Singular Value Decomposition (SVD)

Mahbuba Perveen

September 22, 2020 CSE-5400

Properties

- A powerful technique to solve singular (or nearly singular) equations/matrices
- Capable of diagnosing if a solution obtained through other methods doesn't give satisfactory result
 - Sometimes SVD may even solve it, or give a better solution
- Method of choice for solving most linear least-squares problem
 - Problems where solutions of overdetermined systems are approximated by minimizing the sum of the squares of the residuals made in the results of every single equation
- It's based on the following theorem of Linear Algebra:

$$\mathbf{A}_{\mathsf{M}\times\mathsf{N}} = \mathbf{U}_{\mathsf{M}\times\mathsf{N}} \mathbf{W}_{\mathsf{N}\times\mathsf{N}} \mathbf{V}_{\mathsf{N}\times\mathsf{N}}^{\mathsf{T}}$$

Where, **U** is a column-orthogonal matrix, **W** is a diagonal matrix with singular values and **V** is an orthogonal matrix.

Properties (cont.)

$$\mathbf{A}_{\mathsf{M}\times\mathsf{N}} = \mathbf{U}_{\mathsf{M}\times\mathsf{N}} \mathbf{W}_{\mathsf{N}\times\mathsf{N}} \mathbf{V}^{\mathsf{T}}_{\mathsf{N}\times\mathsf{N}}$$

- M > N:
 - Overdetermined system: More equations than unknowns
 - No exact solution (SVD can get "least-squares" solution using pseudo-inverse)
- M < N:
 - Undetermined system: Fewer equations than unknowns
 - N x M dimensional family of solutions ("solve" on SVD.h gets the shortest solution)
- M = N:
 - Equal number of equations and unknowns

Properties (cont.)

 $\mathbf{A}_{\mathsf{M}\times\mathsf{N}} = \mathbf{U}_{\mathsf{M}\times\mathsf{N}} \mathbf{W}_{\mathsf{N}\times\mathsf{N}} \mathbf{V}_{\mathsf{N}\times\mathsf{N}}^{\mathsf{T}}$

- Matrix $V_{N \times N}$ is orthogonal:
 - Its *columns* are orthonormal: $V^T V = I$
 - Its *rows* are orthonormal: $V.V^T = I$
 - If k=n(diagon), \Box =1; else \Box =0
- Matrix U_{M x N}
 - When $M \ge N$, column-orthogonal: $U^T U = I$
 - When M < N:
 - W_i for j = M,..., N-1 are all zero
 - Corresponding columns of U are also zero
 - If k=n(diagon), □=1; else □=0

$$\sum_{j=0}^{N-1} V_{jk} V_{jn} = \delta_{kn} \qquad \begin{array}{l} 0 \le k \le N-1 \\ 0 \le n \le N-1 \end{array}$$

$$\sum_{i=0}^{M-1} U_{ik} U_{in} = \delta_{kn} \qquad \begin{array}{l} 0 \le k \le N-1 \\ 0 \le n \le N-1 \end{array}$$

SVD Outline

SVD has two major steps:

- 1) Reduce the initial matrix to *bidiagonal* form using *Householder transformation*
- 2) Diagonalize the resulting matrix using QR transformation

Householder Transformation

A Householder matrix is defined as:

 $H = I - 2ww^{T}$

where **w** is a unit vector with $|w|^2 = 1$

It has the following properties:

 $\mathbf{H} = \mathbf{H}^{\mathsf{T}} \qquad \mathbf{H}^{-1} = \mathbf{H}^{\mathsf{T}} \qquad \mathbf{H}^{2} = \mathbf{I}$

If H is multiplied with another matrix, it results in a new matrix with 0s in a selected row/column, based on the value chosen for w.

Applying Householder

We get a bidiagonal matrix by applying Householder transformation on it successively.

					$\int x$	x	x	<i>x</i>	x		$\int x$	x	x	x	x			x	x								
					<i>x</i>	x	x	x	x			x	x	x	x				x	x	x	x					
				P_1	x	x	x	x	x	\rightarrow		x	x	x	$x \leq$	$S_1 \rightarrow$	P_2		x	x	x	x	\rightarrow				
					x	x	x	x	x			x	x	x	x				x	x	x	x					
					x	x	x	x	x			x	x	x	x			_	x	x	x	x					
							Μ						\mathbf{M}_{1}							M_2							
$\int x$	x			-	1				ſ	\overline{x}	x					$\int x$	x				1		$\int x$	x]
	x	x	x	x							x	x	x	x			x	x						x	x		
	x	x x	x x	x x	S ₂	\rightarrow .		\rightarrow	P_m		x	x x	x x	x x	\rightarrow		x	x x	x	x	S_n	$_{i} \rightarrow$		x	x x	x	
	x	x x x	x x x	x x x	S ₂	\rightarrow .		\rightarrow	P_m		x	x x	x x	x x x	\rightarrow		x	x x	x x	x x	S_n	$_{i} \rightarrow$		x	x x	x x	x
	x	x x x x	x x x x	x x x x x	S ₂	\rightarrow .		\rightarrow	P_m		x	x x	x x	x x x x x	\rightarrow		x	x x	x x	x x x	S_n	$_{i} \rightarrow$		x	x x	x x	x x

Householder (cont.)

We can see:

$$\mathbf{P}_{1}\mathbf{A} = \mathbf{A}_{1} \rightarrow \mathbf{A}_{1}\mathbf{S}_{1} = \mathbf{A}_{2} \rightarrow \mathbf{P}_{2}\mathbf{A}_{2} = \mathbf{A}_{3} \rightarrow \mathbf{A}_{3}\mathbf{S}_{3} = \mathbf{A}_{4} \rightarrow \dots$$
$$\dots \rightarrow \mathbf{A}_{N}\mathbf{S}_{N} = \mathbf{B} \quad [\text{If } M > N, P_{M}A_{M} = B]$$

We can also write it in terms of A:

$$\mathbf{A} = \mathbf{P}_1^{\mathsf{T}} \mathbf{A}_1 = \mathbf{P}_1^{\mathsf{T}} \mathbf{A}_2^{\mathsf{S}} \mathbf{S}_1^{\mathsf{T}} = \mathbf{P}_1^{\mathsf{T}} \mathbf{P}_2^{\mathsf{T}} \mathbf{A}_3^{\mathsf{S}} \mathbf{S}_1^{\mathsf{T}} = \mathbf{P}_1^{\mathsf{T}} \dots \mathbf{P}_M^{\mathsf{T}} \mathbf{B} \mathbf{S}_N^{\mathsf{T}} \dots \mathbf{S}_1^{\mathsf{T}} = \mathbf{P}_1 \dots \mathbf{P}_M^{\mathsf{B}} \mathbf{B} \mathbf{S}_N^{\mathsf{T}} \dots$$
$$\mathbf{S}_1^{\mathsf{T}} = \mathbf{P}_1^{\mathsf{T}} \mathbf{P}_1^{\mathsf{T}} \mathbf{P}_2^{\mathsf{T}} \mathbf{A}_3^{\mathsf{T}} \mathbf{S}_1^{\mathsf{T}} = \mathbf{P}_1^{\mathsf{T}} \dots \mathbf{P}_M^{\mathsf{T}} \mathbf{B} \mathbf{S}_N^{\mathsf{T}} \dots \mathbf{S}_1^{\mathsf{T}} = \mathbf{P}_1^{\mathsf{T}} \dots \mathbf{P}_M^{\mathsf{T}} \mathbf{B} \mathbf{S}_N^{\mathsf{T}} \dots$$

[Because $H^T = H$]

The QR Algorithm

After transforming the initial matrix in bidiagonal form, which results in the following decomposition:

$$A = PBS$$
 with $P = P_1 \dots P_N$ and $S = S_N \dots S_1$

The next step takes **B** and converts it to the final diagonal form using successive QR transformations.

QR Decomposition

The QR decomposition is defined as:

$$A = QR$$

Where, **Q** is an orthogonal matrix and **R** is an upper triangular matrix.

It has the following property:

If RQ = A₁, then we can decompose it into A₁ = Q₁R₁, R₁Q₁ = A₂, ...

In practice, after enough decompositions, A_x converges to the desired SVD diagonal matrix **W**.

QR (cont.)

Because Q is *orthogonal*, we can redefine A_x in terms of Q_{x-1} and A_{x-1} only

$$R_{x-1}Q_{x-1} = A_x \rightarrow Q_{x-1}R_{x-1}Q_{x-1} = Q_{x-1}A_x \rightarrow Q_{x-1}^TQ_{x-1}R_{x-1}Q_{x-1} = A_x \rightarrow Q_{x-1}^TA_{x-1}Q_{x-1}$$
$$= A_x$$

Therefore, $\mathbf{A}_{x-1} = \mathbf{Q}_{x-1}^{\mathsf{T}} \mathbf{A}_{x} \mathbf{Q}_{x-1}$

Starting with $A_0 = A$, we can describe the entire decomposition of W as:

$$A_0 = Q_0^T A_1 Q_0 = Q_0^T Q_1^T A_2 Q_1 Q_0 = \dots = Q_0^T Q_1^T \dots Q_w^T W Q_w \dots Q_1 Q_0$$

SVD Algorithm

Combining all the steps it looks like the following:

- Using Householder transformation: A = PBS [Step 1]
- Using QR decomposition: $B = Q_0^T Q_1^T \dots Q_w^T W Q_w \dots Q_1 Q_0$ [Step 2]
- Substituting Step 2 into 1:

$$\mathbf{A}^{T} = P Q_0^T Q_1^T \dots Q_w^T W Q_w \dots Q_1 Q_0 S$$

- With U being derived from: $U = PQ_0^T Q_1^T \dots Q_w^T$
- And V^T being derived from: $V^T = Q_w ... Q_1 Q_0 S$

Results in the final SVD: $A = UWV^T$

Applications of SVD

- Calculation of the (pseudo) inverse
- Solving a set of homogeneous linear equations, i.e., Ax = b
- The rank of matrix A can be calculated from SVD by the number of nonzero singular values
- The range of a matrix A is the left singular vectors of U corresponding to the non-zero singular values
- The null space of matrix A is the right singular vectors of V corresponding to the zeroed singular values

Applications (cont.)

Applications (cont.)

- SVD can tell how close a square matrix A is to be singular
- The ratio of the largest singular value to the smallest singular value tells how close a matrix is to be singular:

$$A = U \begin{bmatrix} \sigma_1 & 0 & \cdots & 0 \\ 0 & \sigma_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \sigma_k \end{bmatrix} V^{\mathsf{T}} \qquad \qquad c = \frac{\sigma_1}{\sigma_k}$$

- A is singular if **c** is infinite
- A is ill-conditioned if **c** is too large (machine dependent)

Applications (cont.)

- SVD can be used in data fitting problem
- It can be used in image processing
 - Noise reduction
 - Image smoothing
 - Image compression
- It can be used for noise reduction in signal processing as well
 - If matrix A represents a noisy signal, then we can consider the small singular values as noises and discard those.
 - Thus the rank-k matrix A_k represents a filtered signal with less noise

References

- Golub & Van Loan Matrix Computations; 3rd Edition, 1996
- Golub & Kahan Calculating the Singular Values and Pseudo-Inverse of a Matrix; SIAM Journal for Numerical Analysis; Vol. 2, #2; 1965
- An Example of QR Decomposition, Che-Rung Lee, November 19, 2008
- Press, William H., and William T. Vetterling. Numerical Recipes. Cambridge Univ. Press, 2007.