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Context-Free Languages

• The class of context-free languages generalizes over the class of regular languages, i.e., 

every regular language is a context-free language.

• The reverse of this is not true, i.e., every context-free language is not necessarily 

regular.  For example, as we will see {0k1k | k≥0} is context-free but not regular.

• Many issues and questions we asked for regular languages will be the same for context-

free languages:

Machine model – PDA (Push-Down Automata)

Descriptor – CFG (Context-Free Grammar)

Pumping lemma for context-free languages (and find CFL’s limit)

Closure of context-free languages with respect to various operations

Algorithms and conditions for finiteness or emptiness

• Some analogies don’t hold, e.g., non-determinism in a PDA makes a difference and, in 

particular, deterministic PDAs define a subset of the context-free languages. 

• We will only talk on non-deterministic PDA here.
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• Informally, a Context-Free Language (CFL) is a language generated by a 

Context-Free Grammar (CFG).

• What is a CFG?

• Informally, a CFG is a set of rules for deriving (or generating) strings (or 

sentences) in a language.

• Note: A grammar generates a string, whereas a machine accepts a string
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• Example CFG:

<sentence>  –>  <noun-phrase> <verb-phrase> (1)

<noun-phrase>  –>  <proper-noun> (2)

<noun-phrase>  –>  <determiner> <common-noun> (3)

<proper-noun>  –>  John (4)

<proper-noun>  –>  Jill (5)

<common-noun>  –>  car (6)

<common-noun>  –>  hamburger (7)

<determiner>  –>  a (8)

<determiner>  –>  the (9)

<verb-phrase>  –>  <verb> <adverb> (10)

<verb-phrase>  –>  <verb> (11)

<verb>  –>  drives (12)

<verb>  –>  eats (13)

<adverb>  –>  slowly (14)

<adverb>  –>  frequently (15)

• Example Derivation:

<sentence> => <noun-phrase> <verb-phrase> by (1)

=> <proper-noun> <verb-phrase> by (2)

=> Jill <verb-phrase> by (5)

=> Jill <verb> <adverb> by (10)

=> Jill drives <adverb> by (12)

=> Jill drives frequently by (15)
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• Informally, a CFG consists of:

– A set of replacement rules, each having a Left-Hand Side (LHS) and a Right-Hand 

Side (RHS).

– Two types of symbols; variables and terminals.

– LHS of each rule is a single variable (no terminals).

– RHS of each rule is a string of zero or more variables and terminals.

– A string consists of only terminals.
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• Formally, a Context-Free Grammar (CFG) is a 4-tuple:

G = (V, T, P, S)

V - A finite set of variables or non-terminals

T - A finite set of terminals (V and T do not intersect: do not use same symbols)

This is our ∑

P - A finite set of productions, each of the form A –> α, where A is in V and 

α is in (V  T)*

Note that α may be ε

S - A starting non-terminal (S is in V)
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• Example CFG for {0k1k | k≥0}:

G = ({S}, {0, 1}, P, S)      // Remember: G = (V, T, P, S)

P:

(1) S –> 0S1 or just simply S –> 0S1 | ε

(2) S –> ε

• Example Derivations:

S => 0S1 (1) S => ε (2)

=> 01 (2)

S => 0S1 (1)

=> 00S11 (1)

=> 000S111 (1)

=> 000111 (2)

• Note that G “generates” the language {0k1k | k≥0}
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• Example CFG for ?:

G = ({A, B, C, S}, {a, b, c}, P, S)

P:

(1) S –> ABC

(2) A –> aA A –> aA | ε

(3) A –> ε

(4) B –> bB B –> bB | ε

(5) B –> ε

(6) C –> cC C –> cC | ε

(7) C –> ε

• Example Derivations:

S => ABC (1) S => ABC (1)

=> BC (3) => aABC (2)

=> C (5) => aaABC (2)

=> ε (7) => aaBC (3)

=> aabBC (4)

=> aabC (5)

=> aabcC (6)

=> aabc (7)

• Note that G generates the language a*b*c*
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Formal Definitions for CFLs

• Let G = (V, T, P, S) be a CFG.

• Observation: “–>” forms a relation on V and (V  T)*

• Definition: Let A be in V, and B be in (V  T)*, A –> B be in P, and let α and β be in 

(V  T)*. Then:

αAβ => αBβ

In words, αAβ directly derives αBβ, or in other words αBβ follows from αAβ by the 

application of exactly one production from P.

• Observation: “=>” forms a relation on (V  T)* and (V  T)*.
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• Definition: Suppose that α1, α2,…,αm are in (V  T)*, m1, and

α1 => α2

α2 => α3

:

αm-1 => αm

Then α1 =>* αm

In words, αm follows from α1 by the application of zero or more productions. Note that: 
α =>* α.

• Observation: “=>*” forms a relation on (V  T)* and (V  T)*.

• Definition: Let α be in (V  T)*. Then α is a sentential form if and only if S =>* α.

• Definition: Let G = (V, T, P, S) be a context-free grammar. Then the language 
generated by G, denoted L(G), is the set:

{w | w is in T* and S=>* w}

• Definition: Let L be a language. Then L is a context-free language if and only if there 
exists a context-free grammar G such that L = L(G).
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• Definition: Let G1 and G2 be context-free grammars. Then G1 and G2 are equivalent if 

and only if L(G1) = L(G2).
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• Theorem: Let L be a regular language. Then L is a context-free language. (or, RL 

CFL)

• Proof: (by induction)

We will prove that if r is a regular expression then there exists a CFG G such that L(r) = 

L(G). The proof will be by induction on the number of operators in r.

Basis: Op(r) = 0

Then r is either Ø, ε, or a, for some symbol a in Σ. 

For Ø:

Let G = ({S}, {}, P, S) where P = {}

For ε:

Let G = ({S}, {}, P, S) where P = {S –> ε}

For a:

Let G = ({S}, {a}, P, S) where P = {S –> a}



12

Inductive Hypothesis:

Suppose that for any regular expression r, where 0op(r)  k, that there exists a CFG G such 

that L(r) = L(G), for some k>=0.

Inductive Step:

Let r be a regular expression with op(r)=k+1. Then r = r1 + r2, r = r1r2 or r = r1*.

Case 1) r = r1 + r2

Since r has k+1 operators, one of which is +, it follows that r1 and r2 have at most k 

operators.  From the inductive hypothesis it follows that there exist CFGs G1 = (V1, T1, 

P1, S1) and G2 = (V2, T2, P2, S2) such that L(r1) = L(G1) and L(r2) = L(G2). 

Assume without loss of generality that V1 and V2 have no non-terminals in common, 

and construct a grammar G = (V, T, P, S) where:

V = V1  V2  {S}

T = T1  T2

P = P1  P2  {S –> S1, S –> S2}

Clearly, L(r) = L(G).
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Case 2) r = r1r2

Let G1 = (V1, T1, P1, S1) and G2 = (V2, T2, P2, S2) be as in Case 1, and construct a  
grammar G = (V, T, P, S) where:

V = V1  V2  {S}

T = T1  T2

P = P1  P2 U {S –> S1S2}

Clearly, L(r) = L(G).

Case 3) r = (r1)*

Let G1 = (V1, T1, P1, S1) be a CFG such that L(r1) = L(G1) and construct a  
grammar G = (V, T, P, S) where:

V = V1  {S}

T = T1

P = P1  {S –> S1S, S –> ε}

Clearly, L(r) = L(G). •
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• The preceding theorem is constructive, in the sense that it shows how to construct a 

CFG from a given regular expression.

• Example #1:

r = a*b*

r = r1r2

r1= r3*

r3 = a

r2= r4*

r4 = b
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• Example #1: a*b*

r4 = b S1 –> b

r3 = a S2 –> a

r2= r4* S3 –> S1S3

S3 –> ε

r1= r3* S4 –> S2S4

S4 –> ε

r = r1r2 S5 –> S4S3
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• Example #2:

r = (0+1)*01

r = r1r2

r1= r3*

r3 = (r4+r5)

r4 = 0

r5 = 1

r2= r6r7

r6 = 0

r7 = 1
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• Example #2: (0+1)*01

r7 = 1 S1 –> 1

r6 = 0 S2 –> 0

r2= r6r7 S3 –> S2S1

r5 = 1 S4 –> 1

r4 = 0 S5 –> 0

r3 = (r4+r5) S6 –> S4, S6 –> S5

r1= r3* S7 –> S6S7

S7 –> ε

r = r1r2 S8 –> S7S3
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• Definition: A CFG is a regular grammar if each rule is of the following form:

– A –> a

– A –> aB

– A –> ε

where A and B are in V, and a is in T

• Theorem: A language L is a regular language iff there exists a regular grammar G such 

that L = L(G).

• Proof: Exercise. •Develop translation fromRegular form -> DFA;  and

DFA -> regular grammar]

• Observation: The grammar S –> 0S1 | ε is not a regular grammar.

• Observation: A language may have several CFGs, some regular, some not (The fact 

that the preceding grammar is not regular does not in and of itself prove that 0n1n is not 

a regular language).
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• Definition: Let G = (V, T, P, S) be a CFG. A tree is a derivation (or parse) tree if:

– Every vertex has a label from V  T  {ε}

– The label of the root is S

– If a vertex with label A has children with labels X1, X2,…, Xn, from left to right, then

A –> X1, X2,…, Xn

must be a production in P

– If a vertex has label ε, then that vertex is a leaf and the only child of its’ parent

• More Generally, a derivation tree can be defined with any non-terminal as the root.
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• Example:

S –> AB S A

A –> aAA

A –> aA A B aA

A –> a

B –> bB a A A b aAA

B –> b

a

yield = aAab yield = aaAA

• Notes:

– Root can be any non-terminal

– Leaf nodes can be terminals or non-terminals

– A derivation tree with root S shows the productions used to obtain a sentential form
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• Observation: Every derivation corresponds to one derivation tree.

S => AB S

=> aAAB

=> aaAB A B

=> aaaB

=> aaab a A A b

a a

• Observation: Every derivation tree corresponds to one or more derivations.

leftmost: rightmost: mixed:

S => AB S => AB S => AB

=> aAAB => Ab => Ab

=> aaAB => aAAb => aAAb

=> aaaB =>aAab => aaAb

=> aaab => aaab => aaab

• Definition: A derivation is leftmost (rightmost) if at each step in the derivation a 

production is applied to the leftmost (rightmost) non-terminal in the sentential form.

– The first derivation above is leftmost, second is rightmost, the third is neither.

Rules:

S –> AB

A –> aAA

A –> aA

A –> a

B –> bB

B –> b
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• Observation: Every derivation tree corresponds to exactly one leftmost (and 

rightmost) derivation. 

S => AB S

=> aAAB

=> aaAB A B

=> aaaB

=> aaab a A A b

a a

• Observation: Let G be a CFG. Then there may exist a string x in L(G) that has 

more than 1 leftmost (or rightmost) derivation. Such a string will also have 

more than 1 derivation tree.
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• Example: Consider the string aaab and the preceding grammar.

S –> AB S => AB S

A –> aAA => aAAB

A –> aA => aaAB A B

A –> a => aaaB

B –> bB => aaab a A A            b

B –> b

a a

S => AB S

=> aAB

=> aaAB A B

=> aaaB

=> aaab a A            b

a A

a

• The string has two left-most derivations, and therefore has two distinct parse trees.
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• Definition: Let G be a CFG. Then G is said to be ambiguous if there exists an 

x in L(G) with >1 leftmost derivations. Equivalently, G is said to be 

ambiguous if there exists an x in L(G) with >1 parse trees, or >1 rightmost 

derivations.

• Note: Given a CFL L, there may be more than one CFG G with L = L(G). 

Some ambiguous and some not.

• Definition: Let L be a CFL. If every CFG G with L = L(G) is ambiguous, then 

L is inherently ambiguous.



• An ambiguous Grammar:

E -> I ∑ ={0,…,9, +, *, (, )}

E -> E + E

E -> E * E

E -> (E)

I -> ε | 0 | 1 | … | 9

• A string:  3*2+5

• Two parse trees:

* on top,    &    + on top

& two left-most derivation:
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A leftmost derivation

E=>E*E

=>I*E

=>3*E+E

=>3*I+E

=>3*2+E

=>3*2+I

=>3*2+5

Another leftmost derivation

E=>E+E

=>E*E+E

=>I*E+E

=>3*E+E

=>3*I+E

=>3*2+I

=>3*2+5



E -> I ∑ ={0,…,9, +, *, (, )}

E -> E + E

E -> E * E

E -> (E)

I -> ε | 0 | 1 | … | 9
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E=>E*E

=>I*E

=>3*E+E

=>3*I+E

=>3*2+E

=>3*2+I

=>3*2+5

E

E * E

I

3

E + E

I

2

I

5
Another leftmost derivation

E=>E+E

=>E*E+E

=>I*E+E

=>3*E+E

=>3*I+E

=>3*2+I

=>3*2+5

E

E+E

I

5

E * E

I

3

I

2



• Disambiguation of the Grammar:

∑ ={0,,,9, +, *, (, )}

E -> T | E + T // This T is a non-terminal, do not confuse with ∑

T -> F | T * F

F -> I | (E)

I -> ε | 0 | 1 | … | 9

• A string:  3*2+5

• Only one parse tree & one left-most derivation now:

+ on top:  TRY PARSING THE EXPRESSION NOW 27

Ambiguous grammar:

E -> I

E -> E + E

E -> E * E

E -> (E)

I -> ε | 0 | 1 | … | 9



• A language may be Inherently ambiguous:

L ={anbncmdm | n≥1, m ≥ 1}  {anbmcmdn | n ≥ 1, m ≥ 1} 

• An ambiguous grammar:

S -> AB | C

A -> aAb | ab

B -> cBd | cd

C -> aCd | aDd

D -> bDc | bc

• Try the string:  aabbccdd,  two different derivation trees

• Grammar CANNOT be disambiguated for this (not showing the  

proof) 28



Derivation 1 of 

aabbccdd:

S => AB 

=> aAbB

=> aabbB

=> aabb cBd

=> aabbccdd
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Derivation 2 of 

aabbccdd:

S => C 

=> aCd

=> aaDdd

=> aa bDc dd

=> aabbccdd

Rules:

S -> AB | C

A -> aAb | ab

B -> cBd | cd

C -> aCd | aDd

D -> bDc | bc

String aabbccdd belongs to two different parts of the language:

L ={anbncmdm  | n≥1, m ≥ 1}  {anbmcmdn  | n ≥ 1, m ≥ 1} 
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• Potential algorithmic problems for context-free grammars:

– Is L(G) empty?

– Is L(G) finite?

– Is L(G) infinite?

– Is L(G1) = L(G2)?

– Is G ambiguous?

– Is L(G) inherently ambiguous?

– Given ambiguous G, construct unambiguous G’ such that L(G) = L(G’)

– Given G, is G “minimal?”


