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Abstract. Image-based fluid motion estimation is of interest to science and en-
gineering. Flow-estimation methods often rely on physics-based or spline-based
parametric models, as well as on smoothing regularizers. The calculation of
physics models can be involved, and commonly used 2nd-order regularizers can
be biased towards lower-order flow fields. In this paper, we propose a local para-
metric model based on a linear combination of complex-domain basis flows, and
a resulting global field that is produced by blending together local models using
partition-of-unity. We show that the global field can be regularized to an arbitrary
order without bias towards specific flows. Additionally, the blending approach to
fluid-motion estimation is more flexible than competing spline-based methods.
We obtained promising results on both synthetic and real fluid data.
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1 Introduction

Estimating fluid motion from images is interesting to many science and engineering
applications, and has received renewed attention from the computer vision commu-
nity [2,7]. Fluid-flow estimation differs from the similar optical-flow estimation problem
in a number of ways [5]. First, general optical flow fields are often unstructured, while
fluid flows usually result from continuous physical processes. As a result, parametric
models are common in recent works that produce smooth and accurate results [3]. Sec-
ondly, smoothness regularizers in variational optical-flow methods are often based on
first-order derivatives [6]. These methods are thus biased towards piecewise-linear flow
fields limiting their application to fluid flows. This limitation can be addressed by us-
ing a second-order regularizer based on the flow fields’ divergence and rotation [2,3,7].
However, it is unclear how higher-order regularizers can be designed. In this paper, we
propose a parametric model that is robust to noise, is able to represent complicated tur-
bulence, and has a regularizer that is not biased to lower-order flow fields.

Parametric models of fluid flows can be classified into two main groups. The first
group are based on physics priors of fluid dynamics, and integrate temporal informa-
tion into the motion estimation process, producing temporarily consistent results [5].
However, flow fields described by these models are restricted by physics laws, and,
as observed in [7], these methods rely on rather involved minimization processes. The
second group of methods do not make explicit use of fluid dynamics, but estimate fluid
motion solely based on the apparent image deformation, and rely on simple smooth-
ness heuristics to regularize the estimation results [2,12,7]. This group of methods is
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closely related to the classical problem of optical-flow estimation and nonrigid image
registration. A recent work by Isambert et al. [7] produced superior results on turbulent
flows, using locally supported vector splines, and representing flows using a multi-scale
scheme. However, spline-model optimization can be computationally expensive when
dense control-point grids are used, and it is sensitive to local minima. On the other hand,
the use of sparse control points can oversmooth estimated flow fields. Most importantly,
exact minimization of the functional proposed by Isambert et al. [7] leads to thin-plate
splines. This means that their model is still biased to certain lower-order flow fields.

To address the above problems, we introduce a simple parametric model, that is
robust yet flexible to represent turbulent flow fields, and can be regularized through a
convex functional. Our approach belongs to the second group of methods and makes
no assumptions about the fluid’s physics properties. Similar to [7], we use a locally
supported parametric model to represent a flow field. Instead of using splines and in-
terpolating the motion between control points [7], we use a linear model of orthogonal
basis flows represented as holomorphic functions, and approximate the global field by
blending the local models using partition-of-unity (Section 2). The use of holomor-
phic models leads to simpler handling of important fluid-flow properties such as diver-
gence and rotation, and allows us to regularize a fluid flow unbiasedly, by penalizing
inconsistencies between neighboring local flows instead of their spatial gradients [7,2].
Additionally, the resulting energy functional is convex, and can be minimized through
gradient-descent methods (Section 3). We tested our method on motions from both
synthetic and real fluid data (Section 4). Finally, we point out the limitations of our
holomorphic flow-field model, and directions for future work (Section 5).

2 Higher-Order Model of Flow Field

Parametric models provide a flexible yet compact flow-field representation. In this sec-
tion, we represent local flow fields using holomorphic complex functions. Local holo-
morphic models have been previously used to represent singular points in flow fields [8].
Here, we extend these functions to represent both singular and smooth flow regions.

2.1 Local Flow Field Model

We commence by representing a 2-D vector-flow field as a complex-valued function
F (z) defined on a finite domain Ω ∈ C [8,11]. This vector-flow field is then approxi-
mated by an holomorphic function centered at z0 ∈ C, i.e., f(z) ≈ F (z + z0), that can
be modeled using a linear combination of complex basis functions (basis flow fields).
For example, the Taylor expansion of f(z) about the origin (i.e., z0 = 0) can be written
as a linear combination of complex (orthogonal) monomials φk(z) = zk:

f (z) =
N∑

k=0

akφk(z) + RN (z), (1)

where ak = f(k)(0)
k! are the coefficients, and RN (z) is the residue. Here, f (k)(0) is the

k-th derivative of f evaluated at z0 = 0. For simplicity, we assume the basis φk(z)
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(a) φ0,1 (b) φ1,1 (c) φ2,1 (d) φ3,1 (e) φ4,1

(f) φ0,2 (g) φ1,2 (h) φ2,2 (i) φ3,2 (j) φ4,2

Fig. 1. Basis polynomials φk,i multiplied with weight function wσ(z) for k = 0, . . . , 4 and
i = 1, 2. First column: polynomials derived from zk. Second column: polynomials derived from
izk. φ1,1 is a rotation-free source field and φ1,2 is a divergence-free vortex. The flow fields exhibit
higher-order fluctuation with increasing k.

to be orthogonal, so the coefficients ak can be calculated by inner product projection.
Both the orthogonality condition and projection operator depend on the choice of inner
product in the analytic functions space A(Ω). The classic Hermitian inner product [4]
produces complex numbers, making projection calculations difficult. Instead, we use
vector fields’ correlation [8] as an alternative inner product:

⟨f(z), g(z)⟩ =
∫

C
(f(z) · g(z))wσ(z) dz, (2)

where · is the dot product between two complex numbers, and wσ is a Gaussian ker-
nel that makes the projection local. Flow-field f(z) can be projected onto the basis
function φk(z), with real-domain projection coefficients given by ak = ⟨f(z),φk(z)⟩

⟨φk(z),φk(z)⟩ .
Furthermore, we can re-write Equation 2 as:

⟨f(z), g(z)⟩ = (F ⊗ g)(z0) =
∫

C
(F (z + z0) · g(z))wσ(z) dz, (3)

which can be implemented efficiently using the Fast Fourier Transform (FFT). Given
the inner product defined in Equation 2, we can show that complex monomials {zk}N

k=1
and {izk}N

k=1 form a complete orthogonal basis. Intuitively, izk is a counterclockwise
90-degree rotation of the vectors in zk. Our basis flows can then be written as: φk,1(z) =
zk and φk,2(z) = izk. Figure 1 shows the weighted basis functions φk,i ∗ wσ(z) for
k = 0, . . . , 3. Using (1), the N -th order flow-field approximation at p ∈ Ω is:

F (z + z0) ≈ f(z) =
N∑

k=0

(ak,1φk,1(z) + ak,2φk,2(z)) , (4)
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Fig. 2. Decomposition and reconstruction. (a) Original turbulent flow and detail view. (b) Re-
constructed flow and detail view. (c)-(f) Correlation coefficient maps for the first four projection
coefficients for φk,1(z). Coefficient map A1,1 in (e) shows that the flow field is divergence free,
while stronger responses in A1,2 (f) indicate vertex locations. Blue color indicates orientation
match between filter and flow data while red indicates reverse orientation.

where ak,i = ⟨f(z), φk,i(z)⟩, for k = 1, . . . , N , and i = 1, 2. The approximation
produces 2(N + 1) real coefficients ap = ap

0,1, a
p
0,2, . . . , a

p
N,1, a

p
N,2 for location p.

According to (3), the coefficients are local values of the cross-correlation between F (z)
and φk,i(z). It can be shown that by letting z → 0 in Equation 4, the local flow field’s
divergence and rotation simply equal to a1,1 and a1,2, respectively. This observation
shows that both divergence and rotation are represented in our model. Figure 2 shows
the correlation between the first two basis pairs and a turbulent flow, i.e., Ak,1 = F (z)⊗
φk,1(z) and Ak,2 = F (z) ⊗ φk,2(z), k = 0, 1. The turbulent flow field happens to be
divergence free so A1,1 vanishes almost everywhere. This further confirms that a1,1 and
a1,2 are related to the divergence and rotation of the flow field.

2.2 Blending Local Models into a Global Flow Field

Local flow models can be blended into a global flow field using a partition-of-unity [7]:

F̃ (z) =
∑

k,i

∫

p
Ak,i(p)φk,i(z − p)h(z − p)d p. (5)

Here, function h is a blending function such that
∫

h(z)dz = 1, ensuring that the
contributions of neighboring models sum to one (partition-of-unity) [7]. In this paper,
we choose h(z) to be a Gaussian function with the same size as our basis flows. This
blending approach is more flexible than the interpolating splines [7], as local models are
not required to agree at control points. Similarly to splines, the global representation in
Equation 5 can be blended using a sparse grid of local models.
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3 Fluid Flow Estimation

We now extend the modeling described in previous sections to fluid-flow estimation. In
general, fluid-flow estimation is formulated as the following minimization problem [2]:

∫
D (I(x + v, t + δt), I(x, t)) dx + λ

∫
S(v)dx, (6)

where x and v are the spatial and velocity vectors, respectively, D is the data term
enforcing luminance or mass constancy, and S is the regularizer preferring smooth so-
lutions. Since luminance constancy simplifies computation, and is widely used for in-
compressible fluid flows, in this work, we enforce the luminance constancy, and leave
the mass constancy for future study. The most common data term used to enforce lu-
minance constancy is based on a quadratic form that can be discretized into the well-
known optical-flow constraint as D (I(x + v, t + δt), I(x, t)) = (∇I · v + ∂I/∂t)2,
where ∇I is the spatial image gradient, and ∂I

∂t is the time difference. There are two typ-
ical regularizers for regularizing the flow fields, including the first-order Horn-Shunk’s
regularizer [6] and the second-order regularizer used in [2], respectively:

S(1)(v) = ∥∇v1∥2 + ∥∇v2∥2 and S(2)(v) = ∥∇div(v)∥2 + ∥∇rot(v)∥2. (7)

S(1) is widely used in optical flow computation, and is biased towards piecewise linear
flows, while S(2) is considered more appropriate for regulating fluid motions. Here,
since we represent flow fields using parametric models, instead of recoveringv directly,
we aim at finding the optimal coefficients representing the underlying motion between
two images. In the following section, we first show how the optical-flow constraint and
the existing regularizers can be rewritten using the proposed model. Then, we introduce
a general regularizer for arbitrary-order flow fields.

3.1 Local Optical-Flow Constraint

Let us write the image gradient as a complex function ∇I(z) = ∂I
∂x + ∂I

∂y i, and let f(z)
represent v at pixel p. We can then substitute the linear approximation of f(z) in (4)
into the optical-flow constraint to minimize the following weighted error function:

D(p) =
∑

z∈Np

wσ(z)

(
N∑

k=0

(ak,1φk,1(z) + ak,2φk,2(z)) ·∇I(z) − ∂I/∂t

)2

, (8)

where wσ(z) is a Gaussian function that weights the image evidence more at the center.
Equation 8 can be written in a compact matrix form: (Rpap − Tp)

T
W(Rpap − Tp),

with W contains the weighting factor wσ(z), Rp is calculated from φk,i ·∇I(z), and
Tp is obtained by stacking ∂I

∂t . Minimizing Equation 8 leads to a local optical flow
calculation similar to the Lucas-Kanade [9] method that can be solved as a linear system.

3.2 Global Smoothness Constraint

In this section, we show how smoothness constraints can be formulated directly from
the local coefficients vector ∂ap

∂p , p ∈ Ω. If we consider z = 0 in Equation 4, the local
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velocity vector is simply (a0,1, a0,2). Thus, the first-order regularizer can be written
as S(1)(v) = ∥∇a0,1∥2 + ∥∇a0,2∥2. Furthermore, we haven shown in Section 2.1
that divf(z) = a1,1 and rotf(z) = a1,2 when z → 0. As a result, the second-order
regularizer becomes: S(2)(v) = ∥∇a1,1∥2 + ∥∇a1,2∥2. Similarly, we can define an

arbitrary-order regularizer SN
1 =

∑N
k=0 βk

(
∥∇ak,1∥2 + ∥∇ak,2∥2

)
where βk ≥ 0

are weight factors that emphasize on different orders, or equivalently:

S(n)
1 =

∑

z∈Np

(az − ap)
T

Γ (az − ap) , (9)

where Γ = diag(β0, . . . , βN ), and Np is the set of neighboring local models. By choos-
ing small βk for lower-order coefficients, we avoid penalizing lower-order variations.
This can be justified by noticing that ak,i is related to the flow field’s derivatives through
Taylor’s expansion in (1), and the n-th order spatial derivatives of F (z) can be measured
from the derivatives of the corresponding coefficients an,i, i = 1, 2.

Unbiased higher-order regularizer. The regularizer in (9) penalizes spatial variations
of model parameters, and is similar to the one used in [10]. However, penalizing model
parameters’ gradients may lead to bias towards certain orders of flow fields, depending
on the choice of the weighting parameters Γ. Also, simply penalizing model parame-
ters’ spatial variations ignores the fact that the variation can be partially caused by local
coordinate system shifting. For example, the local flow f(z) = z + z2 observed at a
neighboring position z + δz will be f(z + δz) = (δz)

2
+ (1 + 2δz)z + z2. In other

words, there will be model parameter variations even when the flow field follows exactly
a polynomial model. We account for these variations by shifting the local parameters
before comparison with neighboring models. Fortunately, we can write the shifting of
a basis function (monomial) zk as a linear combination of lower-order monomials, i.e.,
(z+δz)k = (δz)k +(δz)k−1z+ . . .+zk. As result, the shifting operator can be written
as a lower-triangular matrix H(δz). Thus, an alternative regularizer can be defined as:

S(n)
2 =

∑

z∈Np

(H(p − z)az − ap)
T

Γ (H(p − z)az − ap) , (10)

where H(p − z) is the shifting matrix, and the weighting matrix Γ is used to make
the notation consistent with Equation 9. In this paper, we simply choose Γ = λI with
λ > 0, for both (9) and (10). In this way, we are not penalizing the spatial variations of
the model parameters. Instead, we penalize the inconsistency between local models, so
flow fields with different orders will not be biased by the regularizer for the magnitude
of their variations, as long as they make consistent variations. It is easy to verify that
any holomorphic functions (flows) with order less than N can make S(n)

2 vanish, and
this confirms that lower- and higher-order flow fields are equally penalized.

3.3 Gradient-Descent Minimization

We now combine both local and global constraints into a single functional as:

E(n)
1 =

∑

p∈Ω

D(p) + S(n)
1 (p) or E(n)

2 =
∑

p∈Ω

D(p) + S(n)
2 (p). (11)
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Here, both E(n)
1 and E(n)

2 are convex, and can be minimized using variational calculus.
Since their minimizing procedures are analogous, we will only explain the minimization
for E(n)

2 . The gradients for this functional can be derived as follows:

∂EN

∂ap
= 2

⎧
⎪⎨

⎪⎩
a

T

p (R
T

pWRp + ∥Np∥Γ)
︸ ︷︷ ︸

Mp

−
∑

z∈Np

a
T

z H
T

(p − z)Γ
︸ ︷︷ ︸

shifting term

−T
T

pWRp︸ ︷︷ ︸
Np

⎫
⎪⎬

⎪⎭
. (12)

In (12), matrices Mp and Np is pre-calculated from image gradients and basis flows.
The same applies to the shifting term H

T
(p − z)Γ.

4 Experiments

The goal of our experiments is to show that fluid-motion estimation can be improved
using our high-order model. We began by evaluating the homomorphic model by ob-
taining decompositions and reconstructions on synthetic turbulent flows. Then, we ran
our fluid-motion estimation algorithms on both synthetic and real images. In all imple-
mentations, we used luminance-constancy instead of mass-constancy constraint. The
reconstruction’s average end-point error (APE) on European FLUID dataset [1] using
2nd-order and 3dr-order models as a function of basis-flow radius was less than 5%,
showing that the fluid motion was well represented by our model. It is worth notic-
ing that as the radius of the local models approaches zero, our representation becomes
over-parameterized, and the 3rd-order model produced larger reconstruction error for
the radius were smaller than two pixels.

Synthetic PIV images. On synthetic images, we quantitatively compared the following
methods: the classic Horn-Shunk method 1 (S(1)), a B-spline adaptation of the method
in [7], and also with our higher-order regularizer without shifting (E(n)

1 ) and with shift-
ing (E(n)

2 ). For the last two, we tested the cases of n = 2 and n = 3. Although we
do not have implementations of the second-order regularizer used in [2] (i.e., S(2)), our
regularizer E(2)

1 can be seen as a parametric version of it. As ground truth is hard to
obtain for fluid images, we resorted to synthetic PIV images from the FET-Open Euro-
pean project FLUID [1]. This database contains 6 different types of stable flows, and
turbulent flows. As stable and turbulent flows are different in nature, we tuned the algo-
rithm parameters separately for each dataset. These parameters are: (1) the smoothness
weight λhs for Horn-Shunk’s method; (2) the spacing of control points dsp, and the
smoothness weight λsp for spline-based method; (3) for our method, the scale (radius)
of the parameterized model r, the spacing between local models d, and the regularizer
weight λ. Table 1 summarizes the parameters used for each method and dataset.

Tables 2 show the average angular error (AAE) and average end-point error (APE)
of the compared methods. Our method performed better on almost all sequences, and
the errors decrease with increasing approximation order. Comparing results of E(n)

1 and
E(n)

2 shows that the shifting operator increases estimation accuracy. Additionally, the

1 Available for download from: http://www.cs.brown.edu/˜dqsun/

http://www.cs.brown.edu/~dqsun/
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Table 1. Algorithm Parameters

Dataset Horn-Shunk Spline E(2)
1 &E(2)

2 E(3)
1 &E(3)

2

λhs λsp dsp λ d r λ d r

Stable Flows 2500 0.1 32 0.1 8 32 0.5 8 32
Turbulence 1500 0.1 8 0.1 2 6 0.5 2 6

Table 2. AAE and APE on Analytic Fluid Sequence

Seq. 1 Seq. 2 Seq. 3 Seq. 4 Seq. 5 Seq. 6 Turb.
AAE APE AAE APE AAE APE AAE APE AAE APE AAE APE AAE APE

HS 1.02 0.04 1.96 0.04 1.01 0.04 2.75 0.06 2.77 0.06 1.62 0.05 22.09 0.43
Spline 0.63 0.03 0.96 0.02 1.13 0.04 2.73 0.06 2.28 0.05 1.43 0.05 7.27 0.13

E(2)
1 0.85 0.04 1.70 0.04 0.78 0.03 2.48 0.05 2.59 0.05 1.34 0.04 4.62 0.09

E(2)
2 0.80 0.03 1.63 0.03 0.72 0.03 2.43 0.05 2.53 0.05 1.31 0.04 4.62 0.08

E(3)
1 0.58 0.03 1.38 0.03 0.63 0.03 1.87 0.04 1.88 0.04 1.45 0.06 4.58 0.08

E(3)
2 0.58 0.03 1.24 0.02 0.55 0.02 1.87 0.04 1.89 0.04 1.49 0.18 4.30 0.08

experiments confirmed the observation in [7] that spline-based methods produce better
results than their nonparametric counterparts, especially on turbulent flows. Figure 4
shows streamline and vorticity maps of the extracted turbulence motion. Although the
difference is visually small from the streamlines, it can be seen that both the spline-
based and our method produce a ‘smoother’ vorticity map than the Horn-Shunk method,
and that our method’s vorticity map is closest to the ground truth in its magnitude.

Real-world images. In Figure 4, we show the estimated motion from a wingtip vor-
tex 2 and satellite images 3. Both the spline model and ours produce smoother results
than the Horn-Shunk method. However the spline model easily got trapped in local min-
ima when small smoothness parameters were used, and produced over-smoothed results
when the parameter was large. Specifically, for satellite images, all the three methods
produced a weak flow for static image regions due to the smoothness constraint. In-
terestingly, as we have discussed in Section 3.2, Horn-Shunk’s first-order regularizer
produced piecewise linear flows, and the spline model split the flow field to satisfy the
thin-plate deformation energy, while ours produced consistent background flow.

5 Limitations of Our Method and Future Work

We have proposed a higher-order model of flow fields using complex polynomials. Us-
ing this model, we were able to reformulate the optical flow computation in a general

2 Courtesy of ONERA
3 Copyright @ EUMETSAT
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(a) Source image (b) Horn-Shunk (c) Vector-spline (d) Our method

(e) Source image (f) Horn-Shunk (g) Vector-spline (h) Our method

Fig. 3. Real-world image sequences. The first row shows flow fields estimated from a Wingtip
Vortex, and the second row shows the ones from satellite images. Compared to the spline model,
our method does not over-smooth the flow fields, and produce more consistent results.

(a) Ground Truth (b) Horn-Shunk (c) Vector-spline (d) Our method

Fig. 4. Fluid motion estimation. Both spline-based methods and ours produced smoother results
than Horn-Shunk’s. The vorticity estimated by our method is closer to the ground truth.

(a) (b) (c) (d)

Fig. 5. Flow fields that cannot be well approximated by holomorphic functions of similar scales,
including a conjugate flow f(z) = z (a) and its holomorphic approximation shown in (b), a shear
flow f(z) = z + z (c) and its holomorphic approximation shown in (d)
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way in which the regularizer can be chosen to penalize certain orders of variations. It
is important to point out that the holomorphic assumption used in our approximation
model is restrictive as certain flow fields may not be well represented by our model.

Figure 5 shows two examples of such flows, namely, the conjugate flow, f(z) = z,
and the affine flow, f(z) = z + z, with their holomorphic approximations using basis
flows of similar scales to the approximated local flows. Both of the flows are non-
analytic anywhere in the complex plane, and their holomorphic approximations are
poor. This problem can be partially addressed by minimizing the basis flows’ scales.
In the extreme case when the bases’ scale approaches zero, our flow-field model be-
come over-parameterized, and the flow fields can be fully represented. However, this
would increase computational cost, and we believe the better solution lies in extending
our approximation model to include non-analytic basis flows. Our future work also in-
cludes extension of the method to 3-D flow-field estimation, integration with flow-field
singular pattern detection [8], and the usage of mass-constancy constraints [2].
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