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QR Decomposition

QR decomposition uses about twice as many computations as other
methods

Works on rectangular matrices (only square will be discussed here)

Matrix must be symmetric

Pivoting is not necessary unless the coefficient matrix is
(approximately) singular
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QR Decomposition Algorithm

e QR decomposition takes the coefficient matrix and breaks it into two
matrices [1, 2]:
A=Q-R

where Q is an orthogonal matrix, i.e.,
Q-Q"=1

and R is an upper triangular matrix:

foo -+ fon
R= :
0 I
e Substituting:
Q-R-x=b

[I.R-x=R-x=Q"-b

O

S. Butalla & V. Kobzarenko — “QR Decomposition” — Sep. 10, 2019 3



QR Decomposition Algorithm

o First, let
Q" -b=y

Then solve
R-x= y

by back substitution.

e To find the matrices Q and R, we use Housholder transformations (or
reflections) [2, 3]

e This method reduces a symmetric square matrix to tridiagonal form by
successive orthogonal transformations which zeroes the proper elements in
the corresponding column/row [2]
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Householder T formations

e A Householder transformation takes a vector x and reflects it through a
(hyper)plane with respect to the normal vector of the (hyper)plane v, whose

norm is of unit length [4]:

vy =|v2=vT -v=1

e The Householder matrix is given by [2]
P=I-2v®v

where ® is the outer product, i.e.,

vav=)(v=v-v’
e Properties [5]:

1. Involutary: P-P =1

2. Hermitian: P=Pf = symmetric

3. Unitary: P~ =P' = orthogonal

4. Determinant: |P| = —1

O
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Householder Transformations

e Applying the correct Householder matrix zeroes all non-diagnonal elements
in a column. First, operate on the first column and get [3]

e This is achieved using the following prescription [2]:
1.
A\ VT

P=1-2 =1-
VRV H

where H = %MZ
2. Let v be
v = xo F [xo] |0)
where |0) is the unit vector (0] =[1 0 --- 0] and xo is the first column vector
of some matrix X, i.e.,

X0 = [X00 X10 - Xno)

3. Operate on the vector xo with P:

v
O P‘XIXO*ﬁ(XOI\XOHOHT‘XO:XO*":i‘xOHW
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Householder Transformations

e Applying this procedure to A [2], we choose the vector xo to be the first
n — 1 elements of ag, i.e.,

aoT = [310-, a, 3n0}

e So, the lower n — 2 elements will be zeroed, leaving:

do0 do1 - do,n-1
Py-A= )
* °5 *
0 R *

where ¢ = |ag|
e Applying the first Householder transformation twice (sandwiching A), we
zero both the 0™ column and row:

ag € 0
c  * *
Py - APy = ]
* L%
0 =« *

O which is possible because P§ = P
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Householder Transformations

e Now, continue choosing the next vector for the Householder transformation
as the n — 2 elements from column 1 and repeat
e To save time/memory used in performing matrix multiplication, we can

compute the vector:
A-v

H

p =
and use the following procedure [2]:
A’ = PAP
=A—p-vi —v-pT +2Kv-v"
where K = SR
e Simplifying, let g =p — Kv

e Finally,
A=A—q-vl  —v-p’

O
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Householder T formations

e At any stage k in the algorithm, the vector v takes the form

vl = [ako, aki, ak'k_liﬁ’ O}

where +,/0 = |a
o If [2]

, where the sign is chosen to reduce roundoff error [2]

- smallest (4) number representable
g - -
machine precision

Define 7 = Z;;lo |aik| If 7 =0 compared to the machine precision, we can
skip the Householder transformation, else we set

dik
ik = —
p
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Decomposition Code Example

Adapted from [2]:

for (k=0;k<n-1;k++) {
scale=0.0;
for (i=k;i<n;i++) scale=MAX(scale,abs(r[i]l[k]));
//If singular, skip the transformation:
if (scale == 0.0) {
sing=true;
c[k]=d[k]=0.0;
} else {
//Use scaled wvectors for Householder transformation
for (i=k;i<n;i++) r[il[k] /= scale;
for (sum=0.0,i=k;i<n;i++) sum += SQR(r[il[k1);
sigma=SIGN (sqrt (sum) ,r[k][k]);
r[k] [k] += sigma;
clkl=sigmaxr[k][k];
d[k] = -scale*sigma;
for (j=k+1;j<m;j++) {
for (sum=0.0,i=k;i<n;i++) sum += r[i][kI*r[i][j];
tau=sum/c[k];
for (i=k;i<mn;i++) r[il[j] -= tauxr[il[k];
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QR Decomposition

Once the transformations are complete, we have the Q@ and R matrices:
Q="PFoPy- Py
R=P,Py_;---PoA

Finally, we can solve the original set of linear equations,

A-x=b
e - A =QR, we can substitute:
QR-x=b
R-x=Q"b
e First, find y by multiplying:
Q'b=y

for (i=0;i<n;i++) {
sum = O0.;

for (j=0;j<n;j++) sum += qt[il[jl*b[j];

y[i] = sum;
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QR Decomposition

e Using backsubstitution, solve

Rx=y
for (i=n-1;i>=0;i--) {
sum=b[i];
for (j=i+1;j<mn;j++) sum -= r[il[j1*x[j];

x[il=sum/r[i][i];
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