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Properties

e A powerful technique to solve singular (or nearly singular) equations/matrices
e Capable of diagnosing if a solution obtained through other methods doesn’t

give satisfactory result
o Sometimes SVD may even solve it, or give a better solution

e Method of choice for solving most linear least-squares problem

o Problems where solutions of overdetermined systems are approximated by minimizing the
sum of the squares of the residuals made in the results of every single equation

e It's based on the following theorem of Linear Algebra:

A = U W A

M x N M x N N x N N xN

Where, U is a column-orthogonal matrix, W is a diagonal matrix with singular
values and V is an orthogonal matrix.



Properties (cont.)

e M>N:

o Overdetermined system: More equations than unknowns
o No exact solution (SVD can get “least-squares” solution using pseudo-inverse)

e M<N:

o Undetermined system: Fewer equations than unknowns
o N x M dimensional family of solutions (“solve” on SVD.h gets the shortest solution)

e M=N:

o Equal number of equations and unknowns



Properties (cont.)
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e Matrix V  is orthogonal: N-1 Bl = W1

o Its columns are orthonormal: V.V = | Vit Vin = Okn -

o lIts rows are orthonormal: V.VT = | Jj=0 PEmEN—l

o If k=n(diagon), [1=1; else [1=0
e MatrixU, M-1 B i e 3 — ]

o When M 2 N, column-orthogonal: U.U = | Z Usilisn =08, -

. , O0<n<N-1
o When M < N: i=0
u Wj forj=M,..., N-1 are all zero

m Corresponding columns of U are also zero
m If k=n(diagon), [1=1; else [1=0



SVD Outline

SVD has two maijor steps:

1) Reduce the initial matrix to bidiagonal form using Householder transformation

2) Diagonalize the resulting matrix using QR transformation

% X X X 2X
X: X X X X
X K 2 X 2
X K 2 X 2
X X X X X

Initial matrix

X X
X

X
X X
X

_ Bidiagonal form

X
X

X

X

Diagonal form




Householder Transformation

A Householder matrix is defined as:
H=1-2ww'
where w is a unit vector with |w|? = 1
It has the following properties:
H=HT H'=HT H? = |

If H is multiplied with another matrix, it results in a new matrix with Os in a selected
row/column, based on the value chosen for w.



Applying Householder

We get a bidiagonal matrix by applying Householder transformation on it

successively.
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Householder (cont.)

We can see:

P1A = A1 -> A1S1 = A2 -> P2A2 = A3 -> A\,’S3 = A4 -> .
s> ANSN =B [fM>N, PMAM = B]

We can also write it in terms of A:

A=PA = P'AST=PP,AS"=PT..P BS..5 =P, ...P BS, ..
S

1

[Because H' = H]



The QR Algorithm

After transforming the initial matrix in bidiagonal form, which results in the
following decomposition:

A=PBSwith P=P,...P andS=S§ ... S,

The next step takes B and converts it to the final diagonal form using successive
QR transformations.



QR Decomposition

The QR decomposition is defined as:
A = QR
Where, Q is an orthogonal matrix and R is an upper triangular matrix.
It has the following property:
If RQ = A1, then we can decompose it into A1 = Q1R1, R1Q1 = Az,

In practice, after enough decompositions, A converges to the desired SVD
diagonal matrix W.



QR (cont.)

Because Q is orthogonal, we can redefine A _interms of Q , and A __ only

Rx-1Qx-1 =Ax - Q R Qx-1 = Qx-1Ax - QTx-1Q R Qx-1 =Ax - QT A Q

x-1" "x-1 x-1" "x-1 x-1" "x-1 " "x-1
=A
X

Therefore, A .= Q" _A Q

x-1" "x "x-1

Starting with AO = A, we can describe the entire decomposition of W as:

AO = Q0TA1Q0 = Q0TQ1T‘A2(21Q0 = e = QOTQ1T QWTWQW Q1Q0



SVD Algorithm

Combining all the steps it looks like the following:

e Using Householder transformation: A= PBS [Step 1]

e Using QR decomposition: p= 0l0".0'wo. .00, [Step 2]
e Substituting Step 2 into 1:

A = PQOTQ]T...QiWQW“'QlQOS

e With U being derived from: U= PQIQ!..0f
e AndV'being derived from:  y’ =0 .00,

Results in the final SVD: A=UWV!



Applications of SVD

e Calculation of the (pseudo) inverse

e Solving a set of homogeneous linear equations, i.e., Ax=Db

e The rank of matrix A can be calculated from SVD by the number of nonzero
singular values

e The range of a matrix A is the left singular vectors of U corresponding to the
non-zero singular values

e The null space of matrix A is the right singular vectors of V corresponding to
the zeroed singular values



Applications (cont.)
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Applications (cont.)

e SVD can tell how close a square matrix A is to be singular
e The ratio of the largest singular value to the smallest singular value tells how
close a matrix is to be singular:

oy, O s 0D
0 Oy +-- 0 01

e Ais singular if ¢ is infinite
e Ais ill-conditioned if ¢ is too large (machine dependent)



Applications (cont.)

e SVD can be used in data fitting problem

e |t can be used in image processing
o Noise reduction
o Image smoothing
o Image compression

e It can be used for noise reduction in signal processing as well

o If matrix A represents a noisy signal, then we can consider the small singular values as noises
and discard those.
o Thus the rank-k matrix A, represents a filtered signal with less noise
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