Background Information for the Pumping Lemma for Context-Free Languages

• **Definition:** Let G = (V, T, P, S) be a CFL. If every production in P is of the form

or
$$A \rightarrow BC$$

where A, B and C are all in V and a is in T, then G is in <u>Chomsky Normal Form</u> (CNF).

• **Example:** (not quite!)

 $S \rightarrow AB | BA | aSb$ $A \rightarrow a$ $B \rightarrow b$

- **Theorem:** Let L be a CFL. Then $L \{\epsilon\}$ is a CFL.
- **Theorem:** Let L be a CFL not containing $\{\epsilon\}$. Then there exists a CNF grammar G such that L = L(G).

1

• CNF:

 $\begin{array}{l} A \longrightarrow BC \\ A \longrightarrow a \end{array}$

- **Definition:** Let *T* be a tree. Then the <u>height</u> of *T*, denoted h(T), is defined as follows:
 - If T consists of a single vertex then h(T) = 0
 - If T consists of a root r and subtrees $T_1, T_2, ..., T_k$, then $h(T) = \max_i \{h(T_i)\} + 1$
- **Lemma:** Let *G* be a CFG in CNF. In addition, let *w* be a string of terminals where A = >*w and *w* has a derivation tree *T*. If *T* has height $h(T) \ge 1$, then $|w| \le 2^{h(T)-1}$.
- **Proof:** By induction on h(T) (exercise: *T* is a binary tree).
- **Corollary:** Let *G* be a CFG in CNF, and let *w* be a string in L(G). If $|w| \ge 2^k$, where $k \ge 0$, then any derivation tree for w using *G* has height at least k+1.
- **Proof:** Follows from the lemma.

• **Lemma:** Let *G* be a CFG in CNF. In addition, let *w* be a string of terminals where A = >*w and *w* has a derivation tree *T*. If *T* has height $h(T) \ge 1$, then $|w| \le 2^{h(T)-1}$.

Pumping Lemma for Context-Free Languages

• Pumping Lemma:

Let G = (V, T, P, S) be a CFG in <u>CNF</u>, and let n = $2^{|V|}$. If z is a string in L(G) and $|z| \ge n$, then there exist substrings u, v, w, x and y in T* such that z=uvwxy and:

- $|vx| \ge 1$ (i.e., $|v| + |x| \ge 1$, or, non-null)
- $|vwx| \le n$ (the loop in generating this substring)
- uvⁱwxⁱy are in L(G), for all $i \ge 0$
- Note: u or y could be of any length, may be ε
- vwx is in the middle, of size >0
- Note the difference with Regular Language pumping lemma

• **Proof:**

Since $|z| \ge n = 2^k$, where k = |V|, it follows from the corollary that any derivation tree for *z* has height at least k+1.

By definition such a tree contains a path of length at least k+1.

Consider the longest such path in the tree *T*:

Such a path has:

- Length of path *t* is $|t| \ge k+1$ (i.e., number of edges in the path *t* is $\ge k+1$)
- At least k+2 nodes on the path t
- 1 terminal, at the end of the path t
- At least k+1 non-terminals

- Since there are only *k* non-terminals in the grammar, and since k+1 or more non-terminals appear on this long path, it follows that some non-terminal (and perhaps many) appears at least twice on this path.
- Consider the first non-terminal (from bottom) that is repeated, when traversing the path from the leaf to the root.

This path, and the non-terminal A will be used to break up the string z.

• Generic Description:

• Example:

In this case u = cd and y = f

Where are v, w, and x?

• Cut out the subtree rooted at A:

S =>* uAy (1)

• Example:

• Consider the subtree rooted at A:

• Cut out the subtree rooted at the first occurrence of A:

$$A \Longrightarrow vAx \qquad (2)$$

A =>* fAg

• Consider the smallest subtree rooted at A:

• Collectively (1), (2) and (3) give us:

$$S \implies uAy \qquad (1)$$

$$\implies uvAxy \qquad (2)$$

$$\implies uvwxy \qquad (3)$$

$$\implies z \qquad since \ z = uvwxy$$

• In addition, (2) also tells us:

$$S \implies uAy \qquad (1)$$

$$\implies uvAxy \qquad (2)$$

$$\implies uv (vAx) xy \qquad // by using the rules that make A \implies vAx$$

$$\implies uv^2Ax^2y \qquad (2)$$

$$\implies uv^2wx^2y \qquad (3)$$

• More generally:

 $S =>* uv^i wx^i y$ for all $i \ge 1$,

• And also:

$$S =>* uAy$$
 (1)
=>* uwy (3) // by A =>* w
here, i=0

• Hence:

 $S =>^* uv^i wx^i y \qquad \qquad \text{for all } i \geq 0$

• Consider the statement of the Pumping Lemma:

-What is n?

 $n = 2^k$, where k is the number of non-terminals in the grammar.

 $-Why is |v| + |x| \ge 1?$

Since the height of this subtree is ≥ 2 , the first production is A->V₁V₂. Since no nonterminal derives the empty string (in CNF), either V₁ or V₂ must derive a non-empty v or x. More specifically, if w is generated by V₁, then x contains at least one symbol, and if w is generated by V₂, then v contains at least one symbol.

- At least, A->AV, or A->VA, and V->a

–Why is |vwx| \le n?

•*Remember*, $n = 2^k$, k # non-terminals

Observations:

- The repeated variable was the first repeated variable on the path from the bottom, and therefore (by the pigeon-hole principle) the path from the leaf to the second occurrence of the non-terminal has length at most k+1.
- Since the path was the largest in the entire tree, this path is the longest in the subtree rooted at the second occurrence of the non-terminal. Therefore the subtree has height ≤(k+1). From the lemma, the yield of the subtree has length ≤ 2^k=n.

Use of CFL Pumping Lemma

Closure Properties for Context-Free Languages

- **Theorem:** The CFLs are closed with respect to the union, concatenation and Kleene star operations.
- **Proof:** (details left as an exercise) Let L_1 and L_2 be CFLs. By definition there exist CFGs G_1 and G_2 such that $L_1 = L(G_1)$ and $L_2 = L(G_2)$.
 - For union, show how to construct a grammar G_3 such that $L(G_3) = L(G_1) U L(G_2)$.
 - For concatenation, show how to construct a grammar G_3 such that $L(G_3) = L(G_1)L(G_2)$.
 - For Kleene star, show how to construct a grammar G_3 such that $L(G_3) = L(G_1)^*$.

- **Theorem:** The CFLs are not closed with respect to intersection.
- **Proof:** (counter example) Let

$$L_1 = \{a^i b^i c^j \mid i,j \ge 0\}$$

and

$$\mathbf{L}_2 = \{\mathbf{a}^{\mathbf{i}}\mathbf{b}^{\mathbf{j}}\mathbf{c}^{\mathbf{j}} \mid \mathbf{i}, \mathbf{j} \ge 0\}$$

Note that both of the above languages are CFLs. If the CFLs were closed with respect to intersection then

 $L_1 \cap L_2$

would have to be a CFL. But this is equal to:

```
\{a^i b^i c^i \mid i \ge 0\}
```

which is not a CFL. •

- **Theorem**: The CFLs are NOT closed with respect to complementation.
- Lemma: Let L_1 and L_2 be subsets of Σ^* . Then $\overline{L_1 \cup L_2} = \overline{L_1} \cap \overline{L_2}$.
- **Proof:** (by contradiction) Suppose that the CFLs were closed with respect to complementation, and let L₁ and L₂ be CFLs. Then:

 $\overline{L_1}$ would be a CFL $\overline{L_2}$ would be a CFL $\overline{L_1} \cup \overline{L_2}$ would be a CFL $\overline{\overline{L_1} \cup \overline{L_2}}$ would be a CFL

But by the lemma:

$$\overline{\overline{L_1} \cup \overline{L_2}} = \overline{\overline{L_1}} \cap \overline{\overline{L_2}} = L_1 \cap L_2 \quad \text{a contradiction.}$$

- Theorem: Let L be a CFL and let R be a regular language. Then $L \cap R$ is a CFL.
- **Proof:** (exercise sort of) •
- **Question:** Is $L \cap R$ regular?
- Answer: Not always. Let $L = \{a^i b^i | i \ge 0\}$ and $R = \{a^i b^j | i, j \ge 0\}$, then $L \cap R = L$ which is not regular.