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Properties
● A powerful technique to solve singular (or nearly singular) equations/matrices
● Capable of diagnosing if a solution obtained through other methods doesn’t 

give satisfactory result
○ Sometimes SVD may even solve it, or give a better solution

● Method of choice for solving most linear least-squares problem
○ Problems where solutions of overdetermined systems are approximated by minimizing the 

sum of the squares of the residuals made in the results of every single equation

● It’s based on the following theorem of Linear Algebra:

AM x N  =  UM x N WN x N VT
N x N

Where, U is a column-orthogonal matrix, W is a diagonal matrix with singular 
values and V is an orthogonal matrix.



Properties (cont.)
AM x N  =  UM x N WN x N VT

N x N

● M > N:
○ Overdetermined system: More equations than unknowns
○ No exact solution (SVD can get “least-squares” solution using pseudo-inverse)

● M < N:
○ Undetermined system: Fewer equations than unknowns
○ N x M dimensional family of solutions (“solve” on SVD.h gets the shortest solution)

● M = N:
○ Equal number of equations and unknowns



Properties (cont.)
AM x N  =  UM x N WN x N VT

N x N

● Matrix VN x N is orthogonal:
○ Its columns are orthonormal: VT.V = I
○ Its rows are orthonormal: V.VT = I
○ If k=n(diagon), ẟ=1; else ẟ=0

● Matrix UM x N 
○ When M ≥ N, column-orthogonal: UT.U = I
○ When M < N:

■ Wj for j = M,… , N-1 are all zero
■ Corresponding columns of U are also zero
■ If k=n(diagon), ẟ=1; else ẟ=0



SVD Outline
SVD has two major steps:

1) Reduce the initial matrix to bidiagonal form using Householder transformation
2) Diagonalize the resulting matrix using QR transformation

Initial matrix  Bidiagonal form Diagonal form



Householder Transformation
A Householder matrix is defined as: 

H  =  I - 2wwT

where w is a unit vector with |w|2 = 1

It has the following properties:

H = HT H-1 = HT H2 = I

If H is multiplied with another matrix, it results in a new matrix with 0s in a selected 
row/column, based on the value chosen for w.



Applying Householder
We get a bidiagonal matrix by applying Householder transformation on it 
successively.



Householder (cont.)
We can see:

P1A = A1  ->  A1S1 = A2  ->  P2A2 = A3  -> A3S3 = A4 ->  …  

… -> ANSN = B [If M > N, PMAM = B]

We can also write it in terms of A:

A = P1
TA1 =  P1

TA2S1
T =  P1

TP2
TA3S1

T = P1
T … PM

TBSN
T … S1

T = P1 … PMBSN … 
S1

[Because HT = H]



The QR Algorithm
After transforming the initial matrix in bidiagonal form, which results in the 
following decomposition:

A = PBS with P = P1… PN and S = SN … S1

The next step takes B and converts it to the final diagonal form using successive 
QR transformations.



QR Decomposition
The QR decomposition is defined as:

A  =  QR

Where, Q is an orthogonal matrix and R is an upper triangular matrix.

It has the following property:

If RQ = A1, then we can decompose it into A1 = Q1R1,  R1Q1 = A2, …

In practice, after enough decompositions, Ax converges to the desired SVD 
diagonal matrix W.



QR (cont.)
Because Q is orthogonal, we can redefine Ax in terms of Qx-1 and Ax-1 only

Rx-1Qx-1 = Ax  ->  Qx-1Rx-1Qx-1 = Qx-1Ax  -> QT
x-1Qx-1Rx-1Qx-1 =Ax  ->  QT

x-1Ax-1Qx-1 
=Ax

Therefore,  Ax-1 =  QT
x-1AxQx-1

Starting with A0 = A, we can describe the entire decomposition of W as:

A0  =  Q0
TA1Q0  =  Q0

TQ1
TA2Q1Q0  =  …  =  Q0

TQ1
T … Qw

TWQw … Q1Q0



SVD Algorithm
Combining all the steps it looks like the following:

● Using Householder transformation: A = PBS [Step 1]
● Using QR decomposition: [Step 2]
● Substituting Step 2 into 1:

A

● With U being derived from: 
● And VT being derived from:

Results in the final SVD:  A = UWVT



Applications of SVD
● Calculation of the (pseudo) inverse
● Solving a set of homogeneous linear equations, i.e., Ax = b
● The rank of matrix A can be calculated from SVD by the number of nonzero 

singular values
● The range of a matrix A is the left singular vectors of U corresponding to the 

non-zero singular values
● The null space of matrix A is the right singular vectors of V corresponding to 

the zeroed singular values



Applications (cont.)

1 0 0 0 2

0 0 3 0 0    

0 0 0 0 0    =

0 4 0 0 0



Applications (cont.)
● SVD can tell how close a square matrix A is to be singular
● The ratio of the largest singular value to the smallest singular value tells how 

close a matrix is to be singular:

● A is singular if c is infinite
● A is ill-conditioned if c is too large (machine dependent)



Applications (cont.)
● SVD can be used in data fitting problem
● It can be used in image processing

○ Noise reduction
○ Image smoothing
○ Image compression

● It can be used for noise reduction in signal processing as well
○ If matrix A represents a noisy signal, then we can consider the small singular values as noises 

and discard those. 
○ Thus the rank-k matrix Ak represents a filtered signal with less noise
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