Gauss Jordan Elimination Kim Day

Overview

- Background/Description
- Algorithm
- Code snippets
- Examples
- Analysis

Background/Description

Background

- Named for Carl Friedrich Gauss and Wilhelm Jordan
- Started out as "Gaussian elimination" although Gauss didn't create it
- Jordan improved it in 1887 because he needed a more stable algorithm for his surveying calculations

Carl Gauss mathematician/scientist 1777-1855

Wilhelm Jordan geodesist 1842-1899

(geodesy involves taking measurements of the Earth)

Some Terms

- Matrix 2D array
- Identity matrix Matrix with all Os except for Is on the diagonal
- Determinant Representative number that can be calculated from a matrix
- Matrix inverse The matrix version of n^-I

1	0	0	0
0	1	0	0
0	0	1	0
0	0	0	1

A 4x4 identity matrix

Elementary Operations

- Steps that can be performed on matrices without changing their overall meaning
- Multiplying by a scalar Replace a row/column by itself times a factor
- Linear combinations Replace a row/column by a combination of itself and another row/column
- Pivoting Interchanging two rows/columns
 - Don't need pivoting but it really helps

Gaussian Elimination

- First seen used in the Chinese text "The Nine Chapters on the Mathematical Art" and in Isaac Newton's notes
- Puts a matrix into row echelon form, and then uses back substitution to solve
- Determinant is product of diagonals

Row echelon form: Lower triangle is 0s

Gauss-Jordan Elimination

- Gauss-Jordan elimination is a faster way to solve matrices and find a matrix inverse
- Puts the matrix into rowreduced echelon form

Reduced row echelon form: Non-diagonals are 0s

Comparison

	Solves system	Finds determinant	Finds inverse	Form used
Gauss Elim.	\checkmark	\checkmark	\checkmark	Row Echelon
Gauss-Jordan Elim.	\checkmark		\checkmark	Reduced Row Echelon

Advantages of G-J Elim.

- Can produce both the solution for a set of linear equations and the matrix inverse
- As efficient as most methods when it comes to finding a matrix inverse
- Solving the system of equations doesn't take up that much more time than finding the inverse
- Fairly stable

Disadvantages of G-J Elim.

- Requires more storage (bookkeeping and right hand elements)
- Takes three times as long than most methods when solving for a single set

Algorithm

Algorithm

- Repeat n times, where n is the number of columns
 - Locate a pivot
 - Move the row containing the pivot so that the pivot is on a diagonal
 - Divide the pivot's row by the value of the pivot
 - Subtract multiples of the pivot's row from the rows above and below to make them 0
 - If solving a system of equations, make sure to do the same operations on the vector matrix as well
- Input matrix is replaced by inverse and vector matrix is replaced by solutions

What is a Pivot?

- A "special" element of a matrix, chosen to become part of the final diagonal
- The pivot is usually the largest element in an unaltered row/column
- Choose a large pivot because that makes it easier to reduce the rest of the row/ column

Code Snippets

Choosing a pivot

```
for (int i = 0; i < n; i++) {</pre>
double big = 0.0;
int icol = 0;
int irow = 0;
// Search for a pivot element in each column
for (int j = 0; j < n; j++) {</pre>
   // Check that the column hasn't been visited
   if (ipiv[j] != 1) {
      // Now check through each member of the column
      for (int k = 0; k < n; k++) {</pre>
         if (ipiv[k] == 0) {
             if (fabs(a.get(j, k)) >= big) {
                big = fabs(a.get(j, k));
                irow = j;
                icol = k;
            }
         }
     }
  }
}
                                        Essentially chooses the largest
                                        (absolute value) element on an
```

unvisited column and row

Moving To Diagonal

```
// Interchange rows to put the pivot on the diagonal
    if (irow != icol) {
        a.exchange_rows(irow, icol);
        b.exchange_rows(irow, icol);
        if (verbose) {
            printf("Exchanging rows %d and %d\n", irow,
        icol);
        a.print();
        }
    }
}
```

Swaps rows so that the pivot's row number and column number are equal

Normalizing row

Divides the pivot's row by the value of the pivot.

Reducing column

Subtracts multiples of the pivot row from the rows above/below to make the column mostly 0s

(i.e. the part that I said I would explain) Note: Storage

- The code in the textbook "saves space" by not storing the identity matrix as a separate matrix. Instead, it coexists with the input matrix.
- This can be done because we know that the input matrix will eventually become the identity matrix.
- That's why the code changes the input matrix to the identity matrix right before doing any replacements

Simple Example

	Matrix	Description
	1 2 8 3 4 20	Start
2	1 2 8 .75 1 5	Row 1 /= 4
3	5 0 -2 .75 1 5	Row 0 -= 2 * Row 1
4	1 0 4 .75 1 5	Row 0 /= -0.5
5	1 0 4 0 1 2	Row 1 -= 0.75 * Row 0

Real-World Example: Ray-Triangle Intersection

- From Shirley's "Fundamentals of Computer Graphics"
- Goal: Find the point where a ray intersects a plane defined by a triangle
- Basic form of ray tracing

The ray marked by ED intersects the plane defined by triangle ABC at point P

Point must lie on both the vector, represented by:

$$\vec{p} = \vec{e} + t\vec{d}$$

and the plane of the triangle, represented by: $\vec{p} = \vec{a} + \beta(\vec{b} - \vec{a}) + \gamma(\vec{c} - \vec{a})$

so the resulting equation to solve is:

$$\vec{e} + t\vec{d} = \vec{a} + \beta(\vec{b} - \vec{a}) + \gamma(\vec{c} - \vec{a})$$

for some t, β , and γ .

Ray-Triangle Intersection $\vec{e} + t\vec{d} = \vec{a} + \beta(\vec{b} - \vec{a}) + \gamma(\vec{c} - \vec{a})$ In xyz coordinates, this becomes: $x_e + tx_d = x_a + \beta(x_b - x_a) + \gamma(x_c - x_a)$ $y_e + ty_d = y_a + \beta(y_b - y_a) + \gamma(y_c - y_a)$ $z_e + tz_d = z_a + \beta(z_b - z_a) + \gamma(z_c - z_a)$ which can also be written as $\begin{bmatrix} x_a - x_b & x_a - x_c & x_d \end{bmatrix} \begin{bmatrix} \beta \end{bmatrix} \begin{bmatrix} x_a - x_c \end{bmatrix}$

$$\begin{bmatrix} x_a & x_b & x_a & x_c & x_a \\ y_a - y_b & y_a - y_c & y_d \\ z_a - z_b & z_a - z_c & z_d \end{bmatrix} \begin{bmatrix} \gamma \\ \gamma \\ t \end{bmatrix} = \begin{bmatrix} x_a & x_c \\ y_a - y_e \\ z_a - z_e \end{bmatrix}$$

which can now be solved by Gauss-Jordan elimination!

Find where the ray

 (I, I, I) + t(-I, -I, -I)
 hits a triangle with vertices
 (I, 0, 0), (0, I, 0), and (0, 0, I)

Using the previous formula

input matrix: 1.00 1.00 -1.00-1.000.00 -1.000.00 -1.00-1.00vector matrix: 0.00 -1.00-1.00Starting Gauss-Jordan algorithm... Dividing row 2 by -1.00 1.00 1.00 -1.00-1.000.00 -1.00-1.00-0.001.00 Row $0 = -1.00 \times Row 2$ 1.00 2.00 -1.00-1.000.00 -1.00-0.001.00 -1.00Row 1 -= -1.00 * Row 2 1.00 2.00 -1.001.00 -1.00-1.00-0.001.00 -1.00Exchanging rows 0 and 1 -1.001.00 -1.001.00 2.00 -1.00

-1.00

Dividing row 1 by 2.00 -1.001.00 -1.000.50 0.50 -0.50 -0.001.00 -1.00Row 0 -= 1.00 * Row 1 -1.50-0.50-0.500.50 0.50 -0.50-0.001.00 -1.00Row 2 -= 1.00 * Row 1 -0.50-1.50-0.50 0.50 0.50 -0.50-0.50-0.50-0.50Dividing row 0 by -1.50 -0.670.33 0.33 0.50 0.50 -0.50-0.50-0.50-0.50Row 1 -= 0.50 * Row 0 -0.67 0.33 0.33 0.33 0.33 -0.67-0.50-0.50-0.50Row 2 -= -0.50 * Row 0 -0.67 0.33 0.33 0.33 0.33 -0.67 -0.33 -0.33 -0.33

Exchanging columns 0 and 1 0.33 -0.670.33 0.33 0.33 -0.67 -0.33 -0.33 -0.33Done! inverse: 0.33 -0.670.33 -0.67 0.33 0.33 -0.33 -0.33 -0.33solution: 0.33 0.33 0.67

Code output

-0.00

1.00

Substitute 2/3 for t to find p

 $\vec{p} = \vec{e} + t\vec{d}$ $\vec{p} = (1, 1, 1) + \frac{2}{3}(-1, -1, -1) = \left[\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)\right]$

Get the same result with $\beta = \gamma = 1/3$ $\vec{p} = \vec{a} + \beta(\vec{b} - \vec{a}) + \gamma(\vec{c} - \vec{a})$ $\vec{p} = (1, 0, 0) + \frac{1}{3}(-1, 1, 0) + \frac{1}{3}(-1, 0, 1) = \boxed{\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)}$

Analysis

Analysis

- Used the clock() function to time how long it took to calculate the inverse of matrices of size n
- Matrices were randomly generated
- Took an unusual amount of time to calculate for n=l
- Follows an O(n^3) pattern

Efficiency (1,20)

Gauss Jordan Runtime

Efficiency (I, I50)

Gauss Jordan Runtime

Efficiency (1,900)

Gauss Jordan Runtime

Areas for future analysis

- Investigate the impact of pivoting on processing time
- Compare against other methods for calculating inverses/solving systems of equations

Sources

- Wikipedia
- Numerical Recipes (Press)
- Fundamentals of Computer Graphics (Shirley)