Rational Function Interpolation Barycentric Rational Interpolation Coefficients of Interpolating Polynomial

> Christian Zelenka Michael Phipps 02/06/13

Summary of Previous Interpolation Methods

Linear Interpolation Polynomial Interpolation Cubic Spline Interpolation

Linear Interpolation

- Concatenation of linear interpolants between a pair of data points
- Piecewise linear function
- Cheap . . . O(NLog(N))
- Connect data points in a table (e.g. given population in 1990 and 2000, what was population in 1995?)
- Historically used with astronomical data

Polynomial Interpolation

- Given a data set, find a polynomial that goes exactly through each point
- Neville's algorithm: O(N²)
- Basis for algorithms solving numerical ODEs and numerical integration
- Unstable on equidistant grid

Cubic Spline

- Interpolation interval divided into subintervals and each subinterval interpolated using 3rd degree polynomial
- Piecewise cubic functions with continuous first and second derivatives
- Requires function continuity and passing through all data points
- O(N) complexity . . . stable and simplistic calculation

Cubic Spline Continued

- Known boundary first derivatives . . . O(h⁴)
- Natural spline (2nd derivatives = 0) . . . O(h²)
- Preferable to polynomials because the interpolation error can be made small even when using low degree polynomials
- Avoid Runge's Phenomenon in which boundaries oscillate wildly for functions like

$$f(x) = \frac{1}{1 + 25x^2}.$$

Why Rational Function Interpolation?

- Express more diverse behavior than polynomials
- Solves disadvantages of polynomial interpolation but polynomial can be found at any point; rational function cannot
- Ability to model equations with poles (while polynomials fail), . . Good if modeling a function with poles. Bad if goal is numerical stability.
- Higher orders give higher accuracy

Example of Unstable Rational Interpolation

Numerator and Denominator of 2nd degree

Pole at x = -0.5 x y -2 1 -1 2 0 -1 1 0

2 1

Rational Functions Continued

- Historically, the rational interpolant was constructed by solving a set of equations with unknown coefficients.
 - However, the larger the data set the larger the error in calculating coefficients
- Neville's algorithm solves this problem by setting degree of numerator and denominator equal to N/2
- Main disadvantage: no mechanism to find poles

Why Barycentric Rational Interpolation?

- Suppresses all nearby poles
- Experimentation with higher orders encouraged
- Favorable comparison to splines but with smaller error and infinitely smooth curves
- If spacing of points is O(h), error is O(h^{d+1}) as
 h → 0. The complexity is order O(Nd)

Runge's example with barycentric rational interpolation

Figure 1: Interpolating Runge's example with d = 3 and n = 10, 20, 40, 80.

Sin(x) and errors for Sin(x) and Runge's Eq

Figure 2: Interpolating the sine function with d = 4 and n = 10, 20, 40, 80.

n	Runge, $d = 3$	order	sine, $d = 4$	order
10	6.9e-02		1.7e-02	
20	2.8e-03	4.6	3.9e-04	5.5
40	4.3e-06	9.4	7.1e-06	5.8
80	5.1e-08	6.4	1.3e-07	5.7
160	3.0e-09	4.1	2.7e-09	5.6
320	1.8e-10	4.0	6.0e-11	5.5
640	1.1e-11	4.0	1.5e-12	5.3

Table 1: Error in rational interpolant.

Optimal Order for y = Abs(x)

Figure 3: Interpolating |x| over [-5, 5] with d = 3 and n = 21.

n	best d value	error
10	d = 0	3.6e-02
20	d = 1	1.5e-03
40	d = 3	4.3e-06
80	d = 7	2.0e-10
160	d = 10	1.3e-15

Table 2: Error in Runge's example, varying d.

Errors in barycentric vs cubic spline interpolation for Runge's equation and the sine function

n	rational, $d = 3$	cubic spline	n	rational, $d = 3$	cubic spline
10	6.9e-02	2.2e-02	10	1.3e-02	3.3e-03
20	2.8e-03	3.2e-03	20	1.2e-03	1.7e-04
40	4.3e-06	2.8e-04	40	8.4e-05	1.0e-05
80	5.1e-08	1.6e-05	80	5.4e-06	6.4e-07
160	3.0e-09	9.5e-07	160	3.4e-07	4.0e-08
320	1.8e-10	5.9e-08	320	2.1e-08	2.5e-09
640	1.1e-11	3.7e-09	640	1.3e-09	1.6e-10

Table 3: Error in rational and spline interpolation of Runge's (left) and the sine function (right)

Rational Function Algorithm

$$R_{i(i+1)\dots(i+m)} = \frac{P_{\mu}(x)}{Q_{\nu}(x)} = \frac{p_0 + p_1 x + \dots + p_{\mu} x^{\mu}}{q_0 + q_1 x + \dots + q_{\nu} x^{\nu}}$$
(3.4.1)

Since there are $\mu + \nu + 1$ unknown *p*'s and *q*'s (*q*₀ being arbitrary), we must have

$$m + 1 = \mu + \nu + 1 \tag{3.4.2}$$

Recurrence Relations

Polynomial Approximations

$$P_{i(i+1)\dots(i+m)} = \frac{(x - x_{i+m})P_{i(i+1)\dots(i+m-1)} + (x_i - x)P_{(i+1)(i+2)\dots(i+m)}}{x_i - x_{i+m}}$$
(3.2.3)

Rational Function Approximations

$$R_{i(i+1)\dots(i+m)} = R_{(i+1)\dots(i+m)} + \frac{R_{(i+1)\dots(i+m)} - R_{i\dots(i+m-1)}}{\left(\frac{x-x_i}{x-x_{i+m}}\right) \left(1 - \frac{R_{(i+1)\dots(i+m)} - R_{i\dots(i+m-1)}}{R_{(i+1)\dots(i+m)} - R_{(i+1)\dots(i+m-1)}}\right) - 1}$$
(3.4.3)

Barycentric Algorithm

Barycentric form of rational interpolant

$$R(x) = \frac{\sum_{i=0}^{N-1} \frac{w_i}{x - x_i} y_i}{\sum_{i=0}^{N-1} \frac{w_i}{x - x_i}}$$

For example,

$$w_{k} = \sum_{\substack{i=k-d\\0 \le i < N-d}}^{k} (-1)^{k} \prod_{\substack{j=i\\j \ne k}}^{i+d} \frac{1}{x_{k} - x_{j}}$$
(3.4.10)

(3.4.9)

Formula for the weights

$$w_{k} = (-1)^{k}, \qquad d = 0$$

$$w_{k} = (-1)^{k-1} \left[\frac{1}{x_{k} - x_{k-1}} + \frac{1}{x_{k+1} - x_{k}} \right], \qquad d = 1$$
(3.4.11)

Coefficients of Interpolating Polynomials and Vandermonde Matrix

$$y = c_0 + c_1 x + c_2 x^2 + \dots + c_{N-1} x^{N-1}$$
(3.5.1)

le c_i 's are required to satisfy the linear equation

$$\begin{bmatrix} 1 & x_0 & x_0^2 & \cdots & x_0^{N-1} \\ 1 & x_1 & x_1^2 & \cdots & x_1^{N-1} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & x_{N-1} & x_{N-1}^2 & \cdots & x_{N-1}^{N-1} \end{bmatrix} \cdot \begin{bmatrix} c_0 \\ c_1 \\ \vdots \\ c_{N-1} \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \\ \vdots \\ y_{N-1} \end{bmatrix}$$
(3.5.2)

- Transforms coefficients of a polynomial to the actual values it takes at particular points.
- Vandermonde determinant is non-vanishing for these points proving that the mapping is a one-to-one correspondence between coefficients and values . . . i.e. coefficients in polynomial interpolation have a unique solution

Coefficients continued

- Problems
 - Ill-conditioned as N increases . . . so technique only practical for small data sets
 - If coefficients are used to interpolate functions, the interpolation will not pass through data points
 - First algorithm in NR3 has $O(N^2)$; second has $O(N^3)$
 - For high degrees of interpolation, precision of coefficients is essential . . . so interpolation error compounded by inaccuracy of coefficients

Citations

http://www.alglib.net/interpolation/rational.php http://www.alglib.net/interpolation/spline3.php http://en.wikipedia.org/wiki/Linear_interpolation http://en.wikipedia.org/wiki/Spline_interpolation http://en.wikipedia.org/wiki/Polynomial_interpolation