Context-Free Languages

« The class of context-free languages generalizes over the class of regular languages, i.e.,
every regular language is a context-free language.

« The reverse of this is not true, i.e., every context-free language is not necessarily
regular. For example, as we will see {0%1% | k>0} is context-free but not regular.

« Many issues and questions we asked for regular languages will be the same for context-
free languages:

Machine model — PDA (Push-Down Automata)

Descriptor — CFG (Context-Free Grammar)

Pumping lemma for context-free languages (and find CFL’s limit)
Closure of context-free languages with respect to various operations
Algorithms and conditions for finiteness or emptiness

« Some analogies don’t hold, ¢.g., non-determinism in a PDA makes a difference and, in
particular, deterministic PDAs define a subset of the context-free languages.

« We will only talk on non-deterministic PDA here.

Informally, a Context-Free Language (CFL) is a language generated by a
Context-Free Grammar (CFG).

What is a CFG?

Informally, a CFG is a set of rules for deriving (or generating) strings (or
sentences) in a language.

Note: A grammar generates a string, whereas a machine accepts a string

Example CFG:

<sentence> —> <noun-phrase> <verb-phrase>
<noun-phrase> —> <proper-noun>
<noun-phrase> —> <determiner> <common-noun>
<proper-noun> —> John

<proper-noun> —> Jill

<common-noun> —> car

<common-noun> —> hamburger
<determiner> —> a

<determiner> —> the

<verb-phrase> —> <verb> <adverb>
<verb-phrase> —> <verb>

<verb> —> drives

<verb> —> eats

<adverb> —> slowly

<adverb> —> frequently

Example Derivation:

<sentence> => <noun-phrase> <verb-phrase>
=> <proper-noun> <verb-phrase>
=> Jill <verb-phrase>
=> Jill <verb> <adverb>
=> Jill drives <adverb>
=> Jill drives frequently

1)
)
©)
(4)
()
(6)
(1)
(8)
©)
(10)
(11)
(12)
(13)
(14)
(15)

by (1)
by (2)
by (5)
by (10)
by (12)
by (15)

« Informally, a CFG consists of:

— A set of replacement rules, each having a Left-Hand Side (LHS) and a Right-Hand
Side (RHS).

— Two types of symbols; variables and terminals.

— LHS of each rule is a single variable (no terminals).

— RHS of each rule is a string of zero or more variables and terminals.
— Asstring consists of only terminals.

Formally, a Context-Free Grammar (CFG) is a 4-tuple:

G=(V,T,P,S)

V

A finite set of variables or non-terminals

T - A finite set of terminals (V and T do not intersect: do not use same symbols)
This is our)
P - A finite set of productions, each of the form A — o, where A isin V and
a isin(VUT)*
Note that o may be ¢
S - A starting non-terminal (Sisin V)

« Example CFG for {01k | k>0}:

G=(S} {0,1},P,S) /IRemember:G=(V,T,P,9S)

(1) S—>0s1 or just simply S —0S1 | ¢
(2) S—¢

« Example Derivations:

S =>0S1 (1) S =>¢ (2)
=> 01)

S =>0S1 (1)
=> 00S11 (1)

=>000S111 (1)
=>000111 (2

« Note that G “generates” the language {0%1% | k>0}

Example CFG for ?:

G=({A B,C, S} {a b,c} P,YS)

P:
(1)
(2)
3
(4)
(5)
(6)
(7)

S—> ABC

A —>aA
A—>¢
B —>DbB
B—>¢
C—>cC
C—>¢

Example Derivations:

S

=> ABC
=>BC
=>C
=g

1)
3)
(5)
(7)

A—>aA|e
B—>bB|e¢

C—>cCle

S =>ABC
=> aABC
=> aaABC
=>aaBC
=> aabBC
=> aabC
=> aabcC
=> aabc

Note that G generates the language a*b*c*

1)
(2)
(2)
3)
(4)
()
(6)
(7)

Formal Definitions for CFLs

LetG=(V,T,P,S)beaCFG.
Observation: “—>” forms a relation on V and (V U T)*

Definition: LetAbeinV,and Bbein (VU T)*, A—>BbeinP, and let « and £ be in
(VuT)*. Then:

aAB => aBp

In words, a A directly derives aBp, or in other words aBf follows from oA by the
application of exactly one production from P.

Observation: “=>” forms a relation on (V U T)* and (V U T)*.

Definition: Suppose that a4, a,,...,0 are in (V. U T)*, m>1, and

0 == 0y
O, == O3

Oy = Oy,
e %k
Then o, =>* a,,

In words, a,,, follows from a, by the application of zero or more productions. Note that:
o =>%* q.

Observation: “=>*" forms a relation on (V. U T)* and (V U T)*.
Definition: Let a be in (V U T)*. Then a is a sentential form if and only if S =>* q.

Definition: Let G = (V, T, P, S) be a context-free grammar. Then the language
generated by G, denoted L(G), is the set:

{w|wisin T*and S=>* w}

Definition: Let L be a language. Then L is a context-free language if and only if there
exists a context-free grammar G such that L = L(G).

Definition: Let G, and G, be context-free grammars. Then G1 and G2 are equivalent if
and only if L(G,) = L(G,).

10

Theorem: Let L be a regular language. Then L is a context-free language. (or, RL
cCFL)

Proof: (by induction)

We will prove that if r is a regular expression then there exists a CFG G such that L(r) =
L(G). The proof will be by induction on the number of operators in r.

Basis: Op(r) =0
Then r is either 9, €, or a, for some symbol a in .

For @:

Let G = ({S}, {}, P, S) where P = {}
For &:

Let G = ({S}, {}, P, S) where P = {S > ¢}
For a:

Let G = ({S}, {a}, P, S) where P ={S—>a}

11

Inductive Hypothesis:

Suppose that for any regular expression r, where 0<op(r) <k, that there exists a CFG G such
that L(r) = L(G), for some k>=0.

Inductive Step:
Let r be a regular expression with op(r)=k+1. Thenr =r; + r,, r=rr,orr=r*

Casel) r=r,+r,

Since r has k+1 operators, one of which is +, it follows that r, and r, have at most k
operators. From the inductive hypothesis it follows that there exist CFGs G, = (V,, Ty,
P, S)) and G, = (V,, T,, P,, S,) such that L(r,) = L(G,) and L(r,) = L(G,).

Assume without loss of generality that V; and V, have no non-terminals in common,
and construct a grammar G = (V, T, P, S) where:

V=V,uV,u {S}
T=T,UT,
P=P,UP,U{S—>S,,S—>S,}

Clearly, L(r) = L(G).

12

Case 2) r=ryr,

Let G, = (V,, T,, Py, S)) and G, = (V,, T,, P,, S,) be as in Case 1, and construct a
grammar G = (V, T, P, S) where:

V=V,uV,u {S}
T=T,UT,
P=P,uUP,U{S—>S,;S,}

Clearly, L(r) = L(G).

Case 3) r=(r)*

Let G, = (V,, T4, Py, S;) be a CFG such that L(r;) = L(G,) and construct a
grammar G = (V, T, P, S) where:

V=V,uU{S}
T=T,
P=P,u{S—>S,5,S—>¢}

Clearly, L(r) = L(G).=
13

The preceding theorem is constructive, in the sense that it shows how to construct a
CFG from a given regular expression.

Example #1:

r=a*pb*

14

Example #1: a*b*

r=ryr,

S, —>b

S,—>a

S;—> 5,5,
S;—=>¢

S,—>S,5,
S,—>¢

S, —>S,S,

15

Example #2:

r = (0+1)*01
r=rn,r,
r=rg*

r3 = (ry+rs)
r,=0
=1

[,= gl
=0
r,=1

16

Example #2: (0+1)*01

r,=1
=0

[,= Igl-
=1
r,=0

ry = (ry+rs)
r=r;*
r=ryr,

S, —>1

S,—>0

S,—>S,S,

S,—>1

S, —>0

Se—>S,, Sg—> Ss

S, —> 5SS,
S, —>¢

Sg—>S;S;

17

Definition: A CFG is a regular grammar if each rule is of the following form:

- A—>a
- A-—>aB
- A—>c¢

where Aand BareinV,andaisinT

Theorem: A language L is a regular language iff there exists a regular grammar G such
that L = L(G).

Proof: Exercise.=Develop translation fromRegular form -> DFA; and
DFA -> regular grammarf]

Observation: The grammar S — 0S1 | ¢ is not a regular grammar.

Observation: A language may have several CFGs, some regular, some not (The fact
that the preceding grammar is not regular does not in and of itself prove that 0"1" is not
a regular language).

18

« Definition: Let G=(V, T, P, S) be a CFG. A tree is a derivation (or parse) tree if:

— Every vertex has a label fromV U T U {&}

— The label of the root is S

— Ifavertex with label A has children with labels X, X,,..., X,,, from left to right, then
A—>X, X,,..., X,

must be a production in P
— If avertex has label g, then that vertex is a leaf and the only child of its’ parent

« More Generally, a derivation tree can be defined with any non-terminal as the root.

19

Example:

S—>AB A
A—>aAA / \ / \
A —>aA aA
/\\ \ /I\
B —>hB A aAA
B—>b ‘

a

yield = aAab yield = aaAA

Notes:

— Root can be any non-terminal
— Leaf nodes can be terminals or non-terminals
— A derivation tree with root S shows the productions used to obtain a sentential form

20

Observation: Every derivation corresponds to one derivation tree.

S =>AB S Rules:
=> aAAB RN S->AB
=> aaAB A B A—>aAA
=> aaaB / \ \ A—>aA
=> aaab a’ A A b A—>a
‘ B-—>hbB
a a B—>b

Observation: Every derivation tree corresponds to one or more derivations.

leftmost: rightmost: mixed:

S =>AB S =>AB S =>AB
=>aAAB => Ab => Ab
=>aaAB =>aAADb =>aAAb
=> aaaB =>aAab => aaAb
=> aaab => aaab => aaab

Definition: A derivation is leftmost (rightmost) if at each step in the derivation a

production is applied to the leftmost (rightmost) non-terminal in the sentential form.

— The first derivation above is leftmost, second is rightmost, the third is neither.

21

» Observation: Every derivation tree corresponds to exactly one leftmost (and
rightmost) derivation.

=> aAAB / \
NG AR

=> gaab a A A b

» Observation: Let G be a CFG. Then there may exist a string x in L(G) that has
more than 1 leftmost (or rightmost) derivation. Such a string will also have
more than 1 derivation tree.

22

« Example: Consider the string aaab and the preceding grammar.

S—>AB S =>AB S
A-—>aAA => aAAB N\
A —>aA => aaAB A B
A—>a => aaaB / ‘ \ \
B—>bB => aaab a A A b
B-—>bh ‘ ‘
a a
S =>AB S
=> aAB / \
=> aaAB A B
=> aaaB
=> aaab a/ \A \b
\
a / A
|

« The string has two left-most derivations, and therefore has two distinct parse trees.

23

« Definition: Let G be a CFG. Then G is said to be ambiguous if there exists an
X in L(G) with >1 leftmost derivations. Equivalently, G is said to be
ambiguous if there exists an x in L(G) with >1 parse trees, or >1 rightmost
derivations.

* Note: Given a CFL L, there may be more than one CFG G with L = L(G).
Some ambiguous and some not.

« Definition: Let L be a CFL. If every CFG G with L = L(G) is ambiguous, then
L is inherently ambiguous.

24

« An ambiguous Grammar: A leftmost derivation

E > | Y0005 () EDEE
E->E+E =>3*E+E
E>E*E =>3*|+E
=>3*2+E
E->(E) =>3*%2+|
|->¢|0]1]...]9 =>3*2+5
« Astring: 3*2+5 Another leftmost derivation
o T rees: E=>E+E
WO parse trees: CSE*E4E
*ontop, & +ontop =>|*E+E
& two left-most derivation: =3 E*E
=>3*|+E
=>3*2+]

=>3*2+5
25

E->1 2 ={0,...,9, +, %, ()}

E>E+E E=>E*E
E>E*E —S*E
E->(E) E
1->[0[1]...]9 =>3*E+E

=>3*|+E

=>3*2+E

=>3*2+| E

=1 AN
E A
AN ;

E
‘ 2 3)

Another leftmost derivation

E
E=>E+E
—>E*E+E ‘\\\\\\
=>|*E+E E * E
=>3*E+E ‘ ‘

=>3*I+E
=>3*2+|

I
=>3*2+5 |

Ambiguous grammar:

E->I
E->E+E
E->E*E
E -> (E)
|->¢|0]1]...]9
» Disambiguation of the Grammar:
Z :{01’191 +’ *! (1)}
E->T | E+T /hisTisa non-terminal, do not confuse with)
T->F|T*F
F->1]|(E)
|->¢|0]1]...|9

« Astring: 3*2+5
* Only one parse tree & one left-most derivation now:
+ on top: TRY PARSING THE EXPRESSION NOW

« A language may be Inherently ambiguous:
L ={a"b"c™d™ |n>1, m>1} U {a"bm™c™d" [In>1, m>1}

« An ambiguous grammar:
S->AB|C

A ->aAb|ab

B ->cBd|cd

C ->aCd | aDd
D ->DbDc | bc

« Try the string: aabbccdd, two different derivation trees

« Grammar CANNOT be disambiguated for this (not showing the
proof) 28

- String aabbccdd belongs to two different parts of the language:
ules:

S->AB|C L ={a"b"c™d™ |n>1,m>1} u {a"b™c™d" [n>1, m> 1}
A->aAb|ab
B ->cBd | cd
C->aCd|aDd
D ->bDc | bc
Derivation 1 of Derivation 2 of
aabbccdd: aabbccdd:
S=>AB S=>C
=> aAbB => aCd
=> aabbB => aaDdd
=> aabb cBd => aa bDc dd

=> aabbccdd => aabbccdd

29

Potential algorithmic problems for context-free grammars:

— Is L(G) empty?

— Is L(G) finite?

— Is L(G) infinite?

— IsL(Gy) = L(G,)?

— Is G ambiguous?

— 1Is L(G) inherently ambiguous?

— Given ambiguous G, construct unambiguous G’ such that L(G) = L(G’)

— @Given G, 1s G “minimal?”

30

