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ABSTRACT: Imagine taking pictures of an object V from different angles and then
reconstructing the 3D image of the surface of V computationally. Now, further
imagine that the source of the radiation is not the reflected light from the surface
of O, but actually the source is inside V. This latter technique is used in medical
imaging over the decades for non-invasively probing diseases, and is called
tomography.

Tomographic imaging is normally done under stationery conditions. In our current
project we address dynamic tomography problems, where the sources of
radiation inside a live object are the metabolites. In this talk | will infroduce the
basics of the tomography problem from an algorithmic point of view, and some
of our results.
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Tomography: Non-invasive Probing of
Human Body

Views from a rotating camera: Sinogram

Computed 3D Reconstructed Image

A B

Cardiac reversible ischemia: stressed(A), rest(B)
http://www.aipes-eeig.org/white-paper-spect-spect-ct.html
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Tomography: Non-invasive Probing of

Human Body

(True) Emission Volume Sinagram (stared data)

Forward Problem:
This is what the imaging system does

e . P=S.V
.{m} T
angle P: Camera Views - input
:I ) S: Camera model /| System Matrix - computed
g /ﬂ\ V: Target object - unknown

Reconstructed image Sinogram

Inverse Problem:
This is what a reconstruction algorithm does
V=51p

Theta {angle)

- N Rha (offset)
Back Prajection
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Typical dimensions of the Problem

V = 64x64x64 voxels => 262,000 => x4 bytes => 8 Mb

P = 64x64 pixels per view x 120 views => 500,000
=> x4 b =>20 Mb

$=8x20=>160Mb

Moreover,
o P is Very noisy
o Sis not perfect
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Iterative Reconstruction

Input geometry

Bulid object model |

RS ﬂ.e_ .
1 Do torward projection '

el

'=5.V”” FORWARD PROBLEM

Input data

Compute residual

Good enough? :
of object " :
V" = Output estimated image

h
V’=S-1.P” INVERSE PROBLEM

Update object/
enforce constraints
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Types of Medical Tomography Systems
Computed Tomography (CT): X-Ray Absorption
Positron Emission Tomography (PET): positron->gamma ray emission
Single Photon Emission Computed Tomography (SPECT): gamma

Magnetic Resonance Imaging (MRI)
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Computed Tomography:
Absorption of X-ray Anatomical Imaging

-— * X-ray tube
ane ] °, h“\-.

.,

rotation

20-40 keV
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Emission Tomography:
Functional Imaging

2-[F-18]Fluoro-2-Deoxy-D-Glucose
(FDG)

e 511 keV photon

Source: ME Phelps, PNAS, 97(16) 9226-9233, 2000
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SPECT:. Gamma Emission Tomography

(Single Photon Emission Computed Tomography)

collimators

y-ray detectors =

100-200 keV

Acquisition
system
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PET: Positron Emission Tomography
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Dynamic Imaging: PET

Project 1

3D x t

® CS Seminar, FIT 9/26/2014 @ 12



Dynamic Imaging: PET

Project 1

PET: views from all angles available at all instances.
http:/[www.whatisnuclearmedicine.com/Whatis-62-How %20does %20it%20work?&PHPSESSID=4f85d88a38d337434cfca6b2e95401e2

PET SCAN

Time-lapsed Reconstructed
3D images, a slice through
human brain

Tracer concentration is
changing with time
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Dynamic Imaging- Challenges

« Low counts — high noise

o less time for data acquisition on each view
o lll-posed Problem

e Lesser data/information in each time window after
binning
o Underdetermined Problem
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Diagnostic Value of Dynamic Data

Time activity curves (TACs)

blood pool
blood
heart muscle
(myocardium)
Ty heart .
other organs gt
(E.g., liver)

4

Local tracer exchange (kinetic)
rates —
important diagnostic parameters
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CIFA Algorithm for Dynamic PET

Project 1

CIFA: Cluster-Initialized Factor Analysis

Input: 4D images of possible Alzheimer’s patient

Output: Visualize affected tissues based on their tracer kinetics

SPIE Medical Imaging Conference, (submitted) February 2015, Orlando,
R Bouthcko, D Mitra, H Pan, W Jagust, and GT Gullberg
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CIFA Algorithm for Dynamic PET

Project 1

Output(1): Time-activity curves :
Carotid artery, Normal tissue, and Alzheimers affected tissue;

Output (2): Corresponding segments

3D views of above tissues

SPIE Medical Imaging Conference, (submitted) February 2015, Orlando,
R Bouthcko, D Mitra, H Pan, W Jagust, and GT Gullberg
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Dynamic Imaging: SPECT

Project 2

2Dx O x t
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Dynamic Imaging: SPECT

Project 2

First Rotation Sinogram

Only two projections for each time point: Immediately after injection

more difficult than PET .
Time 1

lime Activity Lurve

¢

' N RN
/ N
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Dynamic Vs. Static Projections

Static Sinogram Dynamic Sinogram
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Dynamic SPECT — Additional Challenges

Low counts — less time for data acquisition:
o lll-posed Problem

Few projections for each time point:
o Underdetermined Problem

First rotation data, only two views per rotation:

o Inconsistent

Small animal imaging:

o Low resolution & motion
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Dynamic SPECT: Task

« Goal: Estimation of tracer’s temporal distribution in
the imaged tissues directly from inconsistent
projections

Input: Dynamic Sinogram Output: Time Activity Curves (TACs)

25

—Blood
201 —Myocardium

—Liver

151

10r

0 20 40 80 80 100
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Our contributions

» SIFADS (Spectral Initialized Factor Analysis of
Dynamic Structures): sparsification with adaptable
basis-functions

« Conditional Regularization for Constrained
Opftimization
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Dynamic SPECT Model

P: Sinogram
K as function of time
: S S: System Matrix
® Dynamic SPECT B=al S ) el e
is modeled by k=1 as function of time.
n: pixel index on the detector
k: voxel index on the volume

® 4D volume is

factored with J g v f: Time basis functions
) ! V (f) — a aliEs f ~ C: Coefficients of time

time basis k kij/ jit basis functions

functions: gt J: Number of

at

time basis functions.

P(=a5,aC,/, mmp P= ;c,;

Space Time
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Existing Methods

« Spectral Methods:

o Select aset of representative time basis functions (Typically cubic b-
splines). Problem: what is the best set of basis functions?

argmin{HSCf- PHi}
i

« Factor Analysis of Dynamic Structures (FADS):

o Inifialize both time basis functions and coefficients with proper values.
Problem: what to initialize with?

argmln{HSCf PH +Regu|ar|zat|on}
>
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Our Approach

Enhancements:

o Imposed Data-driven Prior information as
constraints in optimization

o Combined two types of optimization
technigues

Conseqguence:
Reduced dependence on initialization

IEEE Transactions in Medical Imaging, (in press)
Abdalah, Bouthcko, Mitra, and Gullberg
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Proposed Methods 1- Impose Prior information

« Reconstruction of later frames is segmented

« Segments are used to impose regularization
functions:

1. An anisotropic total variation Q(c)=41¥7(c)|,
2. Coefficients mix prevention WC)=|C,-C,| j#i
3. Curves’ smoothness constraint F (/)= Vs

argmin{[SCr - p, +/,.Q(c) +/WC)+/ F ()}

Spatial Temporal

Regularization = Regularization
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Proposed Methods 2—- Hybrid
Optimization
« Spectral Initialized FADS (SIFADS) algorithm

I 1. Estimate initial TACs using spectral method I

2. Using segmented static volume, average TACs of

Spectral
Estimation

each segment

l 3. Estimate the coefficients of averaged curves l

Initial Guess
Preparation

4. Initialize FADS with averaged curves and
estimated coefficients
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SIFADS Algorithm

MAP Algorithm

for coefficients estimation

SIFADS Algorithm ¢ L
for 1=1to N do ‘
U(C[‘]% — n(Cl) 4+ 0(Cll);

B /STEP 1: Initialization: vU(C 17]) y ﬂigm;
S S //B-Splines fitting Cli+1] — chbl YL __SF:
S g 1:  fY « {B — Spline functions}; end for 2 Sf+VU(CH) £ 3 SCrlf =
o5 . :
I - C{:“_Ov _ ooom return C

3 (O« argmcm{"SC f -p”w}

28 // Estimating initial Curves and Coefficients:
é =84 V(t) « C'fY, MAP Algorithm
=5 f' + Ave(segment(V (t)); for coefficients and factors estimation
‘;é é 6: C? argmcin{"SC]f]—P”i+318(C']+A.29(C')+;|-_1¢D(f')} fﬂri;émﬁ? _dﬂr B
oefficlent minimizalton.
/ STEP 2: FADS Refinement UI(CHE‘{_ )k1ﬂé(7[’:]) + A0(ClY;
£ ¢ o : VUL(CY) 5ty
: argmin o ! : ! i 2 i].
% 7. (C*, f*) + argmi {\|Sc £ + 10 + 2,0(C7) + 2 )} Cli+1] — Esﬂilfwi(c[‘_]) T gsgfﬂﬂ-‘l S £l
:é // Estimate and Output Final Curves: / Factor minimization:
N8 V(t)«— C*f*; Uz(f[i]%tFAE‘igf[i]};
9:  f + Ave(segment(V (t)); VU (1) « 57 :
f[H-l] — ¥ SCHERIAV Uy (fT1) E Escﬁ'll]f[il SC[=+1];
end for
return C, f
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Validation with Simulation

Coefficients used for simulation
(NCAT phantom)

“~Myocardium

ood Poo! e : )
| © ) Liver

Ly
S S TS E T
= B S S ESTTTSRSTTTTIETI

Generated projections with Poisson noise

® 30
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Spline vs. SIFADS results

0.: /

0.6
=B-Spline 1

0.4 —B-Spline 2
—B-Spline 3

0.2

0

1 11 21 31 41 51 61 71 81
Time Sec.
1

1 11 21 31 41 51 61 71 81
Time Sec.

0.6 ..TB:Spline 1

=B-Spline 2

04 ol N —B-Spline 3

—B-Spline 4

0.2 ZB-Spline 5
1]

1 11 21 31 41 51 61 71 81
Time Sec.
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SIFADS
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Real Data: Rat heart

 Dynamic, pinhole SPECT study, rat’s heart

« Collimators:1.5x2 mm tungsten pinholes

« GE VG3 Millennium Hawkeye camera

« Acquisition started with injection of 7 mCi '23I-MIBG
« 30 rotations, 90 one-second views, per rotation

« Detector pixel: 4.42 mm, recon voxel 0.8 mm
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Original projections:

Results from Rat data

Estimated rat TACs from the
first inconsistent rotation:

RAT TACs
0.06
-Blood Cavity
Reproduced projections by forward = 0% “Myocardium
projecting dynamic reconstruction: - Liver
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Cell Tracking on Fluorescent Microscopy
Project 3

2D x t

® CS Seminar, FIT 9/26/2014 @ 34



Cell Tracking on Fluorescent Microscopy
Project 3

ERET: Fluorescence Resonance Energy Transfer
New Technology for quantifying gene expression in live single cells

Frotein Acceptor-labeled
~ protein
O
e -r;;.g;y e Sensitized
GFPW % %‘ {}Q?_ emission
. Q= s
A S 1,
l-'_l_r}l K I'i _I_rJ | -
- T o ,
Donor Donor
emission emission o1 5 A
Fig. I. TRENDS in Cell Biology Eafi) = F=()-F=()-Rp —F"(i)-Rg |

FA()
Three channels for each Time-frame:
Donor emission (Fd), Acceptor Emission (Fa), D-to-A Excitation emission (Fda)

“Imaging biochemistry inside cells”
TRENDS in Cell Biology, 11(5): 203-211, 2011
Wouters, Verveer and Bastiaens
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Cell Tracking on Fluorescent Microscopy
Project 3

Input: frames of the time-lapsed 2D image from a confocal microscope

Output: same frames after tracking by scale-space segmentation

CS Seminar, FIT 9/26/2014 @364



Cell Tracking on Fluorescent Microscopy
Project 3

)

par ©
e@w" O
O &

® o v

O

O
o © : . o

o ® oo OO0 C(JO ) ()C) o

Scale Space Algorithm: handles varying sizes of cells

Problem:

Live cells move in 3D — across the frame, in-out of focal plane;
Cells also divide!

How to track a cell from frame to frame?

Semi-solved:
Search around a cell in next frame for similar average intensity

SPIE Medical Imaging Conference, (submitted) February 2015, Orlando,
Debasis Mitra, Rostyslav Bouthcko, Judhajeet Ray, and Marit Nilsen-Hamilton
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Future Works with SIFADS

« Use different imaging data:
PET, CT, Microscopy

» Use different basis function types:

wavelets or other non-orthogonal bases
« Use different objective functions:

dynamic data is very low intensity — use entropy
« Use different optimization techniques:

primal-dual algorithm shows promise

« Use different parallelization platforms: GPU
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Tomography Beyond Medicine:
Inverse Problems with similar mathematics -

: cosmic ray-generated muon scattered from heavy metals
: to “see” 3D view of a virus or molecule

: Acoustic waves from earthquake or artificial source to
study subsurface structure

: Structure of the universe from telescopic observations
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Thanks

Questions

?

H
Contact: dmitra@cs.fit.edu
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