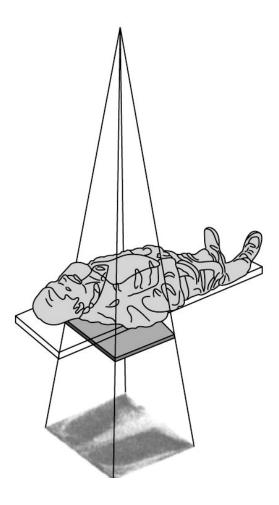
EL582/BE620 --- Medical Imaging -Introduction, Review of Signals & Systems, Image Quality Metrics

Yao Wang Polytechnic University, Brooklyn, NY 11201

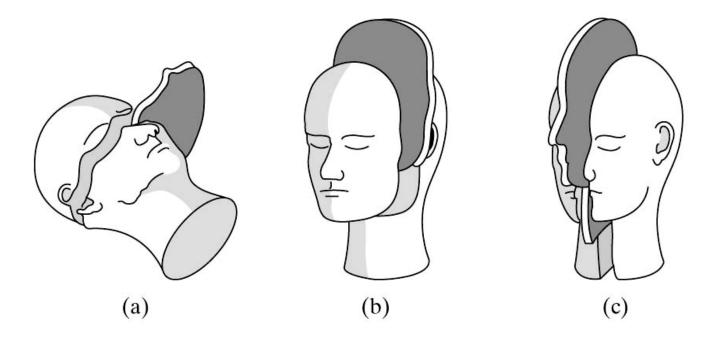
Based on Prince and Links, Medical Imaging Signals and Systems and Lecture Notes by Prince. Figures are from the book.

Lecture Outline


- Overview of different imaging systems
- Review of basic signals and systems
- Image quality assessment

What is Medical Imaging?

- Using an instrument to see the inside of a human body
 - Non-invasive
 - Some with exposure to small amount of radiation (X-ray, CT and nuclear medicine)
 - Some w/o (MRI and ultrasound)
- The properties imaged vary depending on the imaging modality
 - X-ray (projection or CT): attenuation coefficient to X-ray
 - Ultrasound: sound reflectivity
 - MRI: hydrogen proton density, spin relaxation


Projection vs. Tomography

- Projection:
 - A single image is created for a 3D body, which is a "shadow" of the body in a particular direction (integration through the body)

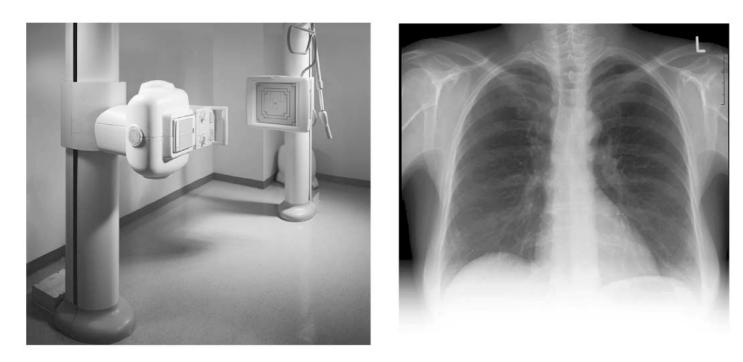
Projection vs. Tomography

- Tomography
 - A series of images are generated, one from each slice of a 3D object in a particular direction (axial, coronal, sagital)
 - To form image of each slice, projections along different directions are first obtained, images are then reconstructed from projections (backprojection, Radon transform)

Anatomical vs. Functional Imaging

- Some modalities are very good at depicting anatomical (bone) structure
 - X-ray, X-ray CT
 - MRI
- Some modalities do not depict anatomical structures well, but reflect the functional status (blood flow, oxygenation, etc.)
 - Ultrasound
 - PET, functional MRI

Image: constrained bit with the second sec

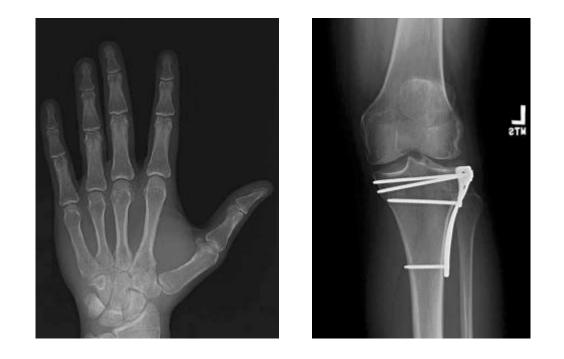

Functional

Yao Wang, Polytechnic Univ., Brooklyn

Common Imaging Modalities

- Projection radiography (X-ray)
- Computed Tomography (CT scan or CAT Scan)
- Nuclear Medicine (SPECT, PET)
- Ultrasound imaging
- MRI

Projection Radiography



(a)

(b)

Medical Imaging Signals and Systems, by Jerry L. Prince and Jonathan Links. ISBN 0-13-065353-5. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

- Year discovered:
- Form of radiation: radiation
- Energy / wavelength of radiation:
- Imaging principle:
- Imaging volume:
- Resolution:
- Applications:

1895 (Röntgen, NP 1905) X-rays = electromagnetic (photons) 0.1 - 100 keV / 10 - 0.01 nm (ionizing) X-rays penetrate tissue and create "shadowgram" of differences in density. Whole body Very high (sub-mm) Mammography, lung diseases, orthopedics, dentistry, cardiovascular, GI

From Graber, Lecture Note for Biomedical Imaging, SUNY

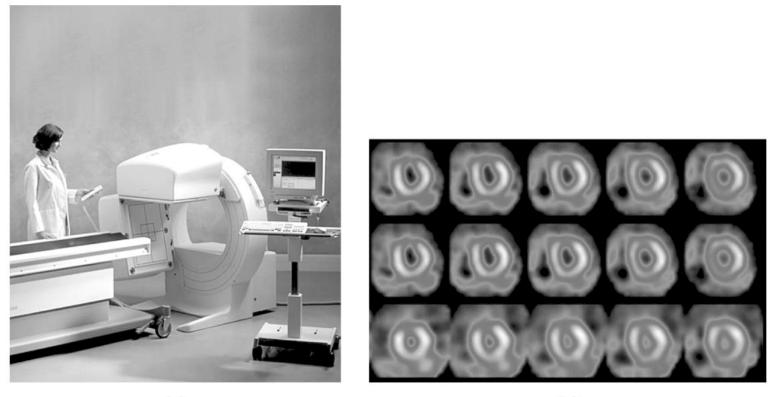
Computed Tomography

Medical Imaging Signals and Systems, by Jerry L. Prince and Jonathan Links. ISBN 0-13-065353-5. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

- Year discovered:
- Form of radiation:
- Energy / wavelength of radiation:
- Imaging principle:

views are

- Imaging volume:
- Resolution:
- Applications:

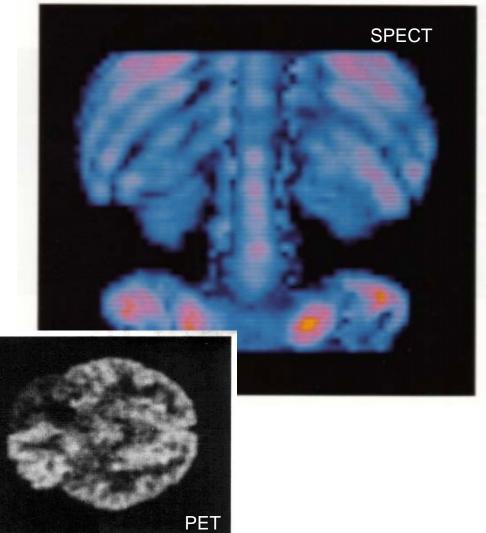

1972 (Hounsfield, NP 1979) X-rays 10 – 100 keV / 0.1 – 0.01 nm (ionizing) X-ray images are taken under many angles from which tomographic ("sliced") computed Whole body High (mm) Soft tissue imaging (brain, cardiovascular, GI)

From Graber, Lecture Note for Biomedical Imaging, SUNY

Nuclear Medicine

- Images can only be made when appropriate radioactive substances (called radiotracer) are introduced into the body that emit gamma rays.
- A nuclear medicine image reflects the local concentration of a radiotracer within the body
- Three types
 - Conventional radionuclide imaging or scintigraphy
 - Single photon emission computed tomography (SPECT)
 - Positron emission tomography (PET)

SPECT


(a)

(b)

Figure 1.3

Medical Imaging Signals and Systems, by Jerry L. Prince and Jonathan Links. ISBN 0-13-065353-5. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

• What do you see?

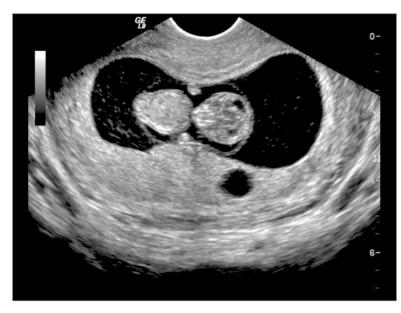
- Year discovered:
- Form of radiation:
- Energy / wavelength of radiation:
- Imaging principle:

body cameras.

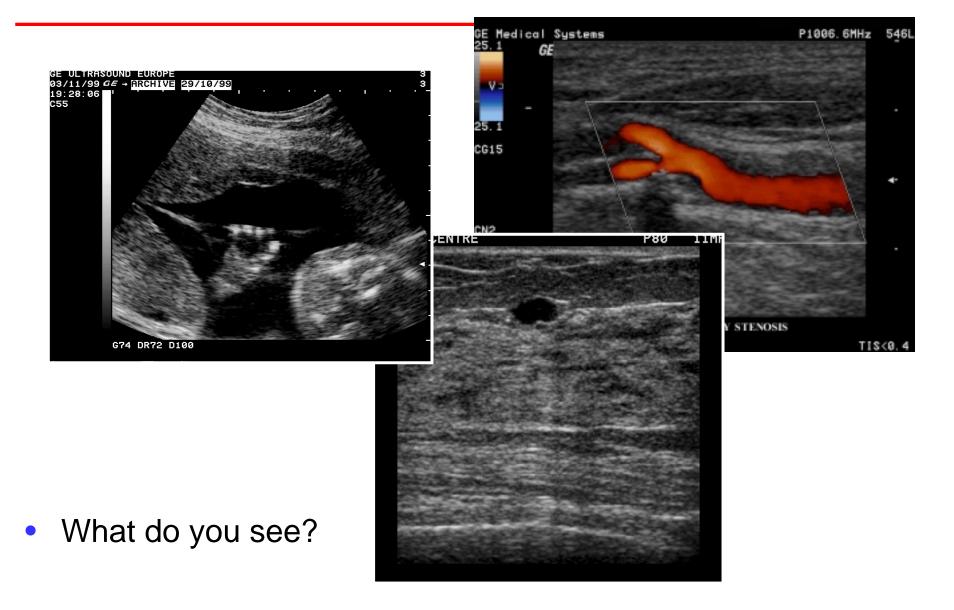
- Imaging volume:
- Resolution:
- Applications:

processes,

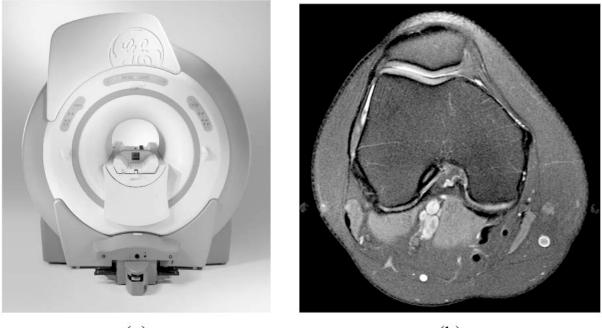
1953 (PET), 1963 (SPECT) Gamma rays > 100 keV / < 0.01 nm (ionizing) Accumulation or "washout" of radioactive isotopes in the are imaged with x-ray


Whole body Medium – Low (mm - cm) Functional imaging (cancer detection, metabolic myocardial infarction)

From Graber, Lecture Note for Biomedical Imaging, SUNY


Ultrasound Imaging

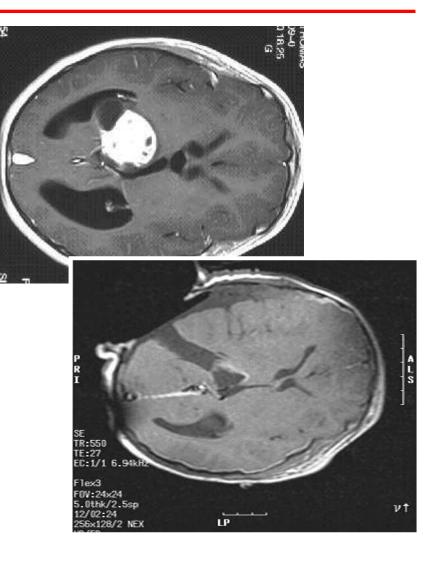
- High frequency sound are emitted into the imaged body, time of return of these sound pulses are measured
- Comparatively inexpensive and completely non-invasive
- Image quality is relatively poor


(b)

•	Year discovered:	1952 (clinical: 1962)
•	Form of radiation:	Sound waves (non-ionizing) NOT EM radiation!
•	Frequency / wavelength of radiation:	1 – 10 MHz / 1 – 0.1 mm
•	Imaging principle:	Echoes from discontinuities in tissue density/speed of sound
	are	registered.
•	Imaging volume:	< 20 cm
•	Resolution:	High (mm)
•	Applications: (Doppler)	Soft tissue, blood flow

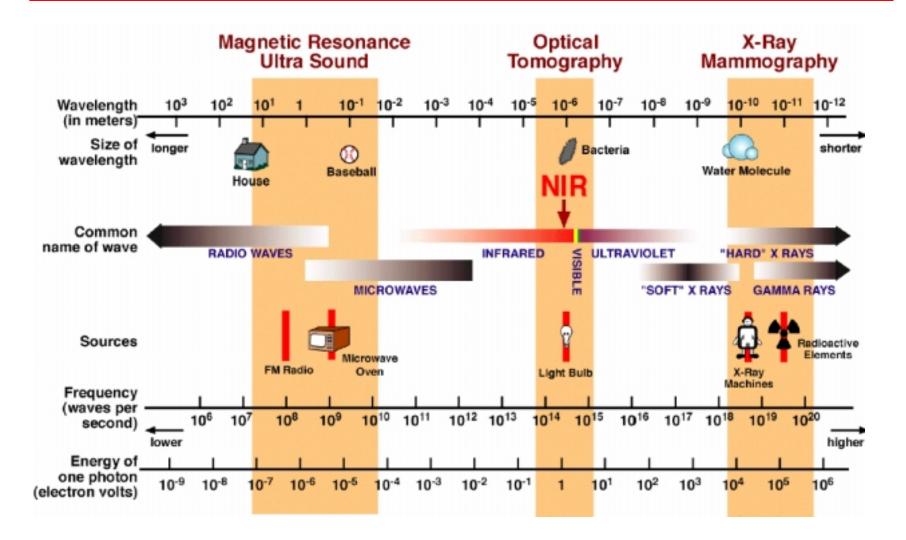
From Graber, Lecture Note for Biomedical Imaging, SUNY

Magnetic Resonance Imaging



Medical Imaging Signals and Systems, by Jerry L. Prince and Jonathan Links. ISBN 0-13-065353-5. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

• What do you see?


• Year discovered:

- Form of radiation:
- Energy / wavelength of radiation:
- Imaging principle: and response
- Imaging volume:
- Resolution:
- Applications:

1945 ([NMR] Bloch, NP 1952) 1973 (Lauterbur, NP 2003) 1977 (Mansfield, NP 2003) 1971 (Damadian, SUNY DMS) Radio frequency (RF) (non-ionizing) 10 – 100 MHz / 30 – 3 m (~10-7 eV) Proton spin flips are induced, the RF emitted by their (echo) is detected. Whole body High (mm) Soft tissue, functional imaging

From Graber, Lecture Note for Biomedical Imaging, SUNY

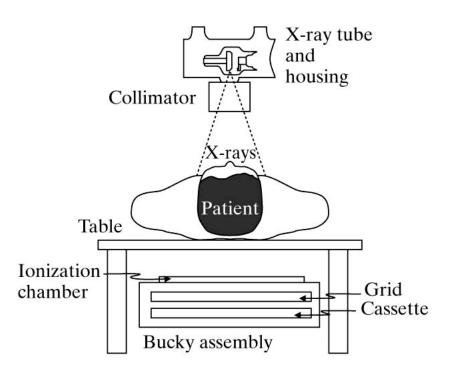
Waves Used by Different Modalities

Course breakdown

- Biomedical Imaging is a multi-disciplinary field involving
 - Physics (matter, energy, radiation, etc.)
 - Math (linear algebra, calculus, statistics)
 - Biology/Physiology
 - Engineering (implementation)
 - Image processing (image reconstruction and enhancement and analysis)
- Course breakdown:
 - 1/3 physics
 - 1/3 instrumentation
 - 1/3 signal processing
- Understand the imaging system from a "signals and systems" point of view

Signals and Systems View Point

- The object being imaged is an input signal
 - Typically a 3D signal
- The imaging system is a transformation of the input signal to an output signal
- The image produced is an output signal
 - Typically a 2D signal (an image, e.g. an X-ray) or a series of 2D signals (e.g. images from a CT scan)


input signal \rightarrow system or process \rightarrow output signal

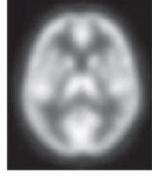
Example: Projection X-Ray

- Input signal: μ(x; y) is the linear attenuation coefficient for x-rays of a body component along a line
- Imaging Process: integration over *x* variable:

 $g(y)=\int \mu(x,y)dx$

• Output signal: g(y)

Example Signals


- $\mu(x, y, z)$, linear attenuation coefficient in xrays
- h(x, y, z), <u>CT numbers</u> in computed tomography
- A(x, y, z), <u>radioactivity</u> in nuclear medicine

subdura hemotoma pushing midline R to L

Positron Emission Tomography

Transformation of Signals

- Components of a transformation:
 - Input: f
 - System: $\mathcal{H}[\cdot]$
 - Output: g
- The <u>impulse response</u> or <u>point spread function</u> due to an impulse at (ξ, η) is

$$h(x, y; \xi, \eta) = \mathcal{H}[\delta(x - \xi, y - \eta)]$$

Linear Systems

• A <u>linear system</u> satisfies:

 $\mathcal{H}[w_1f_1 + w_2f_2] = w_1\mathcal{H}[f_1] + w_2\mathcal{H}[f_2]$

for all signals f_1 and f_2 and weights w_1 and w_2 .

• A linear system satisfies the <u>superposition</u> <u>integral</u>

$$g(x,y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(x,y;\xi,\eta) f(\xi,\eta) d\xi d\eta$$

• We model most medical imaging systems as linear.

Shift-Invariant Systems

• A system is $\underline{\text{shift-invariant}}$ is

$$g(x - x_0, y - y_0) = \mathcal{H}[f(x - x_0, y - y_0)]$$

for every (x_0, y_0) and $f(\cdot, \cdot)$.
• A linear shift-invariant (LSI) system yields
 $h(x, y; \xi, \eta) \rightarrow h(x - \xi, y - \eta)$
[Watch out for abuse of notation]

Linear and Shift-Invariant System

• An LSI system satisfies the <u>convolution integral</u>

$$g(x,y)=\int_{-\infty}^{\infty}\!\!\int_{-\infty}^{\infty}h(x\!-\!\xi,y\!-\!\eta)f(\xi,\eta)d\xi d\eta$$

which is abbreviated as

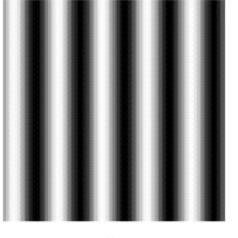
$$g(x,y) = h(x,y) \ast f(x,y)$$

 We model most medical imaging systems as LSI

h(x,y) is called the Impulse Response or Point Spread Function (PSF) of a LSI system, which indicates the output signal corresponding to a single impulse or point at origin.

Fourier Transform: 1D signals

$$\begin{array}{lll} F(u) &=& \int_{-\infty}^{\infty} f(x) e^{-j2\pi u x} dx \\ f(x) &=& \int_{-\infty}^{\infty} F(u) e^{+j2\pi u x} du \end{array}$$


- *x* has units of length (mm, cm, m) or time (for 1D signal in time)
- *u* has units of inverse length (cycles/unit-length), which is referred to as spatial frequency, or inverse time (cycles/sec), which is referred to as temporal frequency
- /F(u)/ indicts the amount of signal component in f(x) with frequency u

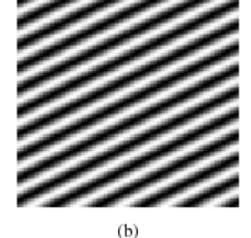
Fourier Transform: 2D signals

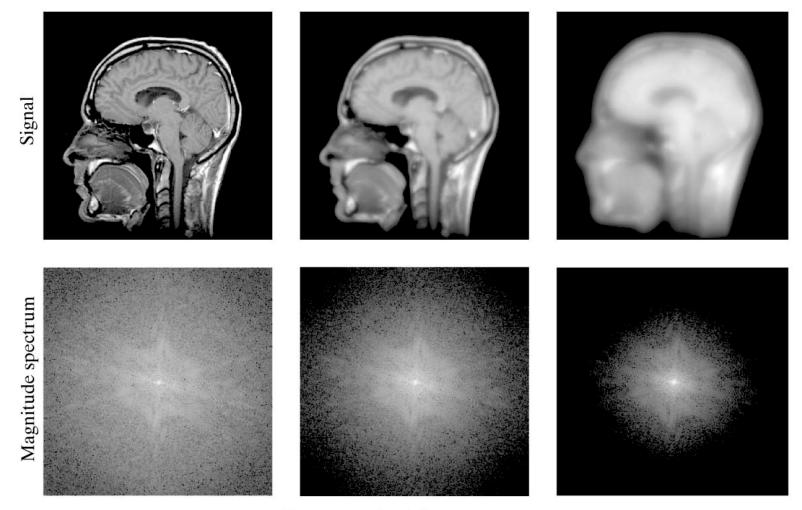
$$\begin{split} F(u,v) &= \mathcal{F}\{f\} \\ &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) e^{-j2\pi(ux+vy)} dx dy \\ f(x,y) &= \mathcal{F}^{-1}\{F\} \\ &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F(u,v) e^{+j2\pi(ux+vy)} du dv \end{split}$$

- 2D signal's frequency can be measured in different directions (horizontal, vertical, 45[^], etc.), but only two orthogonal directions are necessary
- *u* and *v* indicate cycles/horizontal-unit and cycles/vertical-unit
- |F(u,v)| indicates the amount of signal component with frequency u,v.

Spatial Frequency

(a)




Figure 2.1 Two-dimensional sinusoidal signals: (a) $(f_x, f_y) = (5, 0)$; (b) $(f_x, f_y) = (5, 10)$. The horizontal and vertical units are the width and height of the image, respectively. Therefore, $f_x = 5$ means that there are five cycles along each row.

Spatial Frequency

- Spatial frequency measures how fast the image intensity changes in the image plane
- Spatial frequency can be completely characterized by the variation frequencies in two orthogonal directions (e.g horizontal and vertical)
 - f_x : cycles/horizontal unit distance
 - f_{y} : cycles/vertical unit distance
- It can also be specified by magnitude and angle of change

$$f_m = \sqrt{f_x^2 + f_y^2}, \theta = \arctan(f_y / f_x)$$

FT of Typical Images

Decreasing high-frequency content

Convolution Property and Frequency Response

• Convolution in space domain = Product in frequency domain

$$\mathcal{F}\{f_1 * f_2\} = F_1 F_2$$

• For LSI system

Impulse response

$$G(x,y) = h(x,y) * f(x,y)$$

$$G(u,v) = H(u,v) F(u,v)$$

Frequency response

H(u,v) indicates how a complex exponential signal with frequency u,v will be modified by the system in its magnitude and phase

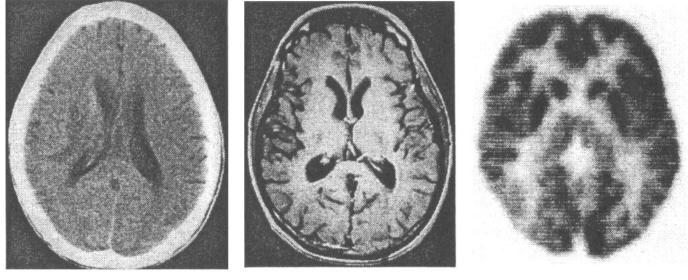
 \checkmark

$$e^{-j2\pi(ux+vy)} \to H(u,v)e^{-j2\pi(ux+vy)} = |H(u,v)|e^{-j(2\pi(ux+vy)+\angle H(u,v))}$$

Extra Readings

- See Chap 2 of textbook for more extensive reviews of signals and systems
- For more exposition, see
 - Oppenheim and Wilsky, Signals and Systems
- We will review a particular subject more when needed

Image Quality


- Introduction
- Contrast
- Resolution
- Noise
- Artifacts
- Distortions

Measures of Quality

- Physics-oriented issues:
 - contrast, resolution
 - noise, artifacts, distortion
 - Quantitative accuracy
- Task-oriented issues:
 - sensitivity, specificity
 - diagnostic accuracy

What is Contrast?

- Difference between image characteristics of an object of interest and surrounding objects or background
- Which image below has higher contrast?

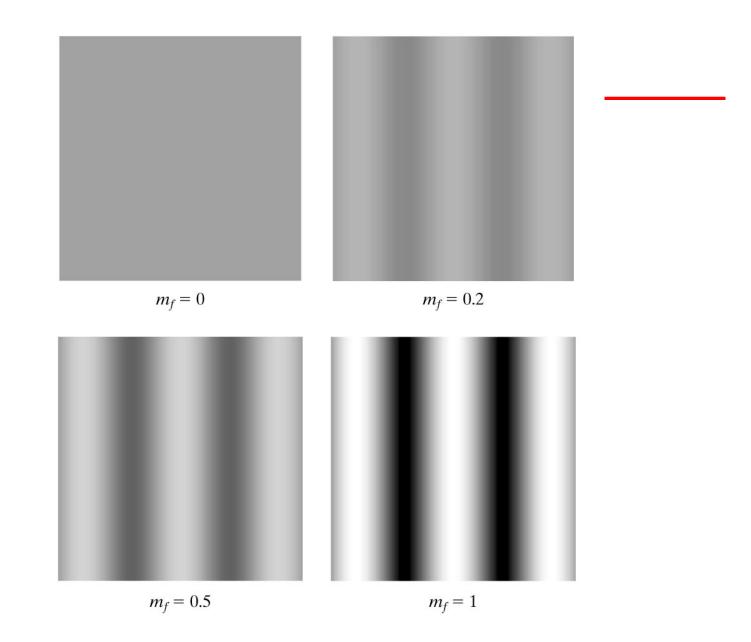
(b)

(c)

Figure I.4

Medical Imaging Signals and Systems, by Jerry L. Prince and Jonathan Links. ISBN 0-13-065353-5. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

Yao Wang, Polytechnic Univ., Brooklyn


Contrast

- Contrast: Difference between image characteristics of an object of interest and surrounding objects or background
- General definition
 - $f_{\text{max}},\,f_{\text{min}}$: maximum and minimum values of the signal in an image

 $\underline{\text{Contrast}} = \underline{\text{modulation}} =$ $m_f = \frac{\text{amplitude}}{\text{average}} = \frac{f_{\text{max}} - f_{\text{min}}}{f_{\text{max}} + f_{\text{min}}}$

• For a sinusoidal signal

$$f(x,y) = A + B\sin(2\pi u_0 x) \qquad \qquad m_f = \frac{B}{A}$$

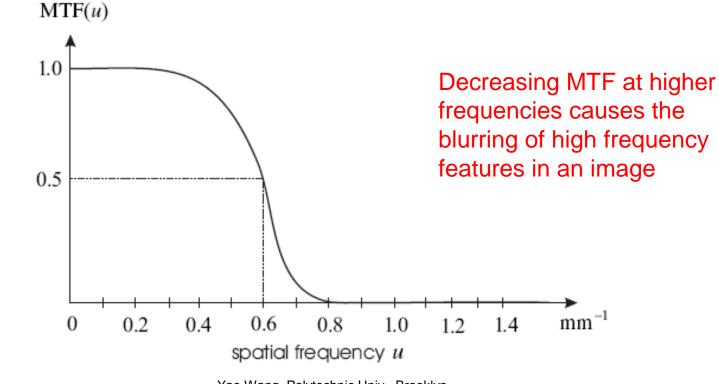
Medical Imaging Signals and Systems, by Jerry L. Prince and Jonathan Links.EL582, IntroISBN 0-13-065353-5. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

Modulation Transfer Function

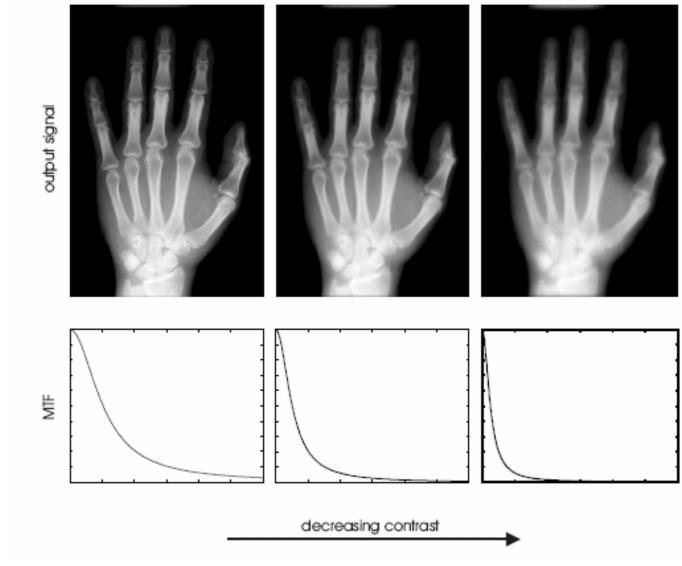
• The actual signal being imaged can be decomposed into many sinusoidal signals with different frequencies

$$f(x, y) = A + \sum_{k} B_{k} \sin(2\pi u_{k} x + 2\pi v_{k} y); \quad m_{f,k} = \frac{B_{k}}{A}$$

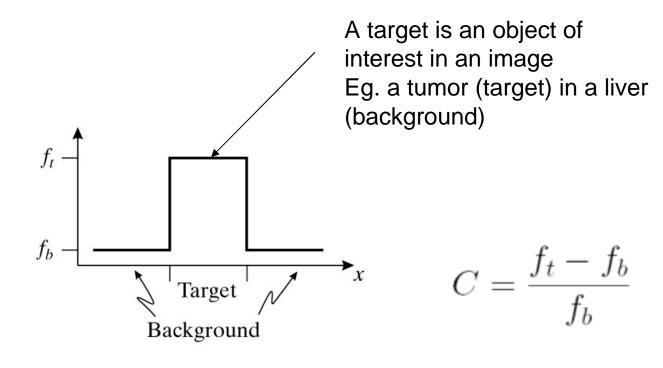
- Suppose the imaging system can be considered as a LSI system with frequency response H(u,v)
- Imaged signal is

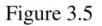

$$g(x, y) = H(0,0)A + \sum_{k} H(u_{k}, v_{k})B_{k} \sin(2\pi u_{k}x + 2\pi v_{k}y); \quad m_{g,k} = \frac{|H(u_{k}, v_{k})|B_{k}}{H(0,0)A}$$

 The MTF refers to the ratio of the contrast (or modulation) of the imaged signal to the contrast of the original signal at different frequencies


$$MTF(u,v) = \frac{m_{g,u,v}}{m_{f,u,v}} = \frac{|H(u,v)|}{H(0,0)}$$

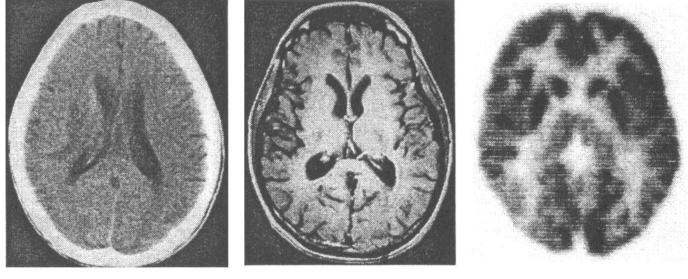
More on MTF


- MTF characterizes how the contrast (or modulation) of a signal component at a particular frequency changes after imaging
- MTF = magnitude of the frequency response of the imaging system (normalized by H(0,0))
- Typically $0 \le MTF(u, v) \le MTF(0, 0) = 1$



Impact of the MTF on the Image Contrast

Local Contrast



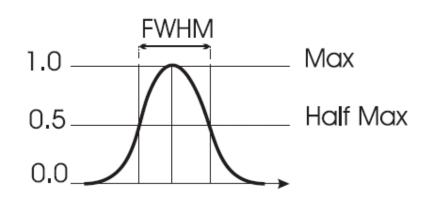
Medical Imaging Signals and Systems, by Jerry L. Prince and Jonathan Links. ISBN 0-13-065353-5. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

What is Resolution?

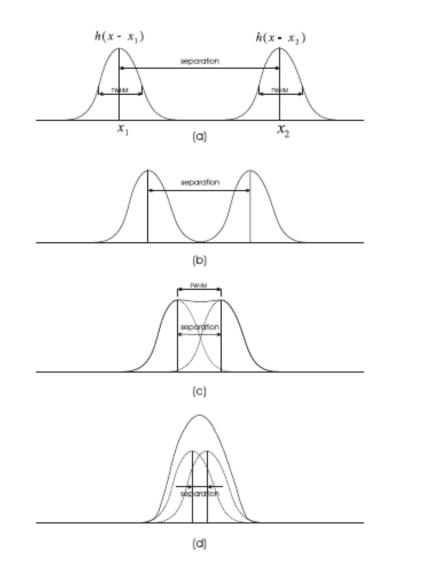
- The ability of a system to depict spatial details.
- Which image below has higher resolution?

(b)

(c)


Figure I.4

Medical Imaging Signals and Systems, by Jerry L. Prince and Jonathan Links. ISBN 0-13-065353-5. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.


Yao Wang, Polytechnic Univ., Brooklyn

Resolution

- Resolution refers to the ability of a system to depict spatial details.
- Resolution of a system can be characterized by its line spread function
 - How wide a very thin line becomes after imaging
 - Full width at half maximum (FWHM) determines the distance between two lines which can be separated after imaging
 - The smaller is FWHM, the higher is the resolution

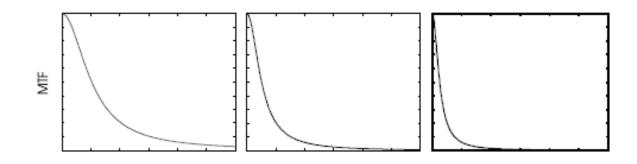
Distance > FWHM

Distance > FWHM

Distance = FWHM (barely separate)

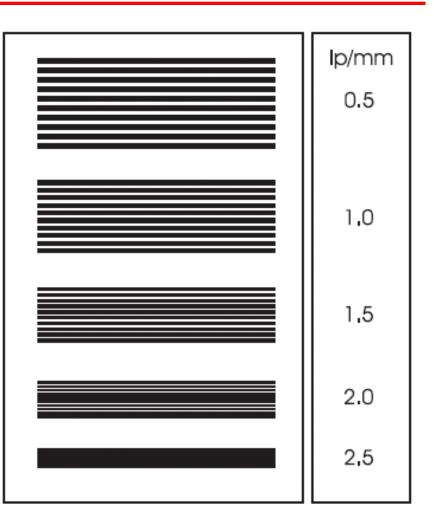
Distance < FWHM (cannot separate)

Resolution and MTF


- A pure vertical sinusoidal pattern can be thought of as the blurred image of uniformly spaced vertical lines
- The distance between lines is equal to distance between maxima
- If the frequency = u_0 , the distance = $1/u_0$

 $f(x, y) = A + B\sin(2\pi u_0 x)$ $g(x, y) = H(0,0)A + H(u_0,0)\sin(2\pi u_0 x)$ $= H(0,0)A + MTF(u_0,0)H(0,0)\sin(2\pi u_0 x)$

- If MTF(u₀)=0, the sinusoidal patterns become all constant and one cannot see different lines
- If MTF(u) first becomes 0 at frequency $u_{c_{,}}$ the minimum distance between distinguishable lines = 1/ u_{c}
- Resolution is directly proportional to the stopband edge in MTF


Example

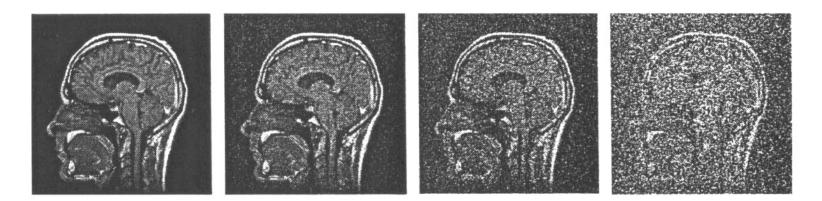
• Which system below has better contrast and resolution?

Bar Phantom

- The resolution of an imaging system can be evaluated by imaging a bar phantom.
- The resolution is the frequency (in lp/mm) of the finest line group that can be resolved after imaging.
 - Gamma camera: 2-3 lp/cm
 - CT: 2 lp/mm
 - chest x-ray: 6-8 lp/mm

What is noise?

- Random fluctuations in image intensity that are not due to actual signal
- The source of noise in an imaging system depends on the physics and instrumentation of the imaging modality
- Which image below is most noisy?



(c)

Figure I.4

Medical Imaging Signals and Systems, by Jerry L. Prince and Jonathan Links. ISBN 0-13-065353-5. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

Noise

Increasing noise

Figure 3.10

Medical Imaging Signals and Systems, by Jerry L. Prince and Jonathan Links. ISBN 0-13-065353-5. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

White vs. Correlated Noise

Model of a typical imaging system

$$g(x,y) = f(x,y) * h(x,y) + N(x,y)$$

N(x, y) is noise N(x, y) is a <u>random variable</u> at each (x, y)N(x, y) could be <u>continuous</u> or <u>discrete</u>

- White Noise: Noise values at different positions are independent of each other
 - Mean and variance at different (x,y) are same
- Correlated noise: noise at adjacent positions are correlated
 - Described by the correlation function R(x,y), whose Fourier transform is the noise power spectrum (NPS) NPS(u,v)
 - White noise has a PSD = constant = variance

Random Variables

- The most complete description of a random variable is its probability density function (pdf) for continuous-valued RV, or probability mass function (pmf) for discrete-valued RV.
- The two most important statistics of a random variable is mean (μ) and standard deviation (σ). The power of a random signal = variance = σ². Both η and σ can be derived from the pdf or pmf of a RV.
- Noise typically has zero mean ($\eta=0$).

Amplitude Signal to Noise Ratio

Amplitude SNR

$$\mathrm{SNR}_a = \frac{\mathrm{amplitude}(f)}{\mathrm{amplitude}(N)}$$

- Meaning of "signal amplitude" and "noise amplitude" are casedependent.
- For projection radiography, the number of photons G counted per unit area follows a Poisson distribution. The signal amplitude is the average photon number per unit area (μ) and the noise amplitude is the standard deviation of G

$$SNR_a = \frac{\mu_G}{\sigma_G} = \frac{\mu}{\sqrt{\mu}} = \sqrt{\mu}$$

A higher exposure can lead to higher SNR_a

Power SNR

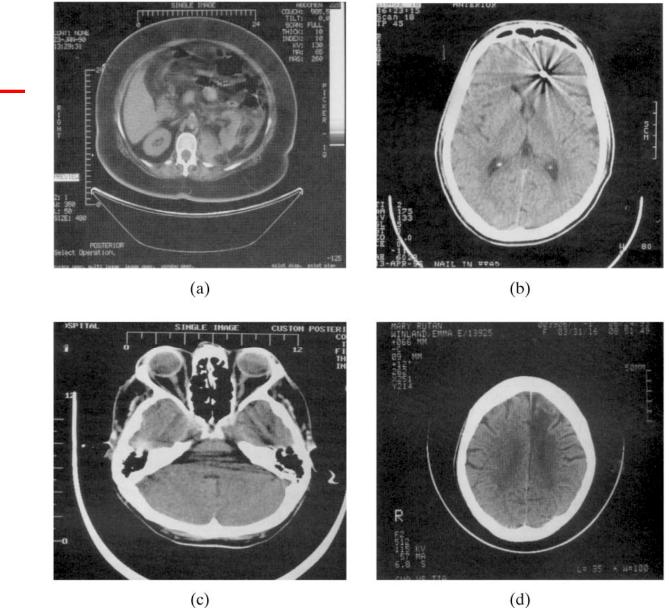
- Power SNR $\mathrm{SNR}_p = \frac{\mathrm{power}(f)}{\mathrm{power}(N)}$
- Signal power:

$$power(f) = \iint_{x,y} |h(x, y)|^{2} f(x, y)|^{2} dx dy = \iint_{u,v} |H(u, v)F(u, v)|^{2} du dv$$

Approximation: $power(f) = A^2$, A is the average value of the signal Approximation: $power(f) = \sigma_f^2$, variance of the signal

- Noise power: $power(N) = \iint_{u,v} NPS(u,v) dudv$
- For white noise: $power(N) = \sigma_N^2$

SNR in dB


- SNR is more often specified in decibels (dB)
- SNR in dB
 - SNR (dB) = 20 log $_{10}$ SNR $_{a}$
 - $= 10 \log_{10} SNR_{p}$
- Example:
 - SNR_p=2, SNR (dB)=3 dB
 - SNR_p=10, SNR (dB)=10 dB
 - SNR_p=100, SNR (dB)=20 dB

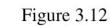
Artifacts, distortion & accuracy

- Artifacts:
 - Some imaging systems can create image features that do not represent a valid object in the imaged patient, or false shapes/textures.
- Distortion
 - Some imaging system may distort the actual shape/position and other geometrics of imaged object.
- Accuracy
 - Conformity to truth and clinical utility

Non-Random Artifacts

- Artifacts: image features that do not correspond to a real object, and are not due to noise
 - Motion artifacts: blurring or streaks due to patient motion
 - star artifact: in CT, due to presence of metallic material in a patient
 - beam hardening artifact: broad dark bands or streaks, due to significant beam attenuation caused by certain materials
 - ring artifact: because detectors are out of calibration

Star artifact

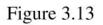

Ring

artifact

Beam hardening

Motion

artifact



EL582, Intro

Medical Imaging Signals and Systems, by Jerry L. Prince and Jonathan Links. ISBN 0-13-065353-5. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

Geometric Distortion

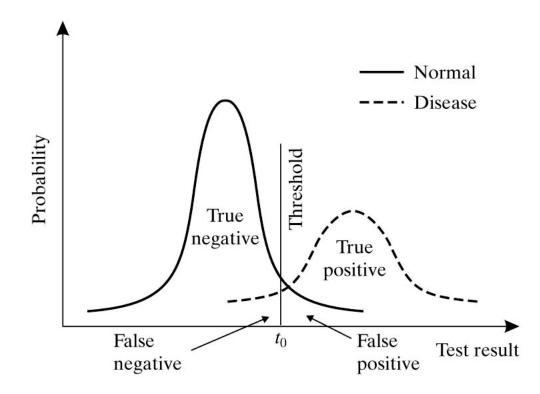
Medical Imaging Signals and Systems, by Jerry L. Prince and Jonathan Links. ISBN 0-13-065353-5. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

- In (a): two objects with different sizes appear to have the same size
- In (b): two objects with same shape appear to have different shapes

Accuracy

- Accuracy:
 - conformity to truth
 - quantitative accuracy
 - clinical utility
 - diagnostic accuracy
- Quantitative accuracy:
 - numerical accuracy: accuracy in terms of signal value
 - bias (systematic, e.g. due to miscalibration), imprecision (random)
 - geometric accuracy: accuracy in terms of object size/shape

Diagnostic Accuracy


• Contingency Table

		Disease	
		+	١
Test	+	а	b
	-	С	d

a = # w/disease & test says disease b = # w/o disease & test says disease c = # w/disease & test says normald = # w/o disease & test says normal

sensitivity =
$$\frac{a}{a+c}$$

specificity = $\frac{d}{b+d}$
diagnostic accuracy = $\frac{a+d}{a+b+c+d}$

 If the diagnosis is based on a single value of a test result and the decision is based on a chosen threshold, the sensitivity and specificity can be visualized as follows

Reference

 Prince and Links, Medical Imaging Signals and Systems, Chap 1-3.

Homework

- Reading:
 - Prince and Links, Medical Imaging Signals and Systems, Chap 1-3.
- Note down all the corrections for Ch. 1-3 on your copy of the textbook based on the provided errata.
- Problems for Chap 3 of the text book:
 - P3.2
 - P3.5
 - P3.7
 - P3.9
 - P3.11
 - P3.16
 - P3.22 (note correction in the Errata)