

Stephen D. Butalla & Valerie Kobzarenko September 10, 2019

CSE-5400 Florida Institute of Technology

- QR decomposition uses about twice as many computations as other methods
- Works on rectangular matrices (only square will be discussed here)
- Matrix must be symmetric
- Pivoting is not necessary unless the coefficient matrix is (approximately) singular

QR Decomposition Algorithm

 QR decomposition takes the coefficient matrix and breaks it into two matrices [1, 2]:

$$\mathbb{A}=\mathbb{Q}\cdot\mathbb{R}$$

where $\mathbb Q$ is an orthogonal matrix, i.e.,

$$\mathbb{Q}\cdot\mathbb{Q}^{T}=\mathbb{I}$$

and \mathbb{R} is an upper triangular matrix:

$$\mathbb{R} = \begin{pmatrix} r_{00} & \cdots & r_{0n} \\ \vdots & \ddots & \vdots \\ 0 & \cdots & r_{nn} \end{pmatrix}$$

• Substituting:

$$\mathbb{Q}\cdot\mathbb{R}\cdot \mathbf{x} = \mathbf{b}$$

$$\mathbb{I}\cdot\mathbb{R}\cdot \mathbf{x} = \mathbb{R}\cdot \mathbf{x} = \mathbb{Q}^T\cdot \mathbf{b}$$

QR Decomposition Algorithm

• First, let

$$\mathbb{Q}^T \cdot \mathbf{b} = \mathbf{y}$$

Then solve

$$\mathbb{R} \cdot \mathbf{x} = \mathbf{y}$$

by back substitution.

- To find the matrices \mathbb{Q} and \mathbb{R} , we use Housholder transformations (or reflections) [2, 3]
- This method reduces a symmetric square matrix to tridiagonal form by successive orthogonal transformations which zeroes the proper elements in the corresponding column/row [2]

 A Householder transformation takes a vector x and reflects it through a (hyper)plane with respect to the normal vector of the (hyper)plane v, whose norm is of unit length [4]:

$$\langle \mathbf{v} | \mathbf{v} \rangle = |\mathbf{v}|^2 = \mathbf{v}^T \cdot \mathbf{v} = 1$$

• The Householder matrix is given by [2]

$$\mathbb{P} = \mathbb{I} - 2\mathbf{v} \otimes \mathbf{v}$$

where \otimes is the outer product, i.e.,

$$\mathbf{v} \otimes \mathbf{v} = |\mathbf{v}\rangle \langle \mathbf{v}| = \mathbf{v} \cdot \mathbf{v}^T$$

- Properties [5]:
 - 1. Involutary: $\mathbb{P} \cdot \mathbb{P} = \mathbb{I}$
 - 2. Hermitian: $\mathbb{P} = \mathbb{P}^{\dagger} \ \Rightarrow \ \text{symmetric}$
 - 3. Unitary: $\mathbb{P}^{-1} = \mathbb{P}^{\dagger} \Rightarrow \text{orthogonal}$
 - 4. Determinant: $|\mathbb{P}| = -1$

 Applying the correct Householder matrix zeroes all non-diagnonal elements in a column. First, operate on the first column and get [3]

$$\mathbb{A}' = \mathbb{P}_0 \mathbb{A} = \begin{pmatrix} a_{00} & \cdots & a_{0n} \\ 0 & a_{ii} & a_{in} \\ \vdots & \ddots & \vdots \\ 0 & \cdots & a_{nn} \end{pmatrix}$$

• This is achieved using the following prescription [2]:

1.

$$\mathbb{P} = \mathbb{I} - 2\mathbf{v} \otimes \mathbf{v} = \mathbb{I} - \frac{\mathbf{v} \cdot \mathbf{v}^T}{H}$$

where $H = \frac{1}{2} |\mathbf{v}|^2$

2. Let **v** be

$$\mathbf{v} = \mathbf{x}_0 \mp |\mathbf{x}_0| |0\rangle$$

where $|0\rangle$ is the unit vector $\langle 0|=[1\ 0\ \cdots\ 0]$ and \mathbf{x}_0 is the first column vector of some matrix \mathbf{X} , i.e.,

$$\mathbf{x}_0 = [x_{00} \ x_{10} \ \cdots \ x_{n0}]$$

3. Operate on the vector \mathbf{x}_0 with \mathbb{P} :

$$\mathbb{P} \cdot \mathbf{x} = \mathbf{x}_0 - \frac{\mathbf{v}}{H} (\mathbf{x}_0 \mp |\mathbf{x}_0| |0\rangle)^T \cdot \mathbf{x}_0 = \mathbf{x}_0 - \mathbf{v} = \pm |\mathbf{x}_0| |0\rangle$$
S. Butalla & V. Kobzarenko – "QR Decomposition" – Sep. 10, 2019

Applying this procedure to A [2], we choose the vector x₀ to be the first n-1 elements of a₀, i.e.,

$$\mathbf{a}_0^T = [a_{10}, a_{20}, \cdots a_{n0}]$$

• So, the lower n-2 elements will be zeroed, leaving:

$$\mathbb{P}_0 \cdot \mathbb{A} = \begin{bmatrix} a_{00} & a_{01} & \cdots & a_{0,n-1} \\ c & * & \cdots & * \\ \vdots & * & \ddots & * \\ 0 & * & \cdots & * \end{bmatrix}$$

where $c = |\mathbf{a}_0|$

ullet Applying the first Householder transformation twice (sandwiching $\mathbb A$), we zero both the 0^{th} column and row:

$$\mathbb{P}_0 \cdot \mathbb{AP}_0 = \begin{bmatrix} a_{00} & c & \cdots & 0 \\ c & * & \cdots & * \\ \vdots & * & \ddots & * \\ 0 & * & \cdots & * \end{bmatrix}$$

- Now, continue choosing the next vector for the Householder transformation as the n-2 elements from column 1 and repeat
- To save time/memory used in performing matrix multiplication, we can compute the vector:

$$\mathbf{p} = \frac{\mathbb{A} \cdot \mathbf{v}}{H}$$

and use the following procedure [2]:

$$\begin{aligned} \mathbb{A}' &= \mathbb{P} \mathbb{A} \mathbb{P} \\ &= \mathbb{A} - \mathbf{p} \cdot \mathbf{v}^T - \mathbf{v} \cdot \mathbf{p}^T + 2 \mathcal{K} \mathbf{v} \cdot \mathbf{v}^T \end{aligned}$$

where
$$K = \frac{\mathbf{v} \cdot \mathbf{p}}{2H}$$
• Simplifying, let $\mathbf{q} = \mathbf{p} - K\mathbf{v}$

- Finally,

$$\mathbb{A}' = \mathbb{A} - \mathbf{q} \cdot \mathbf{v}^T - \mathbf{v} \cdot \mathbf{p}^T$$

ullet At any stage k in the algorithm, the vector ${f v}$ takes the form

$$\mathbf{v}^T = \begin{bmatrix} a_{k0}, \ a_{k1}, \ a_{k,k-1} \pm \sqrt{\sigma}, \ \cdots \ 0 \end{bmatrix}$$

where $\pm \sqrt{\sigma} = |\mathbf{a}_k|$, where the sign is chosen to reduce roundoff error [2]

• If [2]

$$\sigma < \frac{\text{smallest (+) number representable}}{\text{machine precision}}$$

Define $\tau = \sum_{k=0}^{i-1} |a_{ik}|$ If $\tau = 0$ compared to the machine precision, we can skip the Householder transformation, else we set

$$a_{ik}
ightarrow rac{a_{ik}}{ au}$$

Decomposition Code Example

```
Adapted from [2]:
for (k=0:k< n-1:k++) {
        scale=0.0:
        for (i=k;i<n;i++) scale=MAX(scale,abs(r[i][k]));</pre>
        //If singular, skip the transformation:
        if (scale == 0.0) {
                 sing=true;
                 c[k]=d[k]=0.0:
        } else {
                 //Use scaled vectors for Householder transformation
                 for (i=k;i<n;i++) r[i][k] /= scale;</pre>
                 for (sum=0.0, i=k; i < n; i++) sum += SQR(r[i][k]);
                 sigma=SIGN(sqrt(sum),r[k][k]);
                 r[k][k] += sigma;
                 c[k]=sigma*r[k][k];
                 d[k] = -scale*sigma;
                 for (j=k+1;j<n;j++) {
                          for (sum=0.0, i=k; i < n; i++) sum += r[i][k]*r[i][j];
                          tau=sum/c[k];
                          for (i=k;i<n;i++) r[i][j] -= tau*r[i][k];</pre>
                 }
        }
```

 \bullet Once the transformations are complete, we have the $\mathbb Q$ and $\mathbb R$ matrices:

$$\mathbb{Q} = \mathbb{P}_0 \mathbb{P}_1 \cdots \mathbb{P}_m$$
$$\mathbb{R} = \mathbb{P}_m \mathbb{P}_{m-1} \cdots \mathbb{P}_0 \mathbb{A}$$

• Finally, we can solve the original set of linear equations,

$$\mathbb{A} \cdot \mathbf{x} = \mathbf{b}$$

• : $\mathbb{A} = \mathbb{Q}\mathbb{R}$, we can substitute:

$$\mathbb{Q}\mathbb{R} \cdot \mathbf{x} = \mathbf{b}$$
$$\mathbb{R} \cdot \mathbf{x} = \mathbb{Q}^T \mathbf{b}$$

• First, find **y** by multiplying:

$$\mathbb{Q}^T\mathbf{b}=\mathbf{y}$$

```
for (i=0;i<n;i++) {
    sum = 0.;
    for (j=0;j<n;j++) sum += qt[i][j]*b[j];
    y[i] = sum;
}</pre>
```


• Using backsubstitution, solve

```
for (i=n-1;i>=0;i--) {
    sum=b[i];
    for (j=i+1;j<n;j++) sum -= r[i][j]*x[j];
    x[i]=sum/r[i][i];
}</pre>
```

 $\mathbb{R}\mathsf{x}=\mathsf{v}$

References

- [1] M. Parker, Digital Signal Processing 101: Everything You Need to Know to Get Started, 2017, Elsevier Inc.
- [2] W. Press, S. Teukolsky, W. Vetterling, & B. Flannery, *Numerical Recipes: The Art of Scientific Computing*, 2007, Cambridge University Press.
- [3] "QR Decomposition," *RosettaCode*, https://rosettacode.org/wiki/QR_decomposition#C.2B.2B.
- [4] R. Wang, "Householder transformation and QR decomposition," 2015, http://fourier.eng.hmc.edu/e176/lectures/NM/node10.html.
- [5] J. Kerl, "The Householder transformation in numerical linear algebra," 2008, https://johnkerl.org/doc/hh.pdf.

