r*.

Basis: Op(r) = 0Then *r* is either Ø, ε , or *a*, for some symbol *a* in Σ .

For Ø:

Let $G = (\{S\}, \{\}, P, S)$ where $P = \{\}$

For ε:

Let
$$G = (\{S\}, \{\}, P, S)$$
 where $P = \{S \rightarrow \varepsilon\}$

For **a**:

Let
$$G = (\{S\}, \{a\}, P, S)$$
 where $P = \{S \rightarrow a\}$

Inductive Hypothesis:

Suppose that for any regular expression r, where $0 \le op(r) \le k$, that there exists a CFG G such that L(r) = L(G), for some $k \ge 0$.

Inductive Step:

Let r be a regular expression with op(r)=k+1. Then $r = r_1 + r_2$, $r = r_1r_2$ or $r = r_1^*$.

Case 1) $r = r_1 + r_2$

Since r has k+1 operators, one of which is +, it follows that r_1 and r_2 have at most k operators. From the inductive hypothesis it follows that there exist CFGs $G_1 = (V_1, T_1, P_1, S_1)$ and $G_2 = (V_2, T_2, P_2, S_2)$ such that $L(r_1) = L(G_1)$ and $L(r_2) = L(G_2)$. Assume without loss of generality that V_1 and V_2 have no non-terminals in common, and construct a grammar G = (V, T, P, S) where:

$$V = V_1 \cup V_2 \cup \{S\}$$
$$T = T_1 \cup T_2$$
$$P = P_1 \cup P_2 \cup \{S \rightarrow S_1, S \rightarrow S_2\}$$

Clearly, L(r) = L(G).

Case 2) $r = r_1 r_2$

Let $G_1 = (V_1, T_1, P_1, S_1)$ and $G_2 = (V_2, T_2, P_2, S_2)$ be as in Case 1, and construct a grammar G = (V, T, P, S) where:

$$V = V_1 \cup V_2 \cup \{S\}$$
$$T = T_1 \cup T_2$$
$$P = P_1 \cup P_2 \cup \{S \rightarrow S_1S_2\}$$

Clearly, L(r) = L(G).

Case 3) $r = (r_1)^*$

Let $G_1 = (V_1, T_1, P_1, S_1)$ be a CFG such that $L(r_1) = L(G_1)$ and construct a grammar G = (V, T, P, S) where:

$$V = V_1 \cup \{S\}$$
$$T = T_1$$
$$P = P_1 \cup \{S \rightarrow S_1S, S \rightarrow \varepsilon\}$$

Clearly, L(r) = L(G). •

- The preceding theorem is constructive, in the sense that it shows how to construct a CFG from a given regular expression.
- Example #1:

 $r = a^*b^*$ $r = r_1r_2$ $r_1 = r_3^*$ $r_3 = a$ $r_2 = r_4^*$ $r_4 = b$

• **Example #1:** a*b*

$$\begin{aligned} \mathbf{r}_4 &= \mathbf{b} & \mathbf{S}_1 &\rightarrow \mathbf{b} \\ \mathbf{r}_3 &= \mathbf{a} & \mathbf{S}_2 &\rightarrow \mathbf{a} \\ \mathbf{r}_2 &= \mathbf{r}_4 & \mathbf{S}_3 &\rightarrow \mathbf{S}_1 \mathbf{S}_3 \\ \mathbf{S}_3 &= \mathbf{c} & \mathbf{S}_3 &\rightarrow \mathbf{c} \\ \mathbf{r}_1 &= \mathbf{r}_3 & \mathbf{S}_4 &\rightarrow \mathbf{S}_2 \mathbf{S}_4 \\ \mathbf{S}_4 &= \mathbf{c} & \mathbf{c} \end{aligned}$$

$$\mathbf{r} = \mathbf{r}_1 \mathbf{r}_2 \qquad \qquad \mathbf{S}_5 \longrightarrow \mathbf{S}_4 \mathbf{S}_3$$

• Example #2:

r = (0+1)*01

 $\mathbf{r} = \mathbf{r}_1 \mathbf{r}_2$

 $r_1 = r_3^*$

 $r_3 = (r_4 + r_5)$

$$r_4 = 0$$

r₅ = 1

 $r_2 = r_6 r_7$

$$r_6 = 0$$

 $r_7 = 1$

• Example #2: (0+1)*01

$$\begin{array}{ll} r_7 = 1 & S_1 \longrightarrow 1 \\ r_6 = 0 & S_2 \longrightarrow 0 \\ r_2 = r_6 r_7 & S_3 \longrightarrow S_2 S_1 \\ r_5 = 1 & S_4 \longrightarrow 1 \\ r_4 = 0 & S_5 \longrightarrow 0 \\ r_3 = (r_4 + r_5) & S_6 \longrightarrow S_4, \ S_6 \longrightarrow S_5 \\ r_1 = r_3 * & S_7 \longrightarrow S_6 S_7 \\ S_7 \longrightarrow \epsilon \end{array}$$

 $\mathbf{r} = \mathbf{r}_1 \mathbf{r}_2 \qquad \qquad \mathbf{S}_8 \longrightarrow \mathbf{S}_7 \mathbf{S}_3$

- **Definition:** A CFG is a <u>regular grammar</u> if each rule is of the following form:
 - A \rightarrow a
 - $A \rightarrow aB$
 - $A \rightarrow \varepsilon$

where A and B are in V, and a is in T

- **Theorem:** A language *L* is a regular language iff there exists a regular grammar *G* such that L = L(G).
- **Proof:** Exercise. •Develop translation fromRegular form -> DFA; and DFA -> regular grammar]
- **Observation:** The grammar $S \rightarrow 0S1 | \epsilon$ is not a regular grammar.
- **Observation:** A language may have several CFGs, some regular, some not (The fact that the preceding grammar is not regular does not in and of itself prove that $0^{n}1^{n}$ is not a regular language).

- **Definition:** Let G = (V, T, P, S) be a CFG. A tree is a <u>derivation (or parse) tree</u> if:
 - Every vertex has a label from $V \cup T \cup \{\epsilon\}$
 - The label of the root is S
 - If a vertex with label A has children with labels $X_1, X_2, ..., X_n$, from left to right, then

$$A \longrightarrow X_1, X_2, \dots, X_n$$

must be a production in P

- If a vertex has label ε , then that vertex is a leaf and the only child of its' parent
- More Generally, a derivation tree can be defined with any non-terminal as the root.

• Example:

yield = aAab

yield = aaAA

• Notes:

- Root can be any non-terminal
- Leaf nodes can be terminals or non-terminals
- A derivation tree with root S shows the productions used to obtain a sentential form

• **Observation:** Every derivation corresponds to one derivation tree.

• **Observation:** Every derivation tree corresponds to one or more derivations.

lef	tmost:	rightmost:	mixed:
S	\Rightarrow AB	$S \implies AB$	$S \Rightarrow AB$
	=> aAAB	=> A b	=>Ab
	=> aaAB	=> aAAb	=> aAAb
	=> aaaB	=>aAab	=> aaAb
	=> aaab	=> aaab	=> aaab

- **Definition:** A derivation is *leftmost (rightmost)* if at each step in the derivation a production is applied to the leftmost (rightmost) non-terminal in the sentential form.
 - The first derivation above is leftmost, second is rightmost, the third is neither.

• **Observation:** Every derivation tree corresponds to exactly one leftmost (and rightmost) derivation.

• **Observation:** Let G be a CFG. Then there may exist a string x in L(G) that has more than 1 leftmost (or rightmost) derivation. Such a string will also have more than 1 derivation tree.

• **Example:** Consider the string *aaab* and the preceding grammar.

• The string has two left-most derivations, and therefore has two distinct parse trees.

- **Definition:** Let G be a CFG. Then G is said to be <u>ambiguous</u> if there exists an x in L(G) with >1 leftmost derivations. Equivalently, G is said to be ambiguous if there exists an x in L(G) with >1 parse trees, or >1 rightmost derivations.
- Note: Given a CFL L, there may be more than one CFG G with L = L(G). Some ambiguous and some not.
- **Definition:** Let L be a CFL. If every CFG G with L = L(G) is ambiguous, then L is <u>inherently ambiguous</u>.

- An ambiguous Grammar:
 - $E \to I \qquad \sum = \{0, \dots, 9, +, *, (,)\}$ $E \to E + E$ $E \to E * E$ $E \to (E)$ $I \to \varepsilon \mid 0 \mid 1 \mid \dots \mid 9$

A leftmost derivation $E \Rightarrow E^*E$ $\Rightarrow I^*E$ $\Rightarrow 3^*E + E$ $\Rightarrow 3^*I + E$ $\Rightarrow 3^*2 + E$ $\Rightarrow 3^*2 + I$ $\Rightarrow 3^*2 + 5$

- A string: 3*2+5
- Two parse trees:

* on top, & + on top & two left-most derivation: Another leftmost derivation E =>E+E =>E*E+E =>I*E+E =>3*E+E =>3*I+E =>3*2+I=>3*2+5

Ambiguous grammar.

$$E \rightarrow I$$

 $E \rightarrow E + E$
 $E \rightarrow E * E$
 $E \rightarrow (E)$
 $I \rightarrow \epsilon \mid 0 \mid 1 \mid ... \mid 9$

• Disambiguation of the Grammar:

 $\sum = \{0, ., 9, +, *, (,)\}$ E -> T | E + T // This T is a non-terminal, do not confuse with \sum T -> F | T * F F -> I | (E) I -> $\epsilon \mid 0 \mid 1 \mid ... \mid 9$

- A string: 3*2+5
- Only one parse tree & one left-most derivation now:
 + on top: TRY PARSING THE EXPRESSION NOW 27

• A language may be *Inherently ambiguous*:

 $L = \{a^{n}b^{n}c^{m}d^{m} \mid n \ge 1, m \ge 1\} \cup \{a^{n}b^{m}c^{m}d^{n} \mid n \ge 1, m \ge 1\}$

- An ambiguous grammar:
- $S \rightarrow AB \mid C$
- $A \rightarrow aAb \mid ab$
- $B \rightarrow cBd \mid cd$
- $C \rightarrow aCd \mid aDd$ $D \rightarrow bDc \mid bc$
- Try the string: *aabbccdd*, two different derivation trees
- Grammar CANNOT be disambiguated for this (not showing the proof) 28

Rules: S -> AB | C A -> aAb | ab B -> cBd | cd C -> aCd | aDd D -> bDc | bc String *aabbccdd* belongs to two different parts of the language: L ={aⁿbⁿc^md^m | n ≥ 1, m ≥ 1} \cup {aⁿb^mc^mdⁿ | n ≥ 1, m ≥ 1}

Derivation 1 of
aabbccdd:Derivation 2 of
aabbccdd:

 $S \implies AB$ $\implies aAbB$ $\implies aabbB$ $\implies aabb cBd$ $\implies aabbccdd$

S => C=> aCd=> aaDdd=> aa bDc dd=> aabbccdd

- Potential algorithmic problems for context-free grammars:
 - Is L(G) empty?
 - Is L(G) finite?
 - Is L(G) infinite?
 - Is $L(G_1) = L(G_2)$?
 - Is G ambiguous?
 - Is L(G) inherently ambiguous?
 - Given ambiguous G, construct unambiguous G' such that L(G) = L(G')
 - Given G, is G "minimal?"