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filter (k = 0). The phase response becomes more nonlinear as k 
varies from 0 to 1. 

Figs. I and 8 show the amplitude and phase responses of 
third-order TRXY filters varying from the elliptic filter to the 
Bessel rational filter of (7) with m =2, n =3, (Y = p=O, and 
y=OS. The phase response improves as k varies from 0 to 1. 
These results are similar to those of Figs. 1 and 2. The Bessel 
rational filter was not frequency scaled in this case. 

Transitional TRXY filters are important because they provide 
the filter designer a compromise between the desirable properties 
of the X filter and those of the Y filter. By proper choice of X 
and Y filters the designer is offered a wide selection of amplitude 
and phase responses. 

REFERENCES 

111 

VI 

I31 

t41 

[51 

[61 

[71 

PI 

191 

WI 

[,,I 

Y. Peless and T. Murakami, “Analysis and synthesis of transitional 
Butterworth-Thomson filters and bandpass amplifiers,” RCA Reo., vol. 
18, pp. 60-94, 1957 
J. R. Johnson, D. E. Johnson, and R. J. LaCama, “Transitional filters,” 
1978 IEEE Int. Symp. Circui& Syst. Proc., pp. 434-435, 1978. 
J. Attikiouzel and Dang Tan Phuc, “On transitional ultraspherical-ul- 
traspherical filters,” Prof. IEEE, vol. 66, pp. 703-706, June 1978. 
L. Weinberg, Nehvork Analysis and Synthesis. New York: McGraw- 
Hill, 1962. 
D. E. Johnson, J.’ R. Johnson, and M. D. Kashefi, “Ultraspherical 
rational filters,” IEEE Tram. Circuit Themy, vol. CT-20, pp. 596-599, 
Sept. 1973. 
J. R. Johnson, D. E. Johnson, P. W. Boudra, Jr., and V. P. Stokes, 
“Filters using Bessel-type polynomials,” IEEE Tram. Circuits Syst., vol. 
CAS-23, pp. 96-99, Feb. 1976. 
A. Budak, “A maximally flat phase and controllable magnitude ap- 
proximation,” IEEE Trans Circuit Theory, vol. CT-12, p. 279, June 
1965. 
D. E. Johnson, J. R. Johnson, and A. Eskandar, “A modification of the 
Bessel filter,” IEEE Trans. Circuib Syst., vol. CAS-22, pp. 645-648, 
Aug. 1915. 
J. Neirynck, “The attenuation phase compromise in the polynomial 
case,” Proc. I972 NATO Advanced Stu+ Inst. Network and Signal 
Theory, 1973. 
J.R. Martinez, “Transfer functions of generalized Bessel polynomials,” 
IEEE Tram Circuits Syst., vol. CAS-24, pp. 325-328, June 1917. 
B. D. Rakovich, M. V. Popovich, and B. S. Drakulich, “Minimum 
phase transfer functions providing a compromise between phase and 
amplitude approximation,” IEEE Tram. Circuirs Syst., vol. CAS-24, pp. 
718-724, Dec. 1977. 

A New Algorithm for Computing a Single Root of a 
Real Continuous Function 

C. J. F. RIDDERS 

Absrrrrct-A fast and simple iterative’ method is proposed for the 
determination of a single real root of a real continuous function. The idea 
is based upon linearizing the original function whereafter the regrrla f&i is 
applied to tbis modified function which leads to a very simple algorithm. 
The rate of convergence is shown to be quadratic or better. 

I. METHOD 

Let the function be represented by F(x). We create a new 
function H(x) = 4x)-e - in such a way that for three equidis- 
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tant x values x0, x, an x2 the following requirement is met: 

H,-2H,+ H,,=O, with H,, = H(x,). 

Let d-x2- x1 = x, - x0 and Fo.F2 < 0, then from (1) it follows 
F2*eZmd-2F,.emd+ F,=O 

with the analytical solution 

emd- F~-sign(Fo)** 

F2 
9 with W= Ff - FoFF (3) 

The factor sign ( Fo) is deduced from the conditions W > 0 and 
emd > 0. The next step is the application of the regulu falsi to the 
points (x,, H,) and (x2, H2), which leads to the expression 

x,H,.- x2H, d x3= 
Hz-H, =x’- H2/H,-1 (4) 

where xg is the first approximation of the root of F(x) and 
H2/ H, = F2.ed/F,. Equation (4) can be written in the form 

F,+d 
x3 = x1 + sign( F,). m . 

To avoid the factor sign (F,) we divide numerator and de- 
nominator by F. and obtain the final expression for the algo- 
rithm: 

x,=x,+d. WFo 

$W~O~~-WFO . 
(6) 

When Fo.F2 < 0, x3 will be on the interval [x0,x2] so convergence 
is guaranteed. 

After computation of the first iterate x3 we build up a new 
interval consisting of xj and one of the other remaining x values 
in such a way that F3.Fn <0 (n =0,1,2) in order to be sure that 
the next iterate will remain on the starting interval. The proce- 
dure is depicted in Fig. 1. 

The described method can even be used when F,= F, or 
F, = F2 as can accidentally happen. 

Suppose F(x)= x3- x - 5 and we choose [ - 1,3] as the start- 
ing interval. 

F,= F,= -5; F,= 19. 
For x3 we compute the value 1.9128, which is already fairly 

close to the root 1.9@4160859+ . . . 
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Fig. 2. 

As F3 > 0 we decide to take [x1,x3] as the next interval of 
computation (Fig. 2). 

The procedure can be terminated when a given accuracy is 
obtained. 

II. RATE OF CONVERGENCE 

Let e,, = x, - r be the actual error between x, and the root r. 
By means of a Taylor expansion in the vicinity of r we get 
F,-e,,f+ezg+e,fh with f=F’(r), g=tF”(r), and h=iF”‘(r) 
-d= e, - e, = e, - e, so the error at the first iterate is 

F(x)=(tanx)‘an”- ld on [1.3,1.4] 0.n [0, 1.51 
x,=1.352.,- x,=0.75..* 

1.356.+. 1.12. *. 
1.3547099.. * 1.31. . * 
1.354710442 1.40**~ 

1.357.. . 
1.35429. . . 
1.354710756 
1.354710442. 

F(x)= sinx on [10,280], x in degrees. A trivial example. 

x3 = 254.50. . . 
177.09.. . 
179.97. . . 
179.99995. . . 
180. 

IV. CONCLUSION 

The proposed algorithm offers a good rate of convergence and 
is suitable especially on those cases where F(x) is not strictly 
monotone. The method can be used when other three-point 
iterative methods (e.g., exponential or hyperbolic) fail. 

Monotonic Magnitude Response with Equal Ripple 
Sensitivity 

D. M. RABRENOVIk AND i. J. ALEKSIk 

Abstmct-Sensitivity of all pole filters with critical monotonic (CM) 
magnitude characteristic is oplimimd in a mini-max sense+ and a new 
elBs3 of trallsitional monotonic filters is introduced. comparison with other 
monotonic filters is also given. 

which can be derived from (5). This expression is valid for all 
possible shapes of F(x). 

W=ef(f+e,g+efh)2- e0e2(f+ e0g+ &)(f+ e2g+ e3). 
After- some adequate approximations we get 

W-(e,-eo)2.[f2+g2(ef+2 eoeI-e~)+2e,fg+2fh(eI-eo)‘]. 

When-F,+O, et-O, and e:<<(e,ea] so 

Although different aspects of circuit sensitivity have been 
extensively treated in the literature, much attention has not been 
paid in the existing literature to the problem of sensitivity 
minimization by an appropriate choice of the magnitude char- 
acteristic. 

1 g2-2fh 
e3-T eoe’e2---- ’ f2 

III. EXAMPLES 

In order to concentrate on the shape of the magnitude char- 
acteristic we shall consider the well-known expression for the 
summed sensitivity of the magnitude response of an RC active 
network with tracking components [l]. Equation (1) relates the 
variation of the logarithmic gain Au to the slope of the magni- 
tude response and the relative tolerances of the passive elements 
AR/R and AC/C: 

(1) 

F(x)=xe”-lOon[-10,101 on [ - 100, 1001 
x,=0.06* f. x,=6.10-*’ 

2.75.. . 7.74. ’ . 
1.71.e. 2.38. -. 
1.746. * f 1.709,. * 
1.74552798.. . 1.7458. . . 
1.745528003 1.745527990. * . 

1.745528003 

which for AR/R =AC/C reduces to 

Aa=2AR * 44 
R IAl dw =kD (2) 
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