

Motif & Textbox Recognition on IVC artifacts

Qi Mo Michael Tishman

Department of Computer Science

Florida Institute of Technology
Melbourne, FL 32901
qmo2015@my.fit.edu

mtishman2013@my.fit.edu

Abstract

Motif and Textbox recognition on IVC artifacts: Bounding box generation by deep learning using Python,
Tensorflow and Keras. In this project, we transformed Images of Indus Valley Civilization(IVC) artifacts
into different variants by 2D/3D rotations and rescaling. Textboxes and motifs on IVC artifacts are located
and labeled. Keras-retinanet was used to train an object detector to generate bounding boxes of
textboxes and motifs.

CSE 5290 Mike Tishman
 Qi Mo

1 Introduction

IVC artifacts are fairly uniform bricks discovered from Indus Valley Civilization(IVC). The
IVC artifacts include the forms of animals called motifs and a short text describing the
animals. The objective of this project is to train a Neural Network that recognizes the text
boxes and motifs on the artifacts and generates their bounding boxes. Training a Neural
Network such as an object detector usually requires a large set of images. However, the
only source we can obtain images of IVC artifacts from is the Internet, and we only
managed to obtain 26 unique images from it. Therefore, an image transformation
technique was adopted to form a larger dataset. We created a Python script that
transforms the 26 unique images into different variants. The Python script also kept track
of and saved the coordinates of the bounding boxes. Once we had our dataset, we used
Tensorflow, Keras and Retinanet to create and train an object detector. Dataset was split
into training dataset and testing dataset, and uploaded to Google Colab. A Google Colab
ipynb notebook was created to read the dataset, train the object detector, test the object
detector and evaluate the results and performance.

2 Data Generation

In this section we discuss the need to perform data generation for this project. The data
that needs to be generated for this project is our inputs: the images of the Indus River
Valley Civilization artifacts. The amount of available images for these artifacts would not
be enough to create and train a meaningful neural network alone. Because of this,
producing additional dataset images would be required.

2.1 Data Augmentation

One of the best ways to grow your dataset is to augment the small dataset you are
currently using. Image augmentation is the process of manipulating an image by
performing various transformations (resize, offset, rotate) and creating different
variations of the same image.

CSE 5290 Mike Tishman
 Qi Mo

2.2 Rotation Calculations

The augmentations were done with a projection matrix, which is a matrix that represents
three dimensional space in a two dimensional matrix. A projection matrix, also called a
camera matrix, can be represented with the equation , where is a 2D point PXx = x
matrix, P is the camera matrix, and X is the 3D point matrix. This can be visualized with
a generic camera matrix shown in Figure 1.

Figure 1. Generic Camera Matrix

Our representation of this equation can be seen in Figure 2.

Figure 2. Final Transformation Matrix in Code

Figure 3. Camera Matrix

“A2” in our equation represents the camera
matrix where “f” is the focal point, or the
change in the zoom distance, “w” is the
width and “h” is the height of the image.
The width and height are halved in order to
keep the image within the image frame.

Figure 4. Translation Matrix

The 3D point matrix in our project is the dot
product of a transformation matrix (T) and
rotation matrix (which is a dot product of
the original image and a rotation matrix (R).
The translation matrix performs the
positional offsets for each of the axis: dx,
dy, and dz.

CSE 5290 Mike Tishman
 Qi Mo

Figure 5. Rotation Matrix

The rotational matrix (R) is responsible
for the rotational augmentations done in
the respective axis RX, RY and RZ.
Theta, Phi, and Gamma represent the
angle of rotation

The final matrix result contains the distances for each point in the image from the original
image. To find where a point was moved to, we used the following algorithm shown in
Figure 6 to follow the four corners of our augmented bounding box.

Figure 6. Algorithm to follow new augmented corners

CSE 5290 Mike Tishman
 Qi Mo

By utilizing this method, we are able to take a single image and produce thousands of
augmented images to be used as our dataset. Our starting data set was approximately
26 images, and after our data augmentation we ended up with over 5,000 images per
unique image. For the purposes of this project, we cut this dataset down to increase
processing speeds since we did not have access to a high power CPU.

Figure 7. Augmentation example
In addition to bulking up our dataset, data augmentation helps fight overfitting in our
model. Overfitting is where the model stops improving because it starts to memorize
specific patterns and fails to continue learning. One of the best ways to prevent
overfitting is to add more training data, and when it's not possible to do so, (such as our
case), the next best solution is to augment the data to increase the quantity of
information given [1].

2.3 Data Annotations

In order to use our images for a neural network, we need to have it in a format that a
neural network model would understand. The main focus point of our dataset images are
the manual bounding boxes that were printed on top of the image. These bounding
boxes are recorded in a comma separated value sheet (CSV) along with the file name
and a label. Regardless of the type of augmentation performed on the dataset images,
the recorded points will match up the corners of the bounding boxes. To verify that our
annotation points are accurate after all the augmentations, we created a test that uses
the points from the annotations file to draw points on the corners of the bounding boxes
found within the image. After hundreds of manual tests, we were able to verify that our
annotations file has the correct information in it for each of the respective images in our
dataset.

CSE 5290 Mike Tishman
 Qi Mo

3 Motif & textbox Recognition

In this section we discuss the model, tools and platform used for this project, the training
procedure, and the performance and results of training and testing.

3.1 RetinaNet and gitHub/fizyr/keras-retinanet

3.1.1 RetinaNet
The model selected for this project is RetinaNet, whose original paper was published by
Facebook AI Research (FAIR) on Aug 7th, 2017. The original paper can be found at
https://arxiv.org/abs/1708.02002​.

Figure 8. RetinaNet Network Architecture, taken from the original paper

RetinaNet is a one-stage object detection model that is applied over a regular, dense
sampling of object locations, scales, and aspect ratios.
The structure of the model, as shown in figure 1, shows that the model utilizes a Feature
Pyramid Network (FPN) [4] backbone on top of a feedforward ResNet architecture [5],
which means it rescales the input image into feature maps with different resolutions and
attaches subnetworks to each feature map. A feature map is a rescaled and filtered
variant of the original image where each spatial location(pixel) represents a portion of the
original image. The subnets attached to the backbone are a class subnet, for classifying
anchor boxes, and a box subnet, for regressing from anchor boxes to ground-truth object
boxes.
An example of how the model works is: suppose there is a dataset of images of fruits,
and each image contains an apple and an orange. The model rescales and converts
each image to multiple feature maps. For each feature map, the class subnet checks
each region generated by the box subnet and classifies the region. After training, the
model can predict a list of boxes on a new image that might contain an apple or an
orange, then give each box a score, which is the probability that the box contains either
an apple or an orange. The model can then classify each box, decide the specific class
(apple or orange) the box contains, and update the score accordingly.

https://arxiv.org/abs/1708.02002

CSE 5290 Mike Tishman
 Qi Mo

The output layers of the class subnets and box subnets contain W*H*KA nodes and
W*H*4*A nodes, respectively, where W and H are the weight and height of the feature
map, K is the number of classes in the dataset, and A is the number of anchor boxes,
which are introduced by the Region Proposal method in Faster R-CNN [3]. For instance,
if one of the feature maps is 800x600, there is only one class, and the number of
anchors is 9(by default), then the number of output nodes will be 800 x 600 x 1 x 9. For
the box net, it is similar to the class net, only it produces 4 outputs per spatial location to
anchor. The 4 outputs predict the offsets between the anchor and the bounding box.
Therefore, the number of output nodes for a 800x600 feature map is 800 x 600 x 4 x 9.
Note: W, H, K, A are not part of output data, they simply denote how many output notes
there are for each feature map.

The RetinaNet paper also introduces a novel loss called ​Focal Loss​ [2] that adds a factor
(1 − pt) γ to the standard cross entropy criterion. Focal loss is calculated by FL(pt) =
−αt(1 − pt) γ log(pt), details can be found on the original paper.

3.1.2 gitHub/fizyr/keras-retinanet
https://github.com/fizyr/keras-retinanet​ is an implementation of RetinaNet object
detection using Tensorflow and Keras. The repository is organized by
https://github.com/hgaiser​. The training and inferencing for our project are done using
this repository.

Keras-retinanet is used in various projects in the tech industry, for instance, ​Microsoft
Research for Horovod on Azure​, ​Improving Apple Detection and Counting Using
RetinaNet​, and ​Improving RetinaNet for CT Lesion Detection with Dense Masks from
Weak RECIST Labels​.

The required labelling format for the training is as follow:
path/to/image.jpg,x_min,y_min,x_max,y_max,class_name

A full example:
dataset/img_001.jpg,837,346,981,456,motif

dataset/img_001.jpg,215,312,279,391,text_box

dataset/img_002.jpg,22,5,89,84,motif

dataset/img_002.jpg,82,85,288,108,text_box

The training script in keras-retinanet has a feature to allow random transformation such
as 2D rotation and zooming in/out. Because of that, only the 3D rotation part of our data
generation work was utilized in the training.

https://github.com/fizyr/keras-retinanet
https://github.com/hgaiser
https://blogs.technet.microsoft.com/machinelearning/2018/06/20/how-to-do-distributed-deep-learning-for-object-detection-using-horovod-on-azure/
https://blogs.technet.microsoft.com/machinelearning/2018/06/20/how-to-do-distributed-deep-learning-for-object-detection-using-horovod-on-azure/
https://github.com/nikostsagk/Apple-detection
https://github.com/nikostsagk/Apple-detection
https://arxiv.org/abs/1906.02283
https://arxiv.org/abs/1906.02283

CSE 5290 Mike Tishman
 Qi Mo

3.2 Environment

3.2.1 Hardware

CPU​: Intel(R) Core(TM) i7-7700HQ CPU @ 2.80GHz, 2808 Mhz, 4 Core(s), 8 Logical
Processor(s)

Memory​: 12 GB

GPU​: Nvidia GTX 1050 T​i

3.2.2 Platform

The training is done on ​Google Colab​. Because it is easy to share and use, and it has a
feature to enable GPU as accelerator, which makes utilizing GPU easier​.

3.3 Training

Complete training and testing process is as follow:
1. Open a new notebook on Google Colab
2. Upload folders dataset and test_dataset which contain training dataset and testing

dataset.
3. Upload folders annotations.csv and test_annotations.csv which contain training

annotations and testing annotations.
4. Clone gitHub repository Keras-retinanet
5. Install required packages
6. Read both annotations files into Pandas dataframe
7. Save all class names
8. Start the training by running train.py
9. Load the saved checkpoint
10. Test the trained model by having it inferencing every image in the test dataset
11. Record the results and performance

The version of Tensorflow has to be 2.2.0rc3, which is not a stable release. The latest
stable release of tensorflow has a conflict with Keras that prevents tensorboard from
working.

Python package Pandas is used to read csv files into Dataframes. Data in Dataframes is
easy to access. The data is saved into w new annotations files with headers removed.

Script keras_retinanet/bin/train.py is the training script. The usage of it is

CSE 5290 Mike Tishman
 Qi Mo

Train.py --freeze-backbone --random-transform --weights {model} --batch-size
batch_size --steps number_of_steps --epochs number_of_epochs
--tensorboard-dir tensorboard_output_dir
Where argument freeze-backbone means the backbone layer of the remains unchanged
random-transform means allowing random transformation for training
 weights is the argument to load pretrained weights and bias Tensorboard-dir enables
the Tensorboard callback which allows usage of tensorboard.

After each epoch, the model will automatically save a checkpoint to ./snapshots folder.

The training model is converted to an inferencing model using methods
models.load_model(model_path) and models.convert_model(loaded_model) where
model_path is the latest saved checkpoint and loaded_model is the loaded model.

Testing the model is done by model.predict_on_batch(image), where image is an image
row from a pandas dataframe. When given an image row from a dataframe, the model
will produce a list of coordinates of boxes with scores and class names. The scores are
possibilities of the class name for each box.
Thres_score is the minimum score. We set it to 0.6, meaning that only boxes with scores
higher than 0.6 will be printed out. Matplotlib and openCV are used to draw the resulting
images.

CSE 5290 Mike Tishman
 Qi Mo

3.5 Training Performance
The following table and graphs show that the runtime is roughly the same for each
epoch with the exception of the first epoch which takes about 13 seconds more than
others. The total loss, classification loss and the box regression loss are all in a
downward trend, meaning, within 10 epochs, the model becomes more accurate the
more epochs there are.

10 Epochs; 500 steps per epoch

Epochs time(in
seconds)

loss regression_loss regression_loss

1 375 1.9284 1.3682 0.5602

2 362 1.1172 0.8994 0.2177

3 361 0.8529 0.6943 0.1586

4 362 0.6942 0.5729 0.1212

5 366 0.6029 0.5047 0.0982

6 366 0.5292 0.4493 0.0799

7 369 0.4851 0.4174 0.0677

8 369 0.4428 0.3843 0.0585

9 371 0.4156 0.3645 0.0523

10 371 0.3894 0.3444 0.0453
Table 1. Performance per Epoch

CSE 5290 Mike Tishman
 Qi Mo

Figure 9. Total loss vs epochs

Figure 10. Classification loss vs epochs

Figure 11. Box regression loss vs epochs

CSE 5290 Mike Tishman
 Qi Mo

3.6 Results
The testing dataset contains 160 images. There are variants of 4 distinct images. We
had the trained model predict the results of all 160 images and recorded the results. We
manually check the accuracy of the results, because it is hard to factor in the margin of
error for the predictions, since we labeled the boxes manually, some coordinates might
not be precise. The results show that although all bounding boxes contain what they are
supposed to contain, some bounding boxes are much larger, containing more than just
their intended targets. We decided that bounding boxes that are much larger than motifs
or textboxes are incorrect bounding boxes.

total 160

Correct textboxes
(not too big)

120 (all wrong textboxes are from variants of the same
image)

Correct motifs
(not too big)

113

Correct both 73

Wrong both 0

Table 4. Results

Some examples of the printed images and bounding boxes:

Figure 12. IRV artifact result
example

Correct predictions for both textbox and
motif. Some minor errors are ignored
such as the small gap between the tail
and the right side of the box, because
our manual labeling is not precise and
the image quality is not high.

CSE 5290 Mike Tishman
 Qi Mo

Figure 13. ​ Too much text detected

Correct prediction for motif but wrong
prediction for textbox. The horn is not
part of the textbox. All the incorrect
results for textbox come from the
variants of this image.

Figure 14. ​Too much motif
detected

Correct prediction for textbox but wrong
prediction for motif. Bounding box for the
motif is way bigger than it should be.

None of the results have wrong predictions for both motif and textbox

CSE 5290 Mike Tishman
 Qi Mo

5 Conclusion

The image transformation approach to make up a large dataset of images with only a
few images, while working to an extent, it’s not an ideal approach for training neural
networks(at least not ideal for object detection models that only take two corners into
consideration such as RetinaNet). The accuracy of bounding box generation by the
trained model based on 160 predictions is not great, with 25% of textbox bounding
boxes and 29% of motif bounding boxes being larger than intended. The low accuracy
may be due to the fact that the training dataset does not have enough distinct images.
Although our training dataset only includes 880 images, because the model itself allows
random transformation during training, the number of actual training instances is a few
times more than 880 by this project’s standard(a transformed image counts as a new
image). However, the 880 images are transformed from 22 distinct images. 26 distinct
IVC artifacts images were what we could find on the Internet, which 4 of them are
transformed into 160 images to serve as testing data. The training dataset needs more
distinct images. While we do not know how well the model will perform when trained with
more distinct images and how many distinct images are needed, an online source
suggests that training with 160 distinct images can achieve 90% accuracy. In this article,
https://www.curiousily.com/posts/object-detection-on-custom-dataset-with-tensorflow-2-a
nd-keras-using-python/​, the author trains the RetinaNet model with 180 high-quality
images of car plates and gets good results.

Another reason that causes the low accuracy is the nature of IVC artifact images. Text
boxes and motifs’ bounding boxes sometimes overlap each other. For example,

Figure 15. Original IRV artifact

Figure 16. Incorrect bounding box

Figure 8 is one of the training images. In this image, the bounding box for the goat is
almost the entire image.

The text box is completely included by the motif bounding box. This may not be an issue
when training with only one class, but when training with 2 classes, the model might get
“confused”, thinking the goat and the text are combined into one class name “motif”.

https://www.curiousily.com/posts/object-detection-on-custom-dataset-with-tensorflow-2-and-keras-using-python/
https://www.curiousily.com/posts/object-detection-on-custom-dataset-with-tensorflow-2-and-keras-using-python/

CSE 5290 Mike Tishman
 Qi Mo

There are a few images in the training dataset like this one and because of the way our
dataset is constructed, the bounding boxes generated are sometimes larger, including
unintended regions. Also, since we labelled the pre-transformed images manually, the
bounding boxes we drew may not be perfectly precise, which hurts the accuracy of
predictions.

Future Improvement

A future improvement that can be done to this project will be training with more distinct
images. Like stated above, image transformation only works when there are enough
distinct images before the transformation. A new way to fetch a dataset of distinct IVC
artifact images must be found, since there is a lack of them on the internet.

If more distinct IVC artifacts are not to be found and the transformation technique is to be
kept, a new model of neural network must be adopted, preferably a neural network that
takes 8 corners into account. Object detection models might not be ideal since most
major ones only deal with 2 corners. Regular CNNs with Tensorflow and Keras
predicting 8 numbers could potentially have better results.

CSE 5290 Mike Tishman
 Qi Mo

References

[1] Chollet François. “4.4 Overfitting and Underfitting.” ​Deep Learning with Python​, by
Chollet François, Manning Publications Co., 2018, pp. 104–105.

[2] ​Lin, Tsung-Yi, et al. "Focal loss for dense object detection." ​Proceedings of the
IEEE international conference on computer vision​. 2017.

[3] ​Ren, Shaoqing, et al. "Faster r-cnn: Towards real-time object detection with
region proposal networks." ​Advances in neural information processing systems​.
2015.

[4] T.-Y. Lin, P. Dollar, R. Girshick, K. He, B. Hariharan, and ´ S. Belongie. Feature
pyramid networks for object detection. In CVPR, 2017. 1, 2, 4, 5, 6, 8

[5] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In
CVPR, 2016. 2, 4, 5, 6, 8

