Gauss Jordan Elimination

Kim Day

Overview

® Background/Description
® Algorithm

® Code snippets

® Examples

® Analysis

Wednesday, January 16, 13

Background/Description

Background

® Named for
Carl Friedrich Gauss and

Wilhelm Jordan

® Started out as “Gaussian
elimination” although
Gauss didn’t create it

® Jordan improved it in 1887

Wilhelm Jordan

because he needed a more geodesist

1842-1899

stable algorithm for his
SU rVGYi ng Cal Cu Iati ons (geodesy involves taking

measurements of the Earth)

Carl Gauss

mathematician/scientist
| 777-1855

Wednesday, January 16, 13

Some Terms

® Matrix - 2D array

® |dentity matrix - Matrix with all

Os except for |s on the 1 0 0O
diagonal 01 00
® Determinant - Representative 0 010
number that can be calculated 0 0 0 1

from a matrix

. . . A 4x4 identity matrix
® Matrix inverse - The matrix /

version of n/A-|

Wednesday, January 16, 13

Elementary Operations

® Steps that can be performed on matrices
without changing their overall meaning

® Multiplying by a scalar - Replace a row/column
by itself times a factor

® |inear combinations - Replace a row/column by
a combination of itself and another row/column

® Pivoting - Interchanging two rows/columns

® Don’t need pivoting but it really helps

Wednesday, January 16, 13

Gaussian Elimination

® First seen used in the Chinese
text “The Nine Chapters on the
Mathematical Art”’ and in Isaac

2 4 1 4 7

Newton’s notes 0 6 3 5 3
® Puts a matrix into row echelon 0 0269
form, and then uses back 0 00 31
substitution to solve 0 0 005
Row echelon form:

® Determinant is product of Lower triangle is Os

diagonals

Wednesday, January 16, 13

Gauss-Jordan Elimination

® Gauss-Jordan elimination is

1 00 0O

a faster way to solve
matrices and find a matrix 01000
Inverse 00100
0 0010
® Puts the matrix into row- 0 00 0 1
reduced eCheIOn fOrm Reduced row echelon form:

Non-diagonals are Os

Wednesday, January 16, 13

Comparison

Solves system Finds determinant Finds inverse Form used

Gauss Elim. Row Echelon

Gauss-Jordan Elim. J / Reduced Row

Echelon

Wednesday, January 16, 13

Advantages of G-| Elim.

® Can produce both the solution for a set of
linear equations and the matrix inverse

® As efficient as most methods when it
comes to finding a matrix inverse

® Solving the system of equations doesn’t
take up that much more time than finding
the inverse

® Fairly stable

Wednesday, January 16, 13

Disadvantages of G-| Elim.

® Requires more storage (bookkeeping and
right hand elements)

® [akes three times as long than most
methods when solving for a single set

Wednesday, January 16, 13

Algorithm

Wednesday, January 16, 13

Algorithm

® Repeat n times, where n is the number of columns

Locate a pivot

Move the row containing the pivot so that the pivot is on a
diagonal

Divide the pivot’s row by the value of the pivot

Subtract multiples of the pivot’s row from the rows above
and below to make them O

If solving a system of equations, make sure to do the same
operations on the vector matrix as well

® |nput matrix is replaced by inverse and vector matrix is
replaced by solutions

Wednesday, January 16, 13

What is a Pivot!?

® A “special”’ element of a matrix, chosen to
become part of the final diagonal

® The pivot is usually the largest element in
an unaltered row/column

® Choose a large pivot because that makes it
easier to reduce the rest of the row/
column

Wednesday, January 16, 13

Code Snippets

Choosing a pivot

for (int 1 = 0; i < n; i++) {

double big = 0.0;

int icol = 0;

int irow = 0;

// Search for a pivot element in each column
for (int j = 0; j < n; j++) {

// Check that the column hasn't been visited
if (ipiv[j]l '= 1) {
// Now check through each member of the column
for (int k = 0; k < n; k++) {
if (ipivI[k] == 0) {
if (fabs(a.get(j, k)) >= big) {
big = fabs(a.get(j, k));
irow = j;
icol K;

b Essentially chooses the largest
(absolute value) element on an
unvisited column and row

Wednesday, January 16, 13

Moving o Diagonal

// Interchange rows to put the pivot on the diagonal
if (irow !'= icol) {
a.exchange_rows(irow, icol);
b.exchange_rows(irow, icol);
if (verbose) {
printf("Exchanging rows %d and %d\n', irow,
icol);
a.print();
s
5

Swaps rows so that the pivot’s row
number and column number are equal

Wednesday, January 16, 13

Normalizing row

// Divide the row by the pivot

: : double pivot_inverse = 1.0 / a.get(icol, icol);
W.lll.expla!n » a.set(icol, icol, 1.0);
this in a bit a.mult_row(icol, pivot_inverse);

b.mult_row(icol, pivot_inverse);
if (verbose) {
printf("Dividing row %d by %.2f\n", icol, 1.0 /
pivot_inverse);
a.print();
I3

Divides the pivot’s row by the
value of the pivot.

Wednesday, January 16, 13

Will explain

Reducing column

// Reduce the rows (except for the pivot row)
for (int 11 = 0; 11 < n; 1l++) {

if (1l '= icol) {

double dummy = a.get(1l, icol);
» a.set(ll, icol, 0.0);

this in a bit

a.add_rows(1.0, 11, —-dummy, icol);

b.add_rows(1.0, 11, -dummy, icol);

if (verbose) {
printf("Row %d —-= %.2f * Row %d\n", 11, dummy, icol);
a.print();

}

}
}

Subtracts multiples of the pivot
row from the rows above/below
to make the column mostly Os

Wednesday, January 16, 13

,Dart tﬁat ,
S,

Note: Storage ..,

® The code in the textbook “saves space” by not

storing the identity matrix as a separate matrix.
Instead, it coexists with the input matrix.

This can be done because we know that the
input matrix will eventually become the identity
matrix.

That’s why the code changes the input matrix
to the identity matrix right before doing any
replacements

Wednesday, January 16, 13

Simple Example

r+ 2y =28
3r + 4y = 20

Iw b_\l

aaaaaaaaaaaaaaaaaaaaaa

Description

1 2 8
| 3 4 20 Start
1 2 8
R = 4
pi - . ow /
-.50 -2
_—— 2 * R l
3 - . Row ow
1 O 4
R = -0.5
4 25 1 - oW /
1 O 4
_—— . * R O
5 7 1 X Row 0.75 ow

Wednesday, January 16, 13

Real-VVorld Example:
Ray- Iriangle Intersection

S

e +td

® From Shirley’s “Fundamentals
of Computer Graphics”

® Goal: Find the point where a
ray intersects a plane defined

by a triangle PEBY)=
a+Bb-a)+yc-a) b

® Basic form of ray tracing

The ray marked by ED intersects the
plane defined by triangle ABC at point P

Wednesday, January 16, 13

Ray- Triangle Intersection

Point must lie on both the vector, represented by:
p=¢e+td

and the plane of the triangle, represented by:
p=d+pB(b—a)+~(¢— a)

so the resulting equation to solve is:
E+td=d+ B(b—a)+~(¢— a)

for some t, B, and Y.

Wednesday, January 16, 13

Ray- Triangle Intersection

e+ td=a+ B(b—a) +~(¢— qd)
In Xyz coordinates, this becomes:
Te +txg =24+ B(xp — o) + V(e — 40)

Ye +1Ya = Yo + BWs — Ya) + Y(Ye — Ya)

Ze + 120 = 24 -

- B(26 — 2a) + Y(2e — 2a)

which can also be written as

Lag — Lp
Ya — Yb
Za — <b

Lag — Le
ya_yc
<a — Rc

Ld

Yd
Zd

Lag — Le
ya_ye
Za T Re

which can now be solved by Gauss-Jordan elimination!

Wednesday, January 16, 13

Ray- Triangle Intersection

+z A

® Find where the ray

(I, 1, 1) +t(-1,-1,-1)
hits a triangle with vertices
(1,0,0),(0, 1,0),and (0,0, 1) *=¢"""

c=(0,0, 1)

a=(l,0,0)

b=(0,1,0)

Wednesday, January 16, 13

Ray- Triangle Intersection

Using the previous formula

Tq —Tp Ta—Te Tq| |B Toq — Te
Ya— Yo Ya—Ye Yd| |V| = |Ya — Ve A
Za — 2b Za — Ze 24 t Za — Ze
_ o : +y
1-0 1-0 -1][8 1-1
0—1 0—-0 —-1f [v] =10-1 c=(0,0, 1)
0-0 0—1 —1]| |¢ 0—1
"~ 11 TR i] d=(-1,-1,-1)
1 1 11 [0 ;
—1 0 —1 v = —1 a=(l,0,0)
i O _]. _:__ _t_ __]._ b=1(0,1,0)
End result is
t=2/3
B=1/3 orp=(1/3,1/3,1/3)
Y= 1/3

Wednesday, January 16, 13

Ray- Triangle Intersection

input matrix:

1.00 1.00 -1.00
-1.00 0.00 -1.00
0.00 -1.00 -1.00
vector matrix:

0.00
-1.00
_1100

Starting Gauss-Jordan algorithm...
Dividing row 2 by -1.00

1.00 1.00 -1.00
-1.00 0.00 -1.00
-0.00 1.00 -1.00
Row @ —= -1.00 * Row 2
1.00 2.00 -1.00
-1.00 0.00 -1.00
-0.00 1.00 -1.00
Row 1 —= -1.00 * Row 2
1.00 2.00 -1.00
-1.00 1.00 -1.00
-0.00 1.00 -1.00
Exchanging rows @ and
-1.00 1.00 -1.00
1.00 2.00 -1.00
-0.00 1.00 -1.00

Dividing row 1 by 2.00

-1.00 1.00 -1.00
0.50 0.50 -0.50
-0.00 1.00 -1.00
Row @ —= 1.00 * Row 1
-1.50 -0.50 -0.50
0.50 0.50 -0.50
-0.00 1.00 -1.00
Row 2 —= 1.00 * Row 1
-1.50 -0.50 -0.50
0.50 0.50 -0.50
-0.50 -0.50 -0.50
Dividing row @ by -1.50
-0.67 0.33 0.33
0.50 0.50 -0.50
-0.50 -0.50 -0.50
Row 1 —= 0.50 * Row @
-0.67 0.33 0.33
0.33 0.33 -0.67
-0.50 -0.50 -0.50
Row 2 —= -0.50 * Row @
-0.67 0.33 0.33
0.33 0.33 -0.67
-0.33 -06.33 -0.33

Exchanging columns @ and 1

0.33 -0.67
0.33 0.33
-0.33 -0.33
Done!
inverse:

0.33 -0.67
0.33 0.33
-0.33 -0.33
solution:
0.33

0.33

0.67

0.33
-0.67
-0.33

0.33
-0.67
_0133

Code output

Wednesday, January 16, 13

Ray- Triangle Intersection

Substitute 2/3 for t to find p
p=¢+td

2 1 1 1
7= (1,1,1) + =(=1,-1,-1) =|[=, =, =
p (77)_|_3(9 Y) (37373)

Get the same result with f =y = |/3

pF=a+ B8(b—a) +~(c— a)

1
'3

Wl

1 1 1
= (1,0,0) + =(—1,1,0) + =(—1,0,1) =|{ =
F=(1,0.0)+ 5(-1.1.0) + 5(-1,0,) = (5,

Wednesday, January 16, 13

Analysis

Wednesday, January 16, 13

Analysis

® Used the clock() function to time how long
it took to calculate the inverse of matrices
of size n

® Matrices were randomly generated

® Jook an unusual amount of time to
calculate for n=1

® Follows an O(n”3) pattern

Wednesday, January 16, 13

Processor Time

700

525

350

175

Efficiency (1,20)

Gauss Jordan Runtime

y = 0.0618x3 + 0.5013x%? - 4.4488x + 15.627
R2 = 0.9977

5 10 15
Matrix Length

20

Wednesday, January 16, 13

Processor Time

Efficiency (I, 150)

300000

225000

150000

75000

Gauss Jordan Runtime

y = 0.0886x3 - 0.9067x2 + 44.224x - 458.45

R2 = 0.9998

37.5

75.0
Matrix Length

112.5

150.0

Wednesday, January 16, 13

Efficiency (1, 900)

Gauss Jordan Runtime

70000000
y = 0.0934x3 - 1.3472x2 + 205.08x - 10779
R2 = 0.9999
52500000
()
£
|_
§ 35000000
[
(&)
o
o
17500000
0

0 250 500 750 1000
Matrix Length

Wednesday, January 16, 13

Areas for future analysis

® |nvestigate the impact of pivoting on
processing time

® Compare against other methods for
calculating inverses/solving systems of
equations

Wednesday, January 16, 13

Sources

® Wikipedia
® Numerical Recipes (Press)

® Fundamentals of Computer Graphics
(Shirley)

Wednesday, January 16, 13

