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Inverse Parabolic Interpolation

e A Golden section search is designed to handle the worst possible case of
function minimization

e However, generally, sufficiently smooth functions are nicely parabolic near to
the minimum

e Therefore, the parabola fitted through any three points may take us in a single
leap to the minimum, or at least very near it.



Inverse Parabolic Interpolation (cont.)

e The formula for the abscissa x, that is the minimum of a parabola through
three points f(a), f(b) and f(c) is:

L (b—a)’[f(b) = f(O)] = (b —c)*[f(b) — f(a)]

N =il——

2 (b=a)lf(b) = f(O)]=(b=0)f(D)—= fla)]

e This formula fails only if the three points are collinear
o The denominator becomes zero = the minimum of the parabola is infinitely far away

e However, it is possible for x obtained using this equation to be either the

parabolic maximum or minimum
o Therefore, minimization scheme depending solely on this equation is not practical
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Figure 10.3.1. Convergence to a minimum by inverse parabolic interpolation. A parabola (dashed line) is
drawn through the three original points 1,2,3 on the given function (solid line). The function is evaluated
at the parabola’s minimum, 4, which replaces point 3. A new parabola (dotted line) is drawn through
points 1.4,2. The minimum of this parabola is at 5, which is close to the minimum of the function.



Brent's Method



Brent's Method

e [t's a hybrid method

e It combines root bracketing, bisection and inverse quadratic/parabolic
interpolation

e The method relies on a sure-but-slow technique, like golden section search,
when the function is not cooperative, but switches over to inverse quadratic
interpolation when the function allows

e Careful attention is given when the function is being evaluated very near to
the roundoff limit of inverse parabolic interpolation equation

e It's very robust in detecting a cooperative vs noncooperative function



Brent's Method
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Figure: Brent’'s method for finding minima



Brent's Method

e \We start with the initial interval [a,b] and compute the intersection point x,
o x,=(a+b)2
e Then we compute a parabola that exactly contains the three points (a,f(a)),
(b,f(b)) and (x,,f(x,))
o The minimum of this parabola can be calculated and is denoted with x,
e Then we replace b with x, and again compute a parabola through our new
points
e The method is repeated until we reach convergence



Example

function f interpolating parabola and a bracketing triplet of abscissas (a b c)

a<b<c & f(a) >f(b) <f(C) Brent's Method

(123)(124)(125)




Powell's Method



Line Methods in Multidimensions

We know (10.2 —10.4) how to minimize a function of one variable.

e If we start at a point P in N-dimensional space, and proceed from there in
some vector direction n, then any function of N variables f(P) can be
minimized along the line n by our one-dimensional methods.

e Methods: differ in choice of next direction n for next step.

e Black-box routine (linmin) minimizes a function along 1 direction

linmin: Given as input the vectors P and n, and the

function f, find the scalar A that minimizes f(P +
An). Replace P by P + An. Replace n by An. Done.




A simple method for general N-d minimization

Take the unit vectors €, €, ---, € asa set of directions.

We start at an initial guess x,

Then take our first optimization direction, represented by the arrow leaving x,
Using linmin, move along the first direction to its minimum

Then from there along the second direction to its minimum

Keep cycling through the whole set of directions as many times as necessary
Stop when the function converges/stops decreasing



Figure: Finding minima in multidimensions



(cont.)

e Drawback:
o For some functions this simple method will be very inefficient
o Consider a function of two dimensions whose contour map (level lines) happens to define a
long, narrow valley at some angle to the coordinate basis vectors.
o (example figure in next slide)

o Might fail: conjugate directions
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Direction Set (Powell’'s) Methods in Multidimensions

e We need a better set of directions than the e.’s
e All direction set methods consist of prescriptions for updating the set of
directions as the method proceeds

e They attempt to come up with a set that either:
o Includes some very good directions that will take us far along narrow valleys
o  Or, includes some number of non-interfering directions
m Special property: minimization along one is not spoiled by subsequent minimization
along another
m Thus, interminable cycling through the set of directions can be avoided



(cont.)

e Conjugate Direction
o First, note that if we minimize a function along some direction u, then the gradient of the
function must be perpendicular to u at the line minimum; if not, then there would still be a
nonzero directional derivative along u.

e Next take some particular point P as the origin of the coordinate system with
coordinates x.
e Then any function f can be approximated by its Taylor series
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(cont.)
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In the approximation of (10.7.1), the gradient of f is easily calculated as

Vf=A.-x—b (10.7.3)



(cont.)

The gradient Vf changes as we move along some direction

S(Vf)=A-(6x) (10.7.4)

Suppose that we have moved along some direction u to a minimum and now
propose to move along some new direction v. The condition that motion along v
not spoil our minimization along u is just that the gradient stay perpendicular to u,
i.e., that the change in the gradient be perpendicular to u. By equation (10.7.4) this
IS just

O=u-6(Vf)=u-A.v (10.7.5)



(cont.)

0=u8(VF)=usAsv (10.7.5)

When (10.7.5) holds for two vectors u and v, they are said to be conjugate. When
the relation holds pairwise for all members of a set of vectors, they are said to be a
conjugate set.



Powell’s Quadratically Convergent Method

Powell first discovered a direction set method that does produce N
mutually conjugate directions.

Steps:
1.Initialize the set of directions u; to the basis vectors,
Wi = €5 =10, ...,N—1

2.Then repeat the following steps until function stops decreasing:
> Save starting point as Py,.

> Fori=0,...,,N-1, move P; to the minimum along direction u; and call this
point P;, .

 Fori=0,...,,N-2,setu; « Ujyq.
> Set Upn-1 €< PN-PO'
" Move P to the minimum along direction uy_4 and call this point P,,.



Example with N=2

1. up=ey, ui=eq

2. inintialize P,

Repeat (until function stops decreasing){

Move P to the minimum along u0, set P1=Py+ A, - U,
Move P to the minimum along ul, set P,=P;+ A; ‘U4
set uy =u,

setu, =P,-P,

Move P, to the minimum along ul, set P,=P,+ A, ‘u,

~ N o u s



Problem of Powell’'s Method

“he procedure of throwing away at each stage, u, in favor of P -

P, tends to produce sets of directions that “fold up on each other” and
become linearly dependent. Once this happens, the procedure finds the
minimum of the function f only over a subspace of the full N-
dimensional case; in other words, it gives the wrong answer.

For previous example, if u; =P,-P, from step 6 has the same direction
as u, from step 5, linearly dependence happens for latter loops.



Discarding the Direction of Largest Decrease

The basic idea of modified Powell’s method is still to take Py-P as a
new direction;

For a valley whose long direction is twisting slowly, this direction is likely
to give us a good run along the new long direction. The change is to
discard the old direction along which the function f made its largest
decrease. This seems paradoxical, since that direction was the best of
the previous iteration. However, it is also likely to be a major
component of the new direction that we are adding, so dropping it gives
us the best chance of avoiding a buildup of linear dependence.



(cont.)

There are a couple of exceptions to this basic idea. Sometimes it is better not to add
a new direction at all. Define

fo=f®Po) Sfn=fPn) Je=[fQPN—-Po) (10.7.7)

Here fg is the function value at an “extrapolated” point somewhat further along the
proposed new direction. Also define Af to be the magnitude of the largest decrease
along one particular direction of the present basic procedure iteration. (Af is a
positive number.) Then:

1. If fg = f,, then keep the old set of directions for the next basic procedure,
because the average direction Py-P,, is all played out.

2. 1f (fo-2fn+fE) [(fo-fn)- Af = (fo-fE)zAf, then keep the old set of directions for
the next basic procedure, because either (i) the decrease along the average direction
was not primarily due to any single direction’s decrease, or (ii) there is a substantial
second derivative along the average direction and we seem to be near to the bottom
of its minimum.
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