

Gauss-Jordan Elimination

Stephen D. Butalla & Valerie Kobzarenko August 26, 2019

CSE-5400 Florida Institute of Technology

- Uses [1]
 - Solving sets of linear equations:

```
a_{00}x_0 + a_{01}x_1 + \cdots + a_{0m}x_n = y_1
:
```

```
a_{n0}x_0 + a_{n1}x_1 + \cdots + a_{nm}x_n = y_n
```

or

$$\mathbb{A}\mathbb{X}=\mathbb{Y}$$

where A is an $N \times M$ matrix of coefficients, X is an $N \times 1$ column vector, and Y is an $N \times 1$ column vector

· Finding the inverse of a matrix. I.e.,

$$\mathbb{A}^{-1}, \mbox{ such that } \mathbb{A} \cdot \mathbb{A}^{-1} = \mathbb{I}$$

- Advantages [1]
 - · As efficient as other methods for finding an inverse matrix
 - · Straight-forward and easy to use
- Deficiencies [1]
 - Three times slower when solving linear equations than the LU decomposition method
 - Values on the right hand side (RHS) of the set of equations must be manipulated and stored similtaneously
 - Inherently unstable with roundoff error when using the no-pivot method (the no-pivot method should never be used!)
 - S. Butalla & V. Kobzarenko "Gauss-Jordan Elimination" Aug. 22, 2019

Brief Review of Gauss-Jordan Elimination

 Brief review of how Gauss-Jordan method works for solving a system of linear equations. We take our coefficient matrix and adjoin the RHS vector:

-			
a ₀₀	a_{01}	a ₀₂	<i>Y</i> 0
a ₁₀	a_{11}	a_{12}	<i>y</i> ₁
a ₃₀	a_{31}	a ₃₂	<i>y</i> ₂

• We then perform row operations until we have the matrix in row-echelon form:

1	\tilde{a}_{01}	<i>a</i> ₀₂	$ \tilde{y}_0 $
0	1	\tilde{a}_{12}	\tilde{y}_1
0	0	1	ÿ ₂

and use back-substitution to solve for x_0 , x_1 , and x_2 .

• Reduced row-echelon form is preferred:

1	0	0	\tilde{y}_0^*
0	1	0	\tilde{y}_1^*
0	0	1	\tilde{y}_2^*

and is computationally easy using the algorithm.

Brief Review of Gauss-Jordan Elimination

• To find the inverse of a matrix, we adjoin the identity matrix ${\mathbb I}$ to the RHS:

$$\begin{bmatrix} a_{00} & a_{01} & a_{02} & | & 1 & 0 & 0 \\ a_{10} & a_{11} & a_{12} & 0 & 1 & 0 \\ a_{30} & a_{31} & a_{32} & | & 0 & 0 & 1 \end{bmatrix}$$

- We then perform row operations until the LHS matrix $\equiv \mathbb{I}$

1	0	0	ã ₀₀	\tilde{a}_{01}	ã ₀₂
0	1	0	\tilde{a}_{10}	\tilde{a}_{11}	ã ₁₂
0	0	1	ã ₃₀	\tilde{a}_{31}	ã ₃₂

- The RHS is now our inverse matrix, \mathbb{A}^{-1}
- Caveat: if a row on the LHS contains all zeros, an inverse matrix does not exist

Brief Review of Gauss-Jordan Elimination

- Two methods can be used with the Gauss-Jordan prescription for solving linear equations/finding the inverse of a matrix: with and without pivoting
- The *pivot* or *pivot* element is the diagonal element we will divide the current row by (e.g., $a_{00}, a_{11}, a_{22}, ...)$ [1]
- Gauss-Jordan Prescription
 - Start on row (R) 0, column (C) 0. Divide R0 by a_{00}
 - R0 is subtracted from other rows (e.g., R1, R2, ...). C0 of $\mathbb{A}\equiv$ R0 of \mathbb{I}
 - Divide R1 by a₁₁.
 - RHS of R1 subtracted from other rows (R0, R2, ...)
 - Repeat for remaining rows
- In this procedure, no rows or columns were swapped, which makes this method no pivot

• Problem: dividing an element of the current row by a zero in the diagonal of the row

- Pivoting allows us to strategically place the rows/columns so that getting a 1 on the diagonal is easier
- Partial pivoting: swapping a row/rows (this is easier than full pivoting)
- Full pivoting: swapping columns and rows (need to keep close track of column swapping)
- When pivoting, we need to make sure we don't disturb part of the identity matrix that we have in correct form
- Rule of thumb for selecting a good pivot: pick the highest magnitude element on the diagonal

- Declare int arrays (in [1], we use the VecInt defined type, included in nr3.h) to keep track of the row and column swapping
- A main loop controls the reduction to reduced row-echelon form
- A nested loop looks for the pivot; once found, it swaps rows so the "ideal" pivot is in the correct location
- Divide the current row by the pivot then reduce the rows
- Repeat as necessary until the identity is produced
- Using the "tracking" arrays, restore the columns to the original configurations
- The resulting output will be the solutions to the linear equations

References

[1] W. Press, S. Teukolsky, W. Vetterling, & B. Flannery, *Numerical Recipes: The Art of Scientific Computing*, 2007, Cambridge University Press.

