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Abstract 
 

Motif and Textbox recognition on IVC artifacts: Bounding box generation by deep learning using Python,               
Tensorflow and Keras. In this project, we transformed Images of Indus Valley Civilization(IVC) artifacts              
into different variants by 2D/3D rotations and rescaling. Textboxes and motifs on IVC artifacts are located                
and labeled. Keras-retinanet was used to train an object detector to generate bounding boxes of               
textboxes and motifs.    
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1 Introduction 

IVC artifacts are fairly uniform bricks discovered from Indus Valley Civilization(IVC). The 
IVC artifacts include the forms of animals called motifs and a short text describing the 
animals. The objective of this project is to train a Neural Network that recognizes the text 
boxes and motifs on the artifacts and generates their bounding boxes. Training a Neural 
Network such as an object detector usually requires a large set of images. However, the 
only source we can obtain images of IVC artifacts from is the Internet, and we only 
managed to obtain 26 unique images from it. Therefore, an image transformation 
technique was adopted to form a larger dataset. We created a Python script that 
transforms the 26 unique images into different variants. The Python script also kept track 
of and saved the coordinates of the bounding boxes. Once we had our dataset, we used 
Tensorflow, Keras and Retinanet to create and train an object detector. Dataset was split 
into training dataset and testing dataset, and uploaded to Google Colab. A Google Colab 
ipynb notebook was created to read the dataset, train the object detector, test the object 
detector and evaluate the results and performance. 

2 Data Generation 

In this section we discuss the need to perform data generation for this project. The data 
that needs to be generated for this project is our inputs: the images of the Indus River 
Valley Civilization artifacts. The amount of available images for these artifacts would not 
be enough to create and train a meaningful neural network alone. Because of this, 
producing additional dataset images would be required. 
 

2.1 Data Augmentation 

One of the best ways to grow your dataset is to augment the small dataset you are 
currently using. Image augmentation is the process of manipulating an image by 
performing various transformations (resize, offset, rotate) and creating different 
variations of the same image.  
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2.2  Rotation Calculations 

The augmentations were done with a projection matrix, which is a matrix that represents 
three dimensional space in a two dimensional matrix. A projection matrix, also called a 
camera matrix, can be represented with the equation , where   is a 2D point PXx =  x  
matrix, P is the camera matrix, and X is the 3D point matrix. This can be visualized with 
a generic camera matrix shown in Figure 1. 
 

 
Figure 1. Generic Camera Matrix 

 
Our representation of this equation can be seen in Figure 2.  
 

 
Figure 2. Final Transformation Matrix in Code 

 
 

 
Figure 3. Camera Matrix 

 

“A2” in our equation represents the camera 
matrix where “f” is the focal point, or the 
change in the zoom distance, “w” is the 
width and “h” is the height of the image. 
The width and height are halved in order to 
keep the image within the image frame. 

 
 

 
Figure 4. Translation Matrix 

The 3D point matrix in our project is the dot 
product of a transformation matrix (T) and 
rotation matrix (which is a dot product of 
the original image and a rotation matrix (R). 
The translation matrix performs the 
positional offsets for each of the axis: dx, 
dy, and dz. 
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Figure 5. Rotation Matrix 

The rotational matrix (R) is responsible 
for the rotational augmentations done in 
the respective axis RX, RY and RZ. 
Theta, Phi, and Gamma represent the 
angle of rotation 

 
The final matrix result contains the distances for each point in the image from the original 
image. To find where a point was moved to, we used the following algorithm shown in 
Figure 6 to follow the four corners of our augmented bounding box. 
 

 
Figure 6. Algorithm to follow new augmented corners 
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By utilizing this method, we are able to take a single image and produce thousands of 
augmented images to be used as our dataset. Our starting data set was approximately 
26 images, and after our data augmentation we ended up with over 5,000 images per 
unique image. For the purposes of this project, we cut this dataset down to increase 
processing speeds since we did not have access to a high power CPU. 

Figure 7. Augmentation example  
In addition to bulking up our dataset, data augmentation helps fight overfitting in our 
model. Overfitting is where the model stops improving because it starts to memorize 
specific patterns and fails to continue learning. One of the best ways to prevent 
overfitting is to add more training data, and when it's not possible to do so, (such as our 
case), the next best solution is to augment the data to increase the quantity of 
information given [1]. 

 

2.3  Data Annotations 

In order to use our images for a neural network, we need to have it in a format that a 
neural network model would understand. The main focus point of our dataset images are 
the manual bounding boxes that were printed on top of the image. These bounding 
boxes are recorded in a comma separated value sheet (CSV) along with the file name 
and a label. Regardless of the type of augmentation performed on the dataset images, 
the recorded points will match up the corners of the bounding boxes. To verify that our 
annotation points are accurate after all the augmentations, we created a test that uses 
the points from the annotations file to draw points on the corners of the bounding boxes 
found within the image. After hundreds of manual tests, we were able to verify that our 
annotations file has the correct information in it for each of the respective images in our 
dataset. 
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3 Motif & textbox Recognition 

In this section we discuss the model, tools and platform used for this project, the training 
procedure, and the performance and results of training and testing. 
 

3.1 RetinaNet and gitHub/fizyr/keras-retinanet 
 

3.1.1 RetinaNet 
The model selected for this project is RetinaNet, whose original paper was published by 
Facebook AI Research (FAIR) on Aug 7th, 2017. The original paper can be found at 
https://arxiv.org/abs/1708.02002​. 

Figure 8. RetinaNet Network Architecture, taken from the original paper 
 
RetinaNet is a one-stage object detection model that is applied over a regular, dense 
sampling of object locations, scales, and aspect ratios. 
The structure of the model, as shown in figure 1, shows that the model utilizes a Feature 
Pyramid Network (FPN) [4] backbone on top of a feedforward ResNet architecture [5], 
which means it rescales the input image into feature maps with different resolutions and 
attaches subnetworks to each feature map. A feature map is a rescaled and filtered 
variant of the original image where each spatial location(pixel) represents a portion of the 
original image. The subnets attached to the backbone are a class subnet, for classifying 
anchor boxes, and a box subnet, for regressing from anchor boxes to ground-truth object 
boxes. 
An example of how the model works is: suppose there is a dataset of images of fruits, 
and each image contains an apple and an orange. The model rescales and converts 
each image to multiple feature maps. For each feature map, the class subnet checks 
each region generated by the box subnet and classifies the region. After training, the 
model can predict a list of boxes on a new image that might contain an apple or an 
orange, then give each box a score, which is the probability that the box contains either 
an apple or an orange. The model can then classify each box, decide the specific class 
(apple or orange) the box contains, and update the score accordingly. 

https://arxiv.org/abs/1708.02002
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The output layers of the class subnets and box subnets contain W*H*KA nodes and 
W*H*4*A nodes, respectively, where W and H are the weight and height of the feature 
map, K is the number of classes in the dataset, and A is the number of anchor boxes, 
which are introduced by the Region Proposal method in Faster R-CNN [3]. For instance, 
if one of the feature maps is 800x600, there is only one class, and the number of 
anchors is 9(by default), then the number of output nodes will be 800 x 600 x 1 x 9. For 
the box net, it is similar to the class net, only it produces 4 outputs per spatial location to 
anchor. The 4 outputs predict the offsets between the anchor and the bounding box. 
Therefore, the number of output nodes for a 800x600 feature map is 800 x 600 x 4 x 9. 
Note: W, H, K, A are not part of output data, they simply denote how many output notes 
there are for each feature map. 
 
The RetinaNet paper also introduces a novel loss called ​Focal Loss​ [2] that adds a factor 
(1 − pt) γ to the standard cross entropy criterion. Focal loss is calculated by FL(pt) = 
−αt(1 − pt) γ log(pt), details can be found on the original paper. 
 

3.1.2 gitHub/fizyr/keras-retinanet 
https://github.com/fizyr/keras-retinanet​ is an implementation of RetinaNet object 
detection using Tensorflow and Keras. The repository is organized by 
https://github.com/hgaiser​. The training and inferencing for our project are done using 
this repository. 
 
Keras-retinanet is used in various projects in the tech industry, for instance, ​Microsoft 
Research for Horovod on Azure​, ​Improving Apple Detection and Counting Using 
RetinaNet​, and ​Improving RetinaNet for CT Lesion Detection with Dense Masks from 
Weak RECIST Labels​. 
 
The required labelling format for the training is as follow:  
path/to/image.jpg,x_min,y_min,x_max,y_max,class_name 

A full example: 
dataset/img_001.jpg,837,346,981,456,motif 

dataset/img_001.jpg,215,312,279,391,text_box 

dataset/img_002.jpg,22,5,89,84,motif 

dataset/img_002.jpg,82,85,288,108,text_box 

The training script in keras-retinanet has a feature to allow random transformation such 
as 2D rotation and zooming in/out. Because of that, only the 3D rotation part of our data 
generation work was utilized in the training. 

  

https://github.com/fizyr/keras-retinanet
https://github.com/hgaiser
https://blogs.technet.microsoft.com/machinelearning/2018/06/20/how-to-do-distributed-deep-learning-for-object-detection-using-horovod-on-azure/
https://blogs.technet.microsoft.com/machinelearning/2018/06/20/how-to-do-distributed-deep-learning-for-object-detection-using-horovod-on-azure/
https://github.com/nikostsagk/Apple-detection
https://github.com/nikostsagk/Apple-detection
https://arxiv.org/abs/1906.02283
https://arxiv.org/abs/1906.02283
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3.2 Environment  
 

3.2.1 Hardware  
 
CPU​:  Intel(R) Core(TM) i7-7700HQ CPU @ 2.80GHz, 2808 Mhz, 4 Core(s), 8 Logical 
Processor(s) 
 
Memory​: 12 GB 
 
GPU​: Nvidia GTX 1050 T​i 

 
3.2.2 Platform  

The training is done on ​Google Colab​. Because it is easy to share and use, and it has a 
feature to enable GPU as accelerator, which makes utilizing GPU easier​. 

 
3.3 Training  

 
Complete training and testing process is as follow:  
1. Open a new notebook on Google Colab 
2. Upload folders dataset and test_dataset which contain training dataset and testing 

dataset. 
3. Upload folders annotations.csv and test_annotations.csv which contain training 

annotations and testing annotations. 
4. Clone gitHub repository Keras-retinanet 
5. Install required packages 
6. Read both annotations files into Pandas dataframe 
7. Save all class names 
8. Start the training by running train.py 
9. Load the saved checkpoint 
10. Test the trained model by having it inferencing every image in the test dataset 
11. Record the results and performance 

 
The version of Tensorflow has to be 2.2.0rc3, which is not a stable release. The latest 
stable release of tensorflow has a conflict with Keras that prevents tensorboard from 
working. 
 
Python package Pandas is used to read csv files into Dataframes. Data in Dataframes is 
easy to access. The data is saved into w new annotations files with headers removed.  
 

Script keras_retinanet/bin/train.py is the training script. The usage of it is  
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Train.py   --freeze-backbone   --random-transform   --weights {model}  --batch-size 
batch_size   --steps  number_of_steps    --epochs  number_of_epochs 
--tensorboard-dir tensorboard_output_dir 
Where argument freeze-backbone means the backbone layer of the remains unchanged 
random-transform means allowing random transformation for training 
 weights is the argument to load pretrained weights and bias Tensorboard-dir enables 
the Tensorboard callback which allows usage of tensorboard.  
 
After each epoch, the model will automatically save a checkpoint to ./snapshots folder. 

 
The training model is converted to an inferencing model using methods 
models.load_model(model_path) and models.convert_model(loaded_model) where 
model_path is the latest saved checkpoint and loaded_model is the loaded model. 
 
Testing the model is done by model.predict_on_batch(image), where image is an image 
row from a pandas dataframe. When given an image row from a dataframe, the model 
will produce a list of coordinates of boxes with scores and class names. The scores are 
possibilities of the class name for each box. 
Thres_score is the minimum score. We set it to 0.6, meaning that only boxes with scores 
higher than 0.6 will be printed out. Matplotlib and openCV are used to draw the resulting 
images.  

 
 

  



CSE 5290  Mike Tishman 
  Qi Mo 

 

3.5 Training Performance 
The following table and graphs show that the runtime is roughly the same for each 
epoch with the exception of the first epoch which takes about 13 seconds more than 
others. The total loss, classification loss and the box regression loss are all in a 
downward trend, meaning, within 10 epochs, the model becomes more accurate the 
more epochs there are.  

10 Epochs; 500 steps per epoch 

Epochs time(in 
seconds) 

loss regression_loss regression_loss 

1 375 1.9284 1.3682 0.5602 

2 362 1.1172 0.8994 0.2177 

3 361 0.8529 0.6943 0.1586 

4 362 0.6942 0.5729 0.1212 

5 366 0.6029 0.5047 0.0982 

6 366 0.5292 0.4493 0.0799 

7 369 0.4851 0.4174 0.0677 

8 369 0.4428 0.3843 0.0585 

9 371 0.4156 0.3645 0.0523 

10 371 0.3894 0.3444 0.0453 
Table 1. Performance per Epoch 
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Figure 9. Total loss vs epochs

 
Figure 10. Classification loss vs epochs

 
Figure 11. Box regression loss vs epochs  
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3.6 Results 
The testing dataset contains 160 images. There are variants of 4 distinct images. We 
had the trained model predict the results of all 160 images and recorded the results. We 
manually check the accuracy of the results, because it is hard to factor in the margin of 
error for the predictions, since we labeled the boxes manually, some coordinates might 
not be precise. The results show that although all bounding boxes contain what they are 
supposed to contain, some bounding boxes are much larger, containing more than just 
their intended targets. We decided that bounding boxes that are much larger than motifs 
or textboxes are incorrect bounding boxes. 

 

total  160 

Correct textboxes 
(not too big) 

120 (all wrong textboxes are from variants of the same 
image) 

Correct motifs 
(not too big) 

113 

Correct both  73 

Wrong both  0 

Table 4. Results  

Some examples of the printed images and bounding boxes:  

Figure 12. IRV artifact result 
example 

 
Correct predictions for both textbox and 
motif. Some minor errors are ignored 
such as the small gap between the tail 
and the right side of the box, because 
our manual labeling is not precise and 
the image quality is not high. 
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Figure 13. ​ Too much text detected 

Correct prediction for motif but wrong 
prediction for textbox. The horn is not 
part of the textbox. All the incorrect 
results for textbox come from the 
variants of this image. 

Figure 14. ​Too much motif 
detected 

Correct prediction for textbox but wrong 
prediction for motif. Bounding box for the 
motif is way bigger than it should be. 

 
None of the results have wrong predictions for both motif and textbox 
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5 Conclusion 

The image transformation approach to make up a large dataset of images with only a 
few images, while working to an extent, it’s not an ideal approach for training neural 
networks(at least not ideal for object detection models that only take two corners into 
consideration such as RetinaNet). The accuracy of bounding box generation by the 
trained model based on 160 predictions is not great, with 25% of textbox bounding 
boxes and 29% of motif bounding boxes being larger than intended. The low accuracy 
may be due to the fact that the training dataset does not have enough distinct images. 
Although our training dataset only includes 880 images, because the model itself allows 
random transformation during training, the number of actual training instances is a few 
times more than 880 by this project’s standard(a transformed image counts as a new 
image). However, the 880 images are transformed from 22 distinct images. 26 distinct 
IVC artifacts images were what we could find on the Internet, which 4 of them are 
transformed into 160 images to serve as testing data. The training dataset needs more 
distinct images. While we do not know how well the model will perform when trained with 
more distinct images and how many distinct images are needed, an online source 
suggests that training with 160 distinct images can achieve 90% accuracy. In this article, 
https://www.curiousily.com/posts/object-detection-on-custom-dataset-with-tensorflow-2-a
nd-keras-using-python/​, the author trains the RetinaNet model with 180 high-quality 
images of car plates and gets good results. 
 
Another reason that causes the low accuracy is the nature of IVC artifact images. Text 
boxes and motifs’ bounding boxes sometimes overlap each other. For example, 

 
Figure 15. Original IRV artifact 

 
Figure 16. Incorrect bounding box 

Figure 8 is one of the training images. In this image, the bounding box for the goat is 
almost the entire image. 

The text box is completely included by the motif bounding box. This may not be an issue 
when training with only one class, but when training with 2 classes, the model might get 
“confused”, thinking the goat and the text are combined into one class name “motif”. 

https://www.curiousily.com/posts/object-detection-on-custom-dataset-with-tensorflow-2-and-keras-using-python/
https://www.curiousily.com/posts/object-detection-on-custom-dataset-with-tensorflow-2-and-keras-using-python/
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There are a few images in the training dataset like this one and because of the way our 
dataset is constructed, the bounding boxes generated are sometimes larger, including 
unintended regions. Also, since we labelled the pre-transformed images manually, the 
bounding boxes we drew may not be perfectly precise, which hurts the accuracy of 
predictions.  

Future Improvement 

A future improvement that can be done to this project will be training with more distinct                
images. Like stated above, image transformation only works when there are enough            
distinct images before the transformation. A new way to fetch a dataset of distinct IVC               
artifact images must be found, since there is a lack of them on the internet.  

If more distinct IVC artifacts are not to be found and the transformation technique is to be                 
kept, a new model of neural network must be adopted, preferably a neural network that               
takes 8 corners into account. Object detection models might not be ideal since most              
major ones only deal with 2 corners. Regular CNNs with Tensorflow and Keras             
predicting 8 numbers could potentially have better results. 
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