
Gauss Jordan Elimination
Kim Day

Wednesday, January 16, 13

Overview

• Background/Description

• Algorithm

• Code snippets

• Examples

• Analysis

Wednesday, January 16, 13

Background/Description

Wednesday, January 16, 13

Background
• Named for

Carl Friedrich Gauss and
Wilhelm Jordan

• Started out as “Gaussian
elimination” although
Gauss didn’t create it

• Jordan improved it in 1887
because he needed a more
stable algorithm for his
surveying calculations

Carl Gauss
mathematician/scientist

1777-1855

Wilhelm Jordan
geodesist
1842-1899

(geodesy involves taking
measurements of the Earth)

Wednesday, January 16, 13

Some Terms
• Matrix - 2D array

• Identity matrix - Matrix with all
0s except for 1s on the
diagonal

• Determinant - Representative
number that can be calculated
from a matrix

• Matrix inverse - The matrix
version of n^-1

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

A 4x4 identity matrix

Wednesday, January 16, 13

Elementary Operations
• Steps that can be performed on matrices

without changing their overall meaning

• Multiplying by a scalar - Replace a row/column
by itself times a factor

• Linear combinations - Replace a row/column by
a combination of itself and another row/column

• Pivoting - Interchanging two rows/columns

• Don’t need pivoting but it really helps

Wednesday, January 16, 13

Gaussian Elimination
• First seen used in the Chinese

text “The Nine Chapters on the
Mathematical Art” and in Isaac
Newton’s notes

• Puts a matrix into row echelon
form, and then uses back
substitution to solve

• Determinant is product of
diagonals

2 4 1 4 7
0 6 3 5 3
0 0 2 6 9
0 0 0 3 1
0 0 0 0 5

Row echelon form:
Lower triangle is 0s

Wednesday, January 16, 13

Gauss-Jordan Elimination

• Gauss-Jordan elimination is
a faster way to solve
matrices and find a matrix
inverse

• Puts the matrix into row-
reduced echelon form

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

Reduced row echelon form:
Non-diagonals are 0s

Wednesday, January 16, 13

Comparison

Solves system Finds determinant Finds inverse Form used

Gauss Elim.

Gauss-Jordan Elim.

✓ ✓ ✓ Row	 Echelon

✓ ✓ Reduced	 Row	
Echelon

Wednesday, January 16, 13

Advantages of G-J Elim.

• Can produce both the solution for a set of
linear equations and the matrix inverse

• As efficient as most methods when it
comes to finding a matrix inverse

• Solving the system of equations doesn’t
take up that much more time than finding
the inverse

• Fairly stable

Wednesday, January 16, 13

Disadvantages of G-J Elim.

• Requires more storage (bookkeeping and
right hand elements)

• Takes three times as long than most
methods when solving for a single set

Wednesday, January 16, 13

Algorithm

Wednesday, January 16, 13

Algorithm
• Repeat n times, where n is the number of columns

• Locate a pivot

• Move the row containing the pivot so that the pivot is on a
diagonal

• Divide the pivot’s row by the value of the pivot

• Subtract multiples of the pivot’s row from the rows above
and below to make them 0

• If solving a system of equations, make sure to do the same
operations on the vector matrix as well

• Input matrix is replaced by inverse and vector matrix is
replaced by solutions

Wednesday, January 16, 13

What is a Pivot?

• A “special” element of a matrix, chosen to
become part of the final diagonal

• The pivot is usually the largest element in
an unaltered row/column

• Choose a large pivot because that makes it
easier to reduce the rest of the row/
column

Wednesday, January 16, 13

Code Snippets

Wednesday, January 16, 13

Choosing a pivot
 for (int i = 0; i < n; i++) {

 double big = 0.0;
 int icol = 0;
 int irow = 0;
 // Search for a pivot element in each column
 for (int j = 0; j < n; j++) {
 // Check that the column hasn't been visited
 if (ipiv[j] != 1) {
 // Now check through each member of the column
 for (int k = 0; k < n; k++) {
 if (ipiv[k] == 0) {
 if (fabs(a.get(j, k)) >= big) {
 big = fabs(a.get(j, k));
 irow = j;
 icol = k;
 }
 }
 }
 }
 } Essentially chooses the largest

(absolute value) element on an
unvisited column and row

Wednesday, January 16, 13

Moving To Diagonal

// Interchange rows to put the pivot on the diagonal
 if (irow != icol) {
 a.exchange_rows(irow, icol);
 b.exchange_rows(irow, icol);
 if (verbose) {
 printf("Exchanging rows %d and %d\n", irow,
icol);
 a.print();
 }
 }

Swaps rows so that the pivot’s row
number and column number are equal

Wednesday, January 16, 13

Normalizing row

// Divide the row by the pivot
 double pivot_inverse = 1.0 / a.get(icol, icol);
 a.set(icol, icol, 1.0);
 a.mult_row(icol, pivot_inverse);
 b.mult_row(icol, pivot_inverse);
 if (verbose) {
 printf("Dividing row %d by %.2f\n", icol, 1.0 /
pivot_inverse);
 a.print();
 }

Divides the pivot’s row by the
value of the pivot.

Will explain
this in a bit

Wednesday, January 16, 13

Reducing column

 // Reduce the rows (except for the pivot row)
 for (int ll = 0; ll < n; ll++) {
 if (ll != icol) {
 double dummy = a.get(ll, icol);
 a.set(ll, icol, 0.0);
 a.add_rows(1.0, ll, -dummy, icol);
 b.add_rows(1.0, ll, -dummy, icol);
 if (verbose) {
 printf("Row %d -= %.2f * Row %d\n", ll, dummy, icol);
 a.print();
 }
 }
 }

Subtracts multiples of the pivot
row from the rows above/below
to make the column mostly 0s

Will explain
this in a bit

Wednesday, January 16, 13

Note: Storage

• The code in the textbook “saves space” by not
storing the identity matrix as a separate matrix.
Instead, it coexists with the input matrix.

• This can be done because we know that the
input matrix will eventually become the identity
matrix.

• That’s why the code changes the input matrix
to the identity matrix right before doing any
replacements

(i.e. the part that I said I would explain)

Wednesday, January 16, 13

Simple Example


1 2
3 4

� 
x

y

�
=


8
20

�

x+ 2y = 8

3x+ 4y = 20

Wednesday, January 16, 13

Matrix Description

1

2

3

4

5

 1 2 | 8
 3 4 | 20

Start

 1 2 | 8
 .75 1 | 5

Row 1 /= 4

 -.5 0 | -2
 .75 1 | 5

Row 0 -= 2 * Row 1

 1 0 | 4
 .75 1 | 5

Row 0 /= -0.5

 1 0 | 4
 0 1 | 2

Row 1 -= 0.75 * Row 0

Wednesday, January 16, 13

Real-World Example:
Ray-Triangle Intersection

• From Shirley’s “Fundamentals
of Computer Graphics”

• Goal: Find the point where a
ray intersects a plane defined
by a triangle

• Basic form of ray tracing

a

b

cp
d

e

The ray marked by ED intersects the
plane defined by triangle ABC at point P

e + td

p(a, β, γ) =
a + β(b - a) + γ(c - a)

Wednesday, January 16, 13

Ray-Triangle Intersection
Point must lie on both the vector, represented by:

and the plane of the triangle, represented by:

~e+ t~d = ~a+ �(~b� ~a) + �(~c� ~a)

so the resulting equation to solve is:

~p = ~a+ �(~b� ~a) + �(~c� ~a)

~p = ~e+ t~d

for some t, β, and γ.

Wednesday, January 16, 13

Ray-Triangle Intersection

In xyz coordinates, this becomes:

which can now be solved by Gauss-Jordan elimination!

which can also be written as

~e+ t~d = ~a+ �(~b� ~a) + �(~c� ~a)

2

4
xa � xb xa � xc xd

ya � yb ya � yc yd

za � zb za � zc zd

3

5

2

4
�

�

t

3

5 =

2

4
xa � xe

ya � ye

za � ze

3

5

xe + txd = xa + �(xb � xa) + �(xc � xa)

ye + tyd = ya + �(yb � ya) + �(yc � ya)

ze + tzd = za + �(zb � za) + �(zc � za)

Wednesday, January 16, 13

• Find where the ray
(1, 1, 1) + t(-1, -1, -1)
hits a triangle with vertices
(1, 0, 0), (0, 1, 0), and (0, 0, 1)

Ray-Triangle Intersection

+x

+y

+z

a = (1, 0, 0)

b = (0, 1, 0)

c = (0, 0, 1)

d = (-1, -1, -1)

e = (1, 1, 1)

Wednesday, January 16, 13

Ray-Triangle Intersection
2

4
xa � xb xa � xc xd

ya � yb ya � yc yd

za � zb za � zc zd

3

5

2

4
�

�

t

3

5 =

2

4
xa � xe

ya � ye

za � ze

3

5

+x

+y

+z

a = (1, 0, 0)

b = (0, 1, 0)

c = (0, 0, 1)

d = (-1, -1, -1)

e = (1, 1, 1)

2

4
1� 0 1� 0 �1
0� 1 0� 0 �1
0� 0 0� 1 �1

3

5

2

4
�
�
t

3

5 =

2

4
1� 1
0� 1
0� 1

3

5

2

4
1 1 �1
�1 0 �1
0 �1 �1

3

5

2

4
�
�
t

3

5 =

2

4
0
�1
�1

3

5

End result is
t = 2/3
β = 1/3
γ = 1/3

or p = (1/3, 1/3, 1/3)

Using the previous formula

Wednesday, January 16, 13

Ray-Triangle Intersection

Code output

Wednesday, January 16, 13

Ray-Triangle Intersection

~p = (1, 1, 1) +
2

3
(�1,�1,�1) =

✓
1

3
,
1

3
,
1

3

◆

Substitute 2/3 for t to find p

~p = ~e+ t~d

Get the same result with β = γ = 1/3

~p = ~a+ �(~b� ~a) + �(~c� ~a)

~p = (1, 0, 0) +
1

3
(�1, 1, 0) +

1

3
(�1, 0, 1) =

✓
1

3
,
1

3
,
1

3

◆

Wednesday, January 16, 13

Analysis

Wednesday, January 16, 13

Analysis

• Used the clock() function to time how long
it took to calculate the inverse of matrices
of size n

• Matrices were randomly generated

• Took an unusual amount of time to
calculate for n=1

• Follows an O(n^3) pattern

Wednesday, January 16, 13

Efficiency (1,20)

0

175

350

525

700

0 5 10 15 20

y = 0.0618x3 + 0.5013x2 - 4.4488x + 15.627

R² = 0.9977

Gauss Jordan Runtime
Pr

oc
es

so
r T

im
e

Matrix Length

Wednesday, January 16, 13

Efficiency (1, 150)

0

75000

150000

225000

300000

0 37.5 75.0 112.5 150.0

y = 0.0886x3 - 0.9067x2 + 44.224x - 458.45

R² = 0.9998

Gauss Jordan Runtime
Pr

oc
es

so
r T

im
e

Matrix Length

Wednesday, January 16, 13

Efficiency (1, 900)

0

17500000

35000000

52500000

70000000

0 250 500 750 1000

y = 0.0934x3 - 1.3472x2 + 205.08x - 10779

R² = 0.9999

Gauss Jordan Runtime
Pr

oc
es

so
r T

im
e

Matrix Length

Wednesday, January 16, 13

Areas for future analysis

• Investigate the impact of pivoting on
processing time

• Compare against other methods for
calculating inverses/solving systems of
equations

Wednesday, January 16, 13

Sources

• Wikipedia

• Numerical Recipes (Press)

• Fundamentals of Computer Graphics
(Shirley)

Wednesday, January 16, 13

