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This paper presents a survey of the state-of-the-art in motion estimation of continuum objects such as elastic
solids (e.g., human organs, skin, and biomedical tissues) and fluids (e.g., clouds, ocean flows, and air flows). The
survey is focused on the estimation methodologies, rather than on specific applications. We begin by
summarizing the main components and challenges of continuum-motion estimation, and structure our review
around these components. We provide a classification of the related work according to their solutions to these
challenges. A discussion on themethodologies for quantitative evaluation ofmethods is also provided. Finally, we
conclude the survey by pointing out some open problems in continuum-motion estimation.
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1. Introduction

Motion estimation is a key task in computer vision, and it is usually
the first step taken towards understanding and analyzing dynamic
visual phenomena. Generally, the goal of motion estimation is to
recover a dense displacement field from a pair or a sequence of
images. For example, one of the most extensively studied motion-
estimation problems is that of recovering an individual pixel's
apparent motion, i.e., the optical flow field [1]. The motion estimation
problem can also present itself in different forms such as image
registration [2], where a template object is aligned and sometimes
warped to a target image. In image registration terminology, the
displacement field is called a deformation field or warping function.

Depending on their complexity, motion patterns can be divided
into simpler linear (affine) and more complicated nonlinear motions
[4]. On one hand, motions that can be represented by an affine
transformation are parameterized by a six-parameter linear model
(i.e., scaling, rotation, and translation) that can be used to describe
projected 2-D motions originated from processes such as camera
zooming, rotation, and panning as well as from the relative motion of
a rigid object. On the other hand, nonlinear motions usually result
from the deformation of nonrigid objects, involving complicated
physical processes, such as articulated humanmotion [5], fluidmotion
[6], and biomechanical deformation [7]. Among nonlinear motions,
articulated human motion is worthy of a separate survey [8]. In this
survey, we focus ourselves on the problem of estimating motions
resulting from continuum mechanics, i.e., nonrigid deformations of
elastic objects, such as fluid motion and biomedical motions. Fig. 1
shows examples and a hierarchical relationship of different types of
motion. Motion of continuum objects is ubiquitous in many different
applications, but their estimation methods share basic common
principles. For example, the spline-based model commonly used in
medical image registration was recently extended for fluid-motion
estimation [9]. On the other hand, viscous fluid models have been
extensively used in image registration [10]. Given the relevance of
continuum-motion estimation, instead of limiting the discussion to a
single application domain, we decided that this survey will present an

overview of different applications, and a classification of existing
approaches according to their common components. More specifical-
ly, we focus our survey on the following applications:

• Biomedical image analysis. The goal of medical image registration
[2,11] is to recover deformation fields fromMRI, CT, or X-ray images
of human organs undergoing nonrigid deformations due to physio-
logical processes or inter-subject variations. Applications of regis-
tration include motion compensation [2], diagnosis [12,13], and
segmentation [14]. Besides registration, the analysis of soft tissues
such as human faces [15] and skin [16] also requires estimating their
nonrigid continuous deformations.

• Fluidmotion analysis. Fluidmotion estimation has enjoyed renewed
attention recently, in both engineering and science applications. For
example, estimating fluid motion from particle image velocimetry
(PIV) images is important for understanding and verifying mechan-
ical models [3,17,18]. It can also help analyze turbulent ocean
currents [19], recover cloud motion from satellite images [20], and
detect cyclones [21]. Finally, fluid motion also exists in biomedical
applications such as blood flow [22,23], and viscous cell motion [7].

There are a number of surveys on medical image registration
[2,11,24]. However, these surveys tend to focus on applications rather
than technologies, andnoneof themprovide a comprehensive reviewof
the physics and parametric models underlying the approaches. An
exception to this trend is a recent survey by Holden [25] that reviewed
the physics and geometric models used in nonrigid registration. Our
survey is similar to [25], but we extend our target objects to include
fluids, and discuss recently developed meshless methods. On one hand,
fluids are continuumobjects, andfluidmotion estimation is intrinsically
related to nonrigid image registration. Additionally, fluid models have
been extensively used inmedical image registration. By including fluids
into discussion, our survey provides a broad and complete view of the
analysis and estimation of continuum objects. On the other hand, there
is a recent trend to relax the geometric and physics models used for
handling large deformations, or to adapting the registration to object
shape and image content. This direction is taken by the so-called
meshless methods, and contrasts with the way classic parametric

Fig. 1. The relationship of different types of motion. Motion models can be divided into linear and nonlinear. Linear motions include rigid motion (translation, rotation, and scaling),
plus reflection and shearing, while nonlinear motions include continuum (e.g., fluid flow [3] and elastic solid deformation) and articulated motions.
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models partition the computation domain, and represents a global
deformation field by assembling local deformation fields based on their
neighboring information. In classic approaches, the partition and
neighborhood information are often explicitly handled using a grid
(mesh) of control points [25]. Compared to these methods, meshless
models do not rely on control-point grids, and they are able to handle
objects of arbitrary shape and topologies. Meshless methods have
already been used in a large number of applications [26–29], and we
found appropriate to include these works in the survey.

Our main goal is to provide an overview of both the modeling and
estimation methods for continuum body motion analysis. To archive
this goal, we commence by providing a general formulation of the
nonrigidmotion estimationproblemaswell of itsmain components and
challenges (Section 2). We then discuss the various representative
approaches for these components and challenges of thenonrigidmotion
estimation problem. First, we discuss the image similarity measures
used to establish correspondence between pixels of the deformed
images (Section 3). A deformation field can be defined as the one
that maximizes the similarity between the source and the deformed
target images. As images are subject to noise and illuminance changes,
similarity measures need to be robust. Additionally, there are also
similaritymeasures defined on images of differentmodalities. Secondly,
we discuss parametric deformation models in Section 4. These models
significantly improve motion estimation for continuum objects, by
producing smooth results while reducing the solution space's dimen-
sionality. In this section, we classify and introduce classic deforma-
tion models, and explain recently proposed meshless models. After
reviewing the parametric models, we discuss the physics laws and
smoothness heuristics that can be used to address the inherent ill-

posedness of the motion-estimation problem by regularizing the
deformation field to produce physically or geometrically meaningful
results (Section 5). In Section 6, we provide a discussion of the meth-
odologies for quantitative evaluation of continuum-body motion-
estimation methods. Finally, we conclude the survey in Section 7, and
present a number of future directions that we believe are promising. In
particular, we believe that meshless methods may allow us to naturally
integrate computer graphics and physics models with image evidence,
and improve motion estimation and analysis in many challenging
applications including facial expressions, fluid motion, and other 3-D
nonrigid continuummotions.

2. Problem formulation and challenges

The problem of nonrigid motion estimation can be formulated as
that of finding a transformation that warps source image I(x) to “best”
match target image I′(x) with respect to a given similarity measure
[29]. Formally, we seek for a warping or deformation field u(x) that
satisfies the following equation:

argmax
x′

F I′ x′
! "

; I xð Þ
! "

; x′ = x + u xð Þ; ð1Þ

where x is a coordinate vector, x′ is the warping function that in-
dicates the transformed coordinates. x′ can also be expressed as the
deformation (displacement) field u(x), and F is a similarity measure.
Fig. 2 shows an example illustrating a nonrigid image registration and
corresponding deformation fields.

Fig. 2. Nonrigid image registration. (a) Source image. (b) Target image. (c) Deformation field as a distorted grid. (d) Deformation field as a vector field.
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Despite its simplicity, there are major challenges in solving the
motion-estimation equation in Eq. (1). These challenges are:

• The designing of the similarity measure. In the simplest case, the
image similarity can be measured by the squared-difference
between pixel intensities of the corresponding source and target
images, i.e., F I′ x′ð Þ; I xð Þ; x′ð Þ = ∑x‖I′ x′ð Þ−I xð Þ‖2. This measure
relies on the assumption that image intensities remain constant
during the motion, and can be equivalently discretized into the
widely used optical-flow constraint [1]:

∂I
∂t + u⋅∇I = 0 ð2Þ

Eq. (2) states that the temporal variation in the image,
∂I
∂t, cancels

the projection of local displacement vector u on the image gradient
vector ∇ I. However, the intensity-constancy assumption does not
always hold for large continuum motions. For example, the dilution
or concentration of continuum mass may decrease or increase
image intensities [6], and thus render the intensity-constancy con-
straint invalid. Image noise and variation in illumination can also
violate this assumption [30]. Thus, robust similarity measures are
needed for handling outliers. Additionally, when source and target
images are obtained using different imaging sensors (multi-
modality), as in the case of MRI and CT images, then image inten-
sities cannot be compared directly, and sophisticated similarity mea-
sures are required [31].

• Modeling the deformation field. Unlike optical flow computation,
where the deformation field u is usually unstructured, themotion of
continuum objects often results from “well-behaved” physics pro-
cesses. As a result, this kind of motion is often represented using
parametric models such as polynomials [25]. The use of parametric
models not only increase robustness of registration algorithms
against random noise, but also provides a compact representation of
thedeformationfield, leading to improved computational efficiency in
motion estimation.

• Integrating prior information. The physics and biological-based
nature of continuum motions allows for prior information of
materials to be integrated to improve temporal consistency of the
motion estimation, as well as to further regulate solutions. Many
existing algorithms for solving physics equations have been
extended and adapted to solve the motion estimation problem [25].

• Regulating the solutions. In the absence of accurate physics or
statistical prior models, the motion estimation equation in Eq. (1)
has many ambiguous solutions, and regularizers are needed to
produce unique estimation results. On one hand, the main goals of
a regularizer are to penalize undesired distortion, and produce
“smooth” deformation fields. On the other hand, regularizers should
also be flexible, and not rule out legitimate solutions.

3. Measuring image similarity

The function F in Eq. (1) measures the similarity of local image
data, providing evidence to guide the motion estimation process. As
mentioned previously, the commonly used squared-difference of
image intensities might not hold for large deformations, and is not
appropriate if the images are obtained using different image sensors
(i.e., multi-modal data). The multi-modality problem is typical in
medical image registration. To address these shortcomings, a number
of similaritymeasures have been recently proposed. Next, we describe
a few representative similarity measures.

3.1. Inter-modality similarity

The challenge of measuring similarity between images of different
modalities lies in the fact that obtaining an exact relationship between

the modalities can be prohibitively complicated. Inter-modality
similarity is not our focus in this survey, but we describe it here for
completeness. One of the most commonly used similarity measure for
images of different modalities is based on mutual information (MI)
[32,33]. This is a statistical measure that quantifies the dependence
between two random variables and it is based on the assumption that,
when two images of different modalities are correctly matched, one
image should be predictable from the other image. This predictability
can be measured using the mutual information between their
intensity or image feature distributions. Given its statistical nature,
the calculation of mutual information does not rely on an exact
relationship between different modalities, and thus greatly simplifies
the similarity measure in image registration. For more details on the
application of the MI similarity measure, please refer to [31].

3.2. Dilution and concentration

For images of the same modality, a frequently used similarity
measure is based on the assumption that image intensity values
remain constant during continuum motion. However, when the de-
formation field is large, dilution and concentration of the continuum
mass will change local densities, making the brightness-constancy
assumption invalid. Dilution and concentration effects can be ad-
dressed by modeling density variations of the moving continuum
material using the following continuity equation [6]:

∂ρ
∂t + div ρuð Þ = ∂ρ

∂t + ∇ρ ⋅u + ρ div uð Þ = 0; ð3Þ

where ρ is the mass density, and u is the deformation field. Whenever
the image intensity is proportional to mass intensity, Eq. (3) can be
used to replace the optical-flow equation in Eq. (2). Alternatively, it
can be shown that the image intensities are proportional to the
integral of mass density. In this case, the relationship between the
source and target images can be expressed by [6]:

I′ x′
! "

= I xð Þ exp −div uð Þ: ð4Þ

Eq. (4) is called the mass-constancy constraint as it assumes that
the mass within a deforming boundary remains constant, and it is
equivalent to the classical brightness-constancy for divergence-free
deformations, i.e., div u = 0. This constraint has been widely used
in both fluid-motion estimation [9,19,34], and in medical image
registration [35–37].

3.3. Robust similarity measures

Similarity measures based on squared-difference can be sensitive
to illumination changes and to the presence of noise. For example, the
presence of sensor-induced additive Gaussian noise is common in
many applications. This noise modality is modeled by many motion-
estimation approaches as a stationary distribution that does not vary
with spatial coordinates [24,38]. Besides stationary Gaussian noise,
real-world imagery may contain spatially varying distortions, occlu-
sions, and specular-reflectance artifacts [39]. For instance, in medical
imaging, the data may contain an intensity bias varying slowly and
spatially [40] across the image. Specular reflection is yet another
source of unwanted artifacts that tend to appear in images of biological
tissues such as human skin [41], bones [42], and blood vessels [43].
In fluid particle image velocimetry (PIV) images, particles can be oc-
cluded [44], and handling these occlusions is key to improving motion-
estimation accuracy [17].

Robustness of similarity measures can be obtained in a number of
ways. First, instead of relying on individual pixel values, higher-level
and neighborhood information can be included into the similarity
measure. For example, a simple extension of the squared-difference
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similarity is to sum it up around neighborhoods centered at the pixel
being compared as follows:

F xð Þ = ∑
x∈N xð Þ

I xð Þ−I′ x + uð Þ
# $2

; ð5Þ

where N xð Þ is the neighborhood centered at x. The sum-of-squared-
difference (SSD) can be more robust than the difference calculated on
individual pixels if image noise is stationary. However, SSD can still be
sensitive to global illumination variations. In this case, the normalized
cross-correlation (NCC) provides a similarity measurement that is
largely independent of global illumination. Formally, NCC is defined
as:

F xð Þ =
∑x∈N xð Þ I xð Þ × I′ x + uð Þ½ $

∑x∈N xð ÞI
2 xð Þ

h i
∑x∈N xð ÞI′

2 x + uð Þ
h i : ð6Þ

SSD and NCC are widely used both in image registration [2] and in
fluid-motion estimation [17]. Both measures are purely intensity-
based, low-level, image-similarity measures. Robustness can be
further increased based on higher-level information. For example,
Shen et al. [45] calculate imagemoments from cubic neighborhoods of
individual pixels, and then the similarity is defined on the moments
instead of image intensities. Image moments are integral transforms
of image intensity using polynomial kernel functions, and are defined
as:

Mp;q = ∫∫
Ω
I x; yð Þxpyqdxdy; ð7Þ

where Ω is the image's support domain, and Mp,q is called the image
moment of order (p,q). Since image moments are integral trans-
formations of local intensity values, they are known to be robust to
image noise. Image similarities can also be compared using other
integral transforms such as Fourier-based cross-correlation [46], and
phase-only correlation [47].

In addition to integral transformations, geometrical image features
can also be used as similarity measures. For example, image gradients
are insensitive to global illumination variation. In their work on
optical-flow estimation, Brox et al. [30] considered both squared-
distance of image intensities and gradients to be part of a similarity
measure:

F I′ x′
! "

; I xð Þ;x′
! "

= ∑
x

‖I′ x′
! "

−I xð Þ‖2 + λ‖∇I′ x′
! "

−∇I xð Þ‖2
% &

: ð8Þ

From the image intensities and image gradients, a number of useful
feature descriptors can be extracted (e.g., image edges, corners, and
histograms), and integrated into the similarity measure. These higher-
level features tend to be invariant under illumination variation, and
contain more semantic information. More details of different features
used in medical-image registration can be found in [2,11].

Finally, existing similarity measures can be augmentedwith robust
estimators that use statistical priors to reduce the influence of outliers.
For example, a robust version of the correlation-based similarity
measure was extended by Kim and Fessler [48]. Robust estimators
were used to handle outliers in image gradients [49] and, in com-
bination with color-based similarity measures, to estimate facial
motion under occlusions as described by Pantic and Patras [41]. In
fluid-flow estimation, robust estimators were shown to be key in
achieving high accuracy on real-world imagery [17,44]. In optical-
flow estimation, a significant amount of work was devoted to the
handling of outliers at motion boundaries [50–52]. These outliers are
usually caused not by image-intensity variations, but by discontinu-
ities in the deformation field. Nevertheless, the adoption of robust
estimators in this case is similar to the handling of intensity outliers.

4. Parametric deformation representation

As we mentioned earlier, the motion estimation problem is ill-
posed in the sense that there are many local minima in the
registration equation (Eq. (1)). The ill-posedness and noise sensitivity
are usually addressed by a combination of techniques, including the
use of regularizers, prior information, and parametric modeling of
the deformation field. In this section, we begin by discussing pa-
rametric models for continuummotions, i.e., models representing the
warping function x′, or equivalently, the deformation field u = u; vð ÞT

(Eq. (1)). In optical flow estimation, the use of parametric models
often leads to only marginal improvements in estimation results [53].
However, for continuum motions, parametric models significantly
increase the robustness and accuracy of results, as they often cap-
ture the inherent continuity of the underlying physics processes. In
Table 1, we list common parametric models and their representative
works. As shown in the table, parametric deformation models can be
divided into linear and nonlinear.

Linear models represent deformation fields u = u; vð ÞT using
linear functions (Section 4.1), while nonlinear models usually use
polynomials [54], radial basis function (RBF) [29,55], and polynomial
splines [56,57] to represent more complicated motions (Section 4.2).
Linear models are both simple and computationally efficient, but are
restricted to linear transformations. On the other hand, nonlinear
models offer more flexibility at higher computational costs. Defor-
mation models can be also grouped into local or global, depending on
whether they use locally or globally supported basis functions to
model image deformation [2,25]. Here, the term locally supported
refers to the basis functions vanishing quickly with increasing
distance to their coordinate centers (e.g., the radial basis function
e− (x2+y2)), in which each basis function models part of the image,
forming a partition of the image domain. The term globally supported
means that basis functions take non-zero value over the whole image
domain and model the entire image deformation. Finally, existing
local models often rely on the subdivision of the computational
domain, usually with the use of a regular control-point grid [29,56,57].
This greatly restricts their ability to handle irregular shapes and
topological challenges. There is an important class of recently
proposed nonlinear local models that do not rely on the use of
control-point grids, and they form the basis of the so-called meshless
(or mesh-free methods) in mechanical engineering [58]. In this
survey, we briefly introduce some meshless models and their
applications in computer graphics, computer vision, and engineering
(Section 4.3).

It is worth pointing out that parametric modeling of continuous
functions is also used in many other applications, such as repre-
senting geometric shapes (e.g., surfaces and curves) in computer
graphics [59], and approximating physics variables (e.g., heat,
mechanical energy, and stress) in mechanical engineering [58].
These modeling problems are intrinsically equivalent to modeling
deformation fields. Additionally, parametric models for approxima-
tion and interpolation have been extensively studied in computa-
tional mathematics [55,60]. As a result, our discussion of parametric
models may sometimes go beyond the modeling of deformation
fields.

Table 1
Parametric deformation models.

Model Representative works

Linear Rigid [61]
Affine [62–65]

Nonlinear Polynomials [66,67]
Thin-plate splines (TPS) [29,68,69]
B-splines [56]
Finite elements (meshes) [70–73]
Mesh-free [26,28,74,75]
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4.1. Linear models

Rigid and affine transformations are typical linear approaches
used to represent global image deformations. Rigid global motions
include rotation, scaling, and shifting, and can be formally expressed
as a linear transformation:

x′ = sRx + T; ð9Þ

where s ∈ R is the scaling factor, T ∈ Rn is the translation vector (i.e.,
shift), and R ∈ SL nð Þ1 is the rotation matrix.

Rigid transformations are simple, but are also restricted to nonrigid
continuum motions. The rigid motion model can be extended into
a general linear transformation (i.e., affine model), or formally
x′ = Ax + T, where A ∈ GL nð Þ.2 For example, 2-D affine models
extend the rigid motion model by relaxing it into the following six-
parameter linear model:

x′ = ax + by + c and y′ = dx + ey + f : ð10Þ

In addition to rigid transformations (scaling, rotation, and trans-
lation), an affine model can represent reflection, anisotropic scaling,
and shearing effects. Global affinemodels are not able to model contin-
uum motions properly, as these deformations are generally nonlinear.

4.2. Nonlinear motion models

Linear models are generally used to represent global rigid
deformations of a continuum-body such as rotation and shifting, but
are unable to represent nonrigid local deformations such as elastic
deformation and fluid motion. To represent nonrigid local deforma-
tions, researchers resort to nonlinear or piecewise-linear models.

4.2.1. Polynomials
Polynomial models offer a straightforward extension to linear

models. For example, in the 2-D case, the local deformation field in x
and y can be written as [54]:

x′ = ∑
s;t=0

xsyt and y′ = ∑
s;t=0

xsyt : ð11Þ

Indeed, polynomial models have been used for optical-flow
computation [53], articulated motion [66], fluid-motion estimation
[67], and image registration [54,76]. Polynomials are significantly
more flexible than linear models. However, polynomials do not have
local support, and their values grow exponentially with the distance
to the origin. Thus, the shape of a higher-order polynomial can be
sensitive to the value of its coefficients, leading to numerical
instability. As a result, higher-order polynomials are often modified
into local models, and their support is restricted by means of cut-off
functions [77] or radial-basis functions [29].

4.2.2. Free-from deformation (FFD)
In contrast with polynomials, splines are much easier to control,

and their basis functions are locally supported. Typical spline models
used for image registration are based on B-splines [56,79]. B-splines
use regularly distributed control points that do not need to be
landmarks (i.e., features of interest on the images). B-splines are
widely used in computer graphics for modeling curves or surfaces
[80], and can be highly flexible in modeling nonlinear nonrigid
continuum motion, e.g., biological tissues [56] or even turbulent

flows [19]. In 3-D space, a cubic interpolation function is expressed
as [56]:

u xð Þ = ∑
3

l=0
∑
3

m=0
∑
3

n=0
Bl uð ÞBm vð ÞBn wð Þϕi+l; j+m;k+n; ð12Þ

where i, j, and k are the indices of neighboring control points, u, v, and
w are the local coordinates, and Bi, i=0, 1, 2, 3 are the spline functions.
Fig. 3 shows an example of the control points, and the deformation in
3-D for a simple tubular structure. Despite the popularity of spline-
based models, the reliance on a regular grid of control points restricts
their adaptability. For example, the use of denser control-point grids
increases accuracy at higher computational cost, and it is difficult to
change control points' topology.

Recently, the B-spline model was extended to a multivariate spline
model [57], a technique that greatly relaxes the positioning of control
points (Fig. 4) by using simplex splines (Fig. 5), and an irregular
placement of control points. However, as in most spline-based and
piecewise-linear models, explicit neighborhood information is still
needed.

Interestingly, these methods' reliance on a control-point grid (or
mesh) is also shared in computer graphics, and mechanical engi-
neering. For example, in computer graphics, triangular meshes are
extensively used for both shape modeling and rendering, but most
algorithms working on triangular meshes require topologically
consistent two-manifold surfaces [81,82] (i.e., the surfaces do not
‘break’ or ‘merge’ during the motion), and dynamically adapting the
resolution and topology of triangular meshes can be difficult [83,84].
In mechanical engineering, piecewise-linear models and splines are
used in finite-element methods to approximate continuous func-
tions. These methods are also restricted in both their approximation
accuracy and topology adaptation.

4.2.3. Finite-element (mesh) models (FEM)
In this section, we briefly review the mesh models used in

computer graphics and FEM. In computer graphics, triangular meshes
are powerful tools for modeling shapes and surfaces [86], as they can
be designed to represent both arbitrary topology and surface
curvatures. However, dynamically adapting topology requires com-
plicated re-meshing techniques. As piecewise-linear models, triangu-
lar meshes only ensure C1 continuity, and the approximation accuracy
depends on the triangular density (Fig. 6(a)).

Similar approximation methodology is used in finite-element
methods [16,72,73] for solving partial differential equations. FEMs also
rely on a mesh of explicitly connected elements. Again, maintaining
the neighborhood information is nontrivial, and designing a mesh
for representing complicated shapes may require intensive manual

Fig. 3. Example of free-form deformation using B-splines [78]. The deformation field is
controlled by a grid of control-points (the red and black dots) distributed regularly in
the 3-D space with coordinates (s, t, u). Motion at control points is interpolated
smoothly over the image domain. P(s, t, u) and P′ s; t;uð Þ indicate the coordinates of
point P before and after deformation.

1 SL(n) means special linear group, i.e., n-dimensional square matrices with unit
determinant.

2 GL(n) means general linear group, i.e., n-dimensional invertible square matrices.
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interaction. For example, Fig. 6(b) shows a 3-D heart shape modeled
using a mesh of 3-D volume elements, where the stress distribution
is represented by a piecewise-linear function defined on the heart
volume [86].

FEMs are widely used in physical science, mechanic engineering,
computer graphics [87] for continuum-motion simulation, and they
also have been used in computer vision for solving inverse problems.
For example, FEM meshes were used for modeling 3-D nonrigid facial
motion [15], and for validating motion estimation results of human
tissue [71]. Triangular meshes, splinemodels, and FEMmeshes share a
similar limitation: the approximation function directly relies on the
spatial arrangement of the control points. In order to remove the
model's reliance on control points or elements, this scheme was
recently replaced with more flexible schemes that do not rely on a
control-point grid or a mesh of elements for representing continuous
functions, and are collectively called mesh-free or meshless methods
[28,58]. For example, in point-based computer graphics [59,88],
triangular geometric primitives are replaced by sample points, and
point-based representations that allow for more flexibility without
the need to both store and maintain globally consistent connectivity

information [59]. In Table 2, we list the applications of meshless
models and corresponding representative works. There are numerous
meshless models and variants in different application areas. In this
survey, we focus on three representative models: radial basis functions
(RBFs), weighted least-squares (WLS) with partition-of-unity, and
moving least-squares (MLS).

4.3. Meshless models

4.3.1. Radial basis functions and thin-plate splines
The limitation of piecewise-linear or polynomial models was also

observed in computational mathematics for both approximating and
interpolating scattered data points [55,60]. As Buhmann pointed out in
[55], splines or piecewise-polynomial methods usually require trian-
gulation of the computational domain as it has to be decided where
the pieces of the piecewise polynomials lie, and where they are joined
together. Radial basis functions, on the other hand, can be placed at
arbitrary sites in the computational domain, and a continuous function
can be approximated by their linear combination. Radial basis functions
(RBF) have been widely used in computer vision to represent both 2-D

Fig. 4. Control points for B-spline andmultivariate spline models [57]. The left-hand side shows a regular control-point grid for the B-spline model, and the right-hand side shows the
control points for simplex splines.

Fig. 5. Simplex splines of different degrees [57].
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or 3-D nonrigid deformations [29,68,93]. Fig. 7 shows the general
idea and applications of RBFs-based models. Formally, a deformation
field is represented using a linear combination of radial basis functions
centered at a set of points wi with spatial coordinates wi:

u xð Þ = ∑
K

k=1
ciϕ ‖x−wi‖ð Þ: ð13Þ

Here, {ci} are the combination coefficients, and the radial basis
functions ϕ(r) can be defined as a Gaussian function ϕ(r)=e− r2/σ2

or
ϕ(r)=r2 log r. The deformation field in Eq. (13) is often regulated by a
functional similar to a thin-plate's bending energy, and it is sometimes
called thin-plate splines (TPS). Thin-plate splines are normally used
in conjunction with higher-level image similarity functions, where
the discrete point set (landmarks) wi can be extracted to correspond
to image features [68,69]. Recently, Rohde et al. [29] used RBFs for
adaptive image registration, exploiting the fact that RBFs can be
arbitrarily distributed, and computational accuracy can be adaptively
increased by using denser RBFs at selected regions.

RBFshave alsobeenused inboth computergraphics, andengineering.
In computer graphics, RBFs and thin-plates splines are used for shape
representation [94], shape or image warping [92,95], and animation
[96,97]. In engineering, RBFs are the foundation for many meshless
methods [98,99], allowing the representation of continuous functions by
interpolating scattered node points. These methods are called radial
point-interpolation methods (Radial PIM, see [58] for details).

Modeling continuous functions using RBFs present some issues.
First, RBFs are essentially global functions, and local deformations
result from the linear combination of many RBFs, leading to high
computation costs [100]. Secondly, RBFs are unable to reproduce
polynomials exactly [58], and produce less accurate results than
polynomial models [58]. For example, constant functions f xð Þ = c,
c≠0 cannot be represented by RBFs [101].

4.3.2. Weighted least-squares (WLS) and partition-of-unity (PU)
Weighted least-squares and partition-of-unity are other type of

meshless models for approximating and interpolating continuous
functions. For example, smooth surface reconstruction from irregu-
larly distributed sample points was initially studied by Shepard et al.
[102]. Shepard's method approximates point sets using locally
supported polynomials, and then blend the local polynomial models
into a global representation using partition-of-unity [58]. Fig. 8 shows
an example of surface approximation. In the figure, the computational
domain is divided into cubic regions. Local polynomial models (in red)
are constructed from the scattered sample points, and then blended
into a global model (in blue). Formally, given a discrete sample set of a
function f xð Þ, x ∈ Rd, i.e., xi; fið Þ; i = 1;2;…;N, a polynomial is locally
fitted to the data points by minimizing the following functional:

min
f∈Πd

m

∑
i
θ ‖x−xi‖ð Þ‖ f xið Þ−fi‖

2
: ð14Þ

Here, θ ‖x−xi‖ð Þ is a locally supportedweighting function or influence
function that makes the approximation local, while Πm

d is the space
of all polynomials with d variables up to degreem, i.e., a space spanned
by multivariate monomials up to degree m. For example, when m=2
and d=2, we have the space of polynomials Πd

m = spanf1; x;
y; xy; x2; y2g. If m=1 and d=1, we have Πd

m = spanf1; x; y; zg.
The influence (or weighting) function can be a Gaussian function,

θ dð Þ = e
−
d2

h2 , theWendland function [103], θ dð Þ = 1− d
h

' (4

4
d
h

+ 1
' (

,

or simply the rational function, θ dð Þ = 1
d2 + !2

, for some !N0. The

theoretical foundation of this local approximation lies in the Taylor's
expansion that locally approximates a smooth function using mono-
mials [104]. As a result, the local polynomial model at point p can be
written as a linear combination of monomials. For instance, for m=2,
d=2, we have:

fp xð Þ = a0 + a1x + a2y + a3xy + a4x
2 + a5y

2 = aTΦ; ð15Þ

where a = a0;…; a5ð ÞT , and Φ = 1; x; y; xy; x2; y2
! "T . Although the

order of monomials in the basis vectorΦ is not important, in practice,
they are arranged according to the Pascal triangle [58], i.e., lower-
order monomials precede higher-order ones for better numerical
stability. For monomials of the same order, the ones with less dif-
ference in the orders of each variable are selected first.

Fig. 6. Meshes in computer graphics and finite-element methods. (a) Quadrangular and triangular meshes used for shape representation in computer graphics. Denser meshes
produce more details at higher computational cost [85]. (b) Shape functions constructed in finite-element methods. Anatomical parts of a heart are modeled separately using
triangular meshes, then physical properties (e.g., stress and strain) are approximated as piecewise polynomial functions [86].

Table 2
Meshless models and methods.

Application areas Representative works

Point-based computer graphics Moving Least Squares (MLS) [89],
hierarchical partition of unity [88].

Fluid dynamics, simulation Smoothed-particle hydrodynamics (SPH) [90,91].
Biomedical motion analysis Meshless deformable model [26–28].
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After fitting polynomials at discrete positions xj; j = 1;…;n, (i.e.,
local models) the global deformation model can be assembled by
blending the local models. Any point x in the computational domain
Ω might be covered by an arbitrary number of local models, and
these models' contribution should sum to one (partition-of-unity).
The partition-of-unity function (PU) can be constructed using weight
functions θj, j=1, …, n. Formally, the blending functions are defined
by:

ϕj xð Þ =
θj x−xj

% &

∑iθi x−xið Þ
: ð16Þ

These functions are also called Shepard's functions [102]. It is
easy to verify that ∑jϕj xð Þ = 1, for ∀x ∈ Ω. The global deformation
is given by:

f xð Þ = ∑
j
ϕj xð ÞaTj Φ x−xj

% &
: ð17Þ

Recall the B-spline FFD model in Eq. (12) and compare with
Eq. (17). It is easy to see that Shepard's method allows local models
to overlap with one another, and no explicit neighborhood
connection is maintained in Eq. (17). Additionally, the placement
of local models can be arbitrary as long as the computational domain
Ω is covered by the union of local models' support domains, i.e.,
Ω⊂∪ j supp(θj).

The key to Shepard's method is the partition-of-unity in Eq. (16)
that allows for overlapping of local deformation models. Indeed,
Melenk et al. [105] improved finite-element methods by using PU
functions to construct overlapping elements, instead of dividing
the computational domain into disjoint parts. Similarly to Shepard's
method, Melenk also used a monomial basis. Melenk's inspired a
large number of applications in engineering. On the other hand, in
computer graphics, partition-of-unity and weighted least-squares
have been combined with other techniques such as octrees [100,106],
and variational methods [107] for point-based shape representation
[100] or approximation [107]. In computer vision, similarmodels have
been used for image registration [74,108,109], shape registration
[110], and fluid-flow estimation [19].

Fig. 7. Applications of radial basis functions. (a) Scattered data interpolation. (b) Nonrigid image warping. Image deformation is blended linearly from the radial basis functions
centered at the control points, without relying on the connections between them [92].

Fig. 8. Surface approximationusingWSLandpartition-of-unity [100]. The imagedomain is
divided into cubic subregions. In each subregion, local models (red curves) are
approximated from scattered sample points, while global model (green curve) is blended
from the local models using partition-of-unity.
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4.3.3. Moving least-squares (MLS)
Shepard's method was later extended by Lancaster et al. [111] to

form an interpolationmethod calledMoving Least Squares (MLS).MLS is
also based on local weighted least-squares approximation. However,
instead of blending together local models centered at discrete points,
MLS “moves” the approximation center, and calculates the weighted
least-squares fitting at each individual point. As a result, the global
deformation function f xð Þ is obtained as follows:

f xð Þ = fx xð Þ; min
fx∈Πd

m

∑
i
θ ‖x−xi‖ð Þ‖ fx xið Þ−fi‖

2
: ð18Þ

As in Shepard's method, MLS does not rely on explicit connections
between control points. In addition, MLS has two major features
that make it popular in engineering [58,89]: (1) the reconstructed
function in Eq. (18) is both continuous and smooth over the entire
problem domain when sufficient number of nodes are used; and
(2) MLS is capable of reproducing any polynomials up to the degree of
the basis monomials. MLS has been widely used in computer graphics
for shape representation [88,100,112], animation [59], and physics-
based simulation [87]. Due to the natural relationship between
computer graphics models and computer vision, there are a number
of emerging applications of MLS to vision problems. For example,
MLS-based meshless methods have been applied to analyze the
motion of a heart's left ventricle [26], feature-based image registration
[28,113,114], and 3-D reconstruction [115].

5. Modeling and regularizing continuum motions

In the previous section, we introduced various parametric models
for representing continuum deformation fields. However, these
models do not provide information about how objects deform. For
example, based on image data only, there can be many ambiguous
solutions leading to local minima in the image-similarity functional
(Eq. (1)). As a result, prior information is needed to constraint the
solution space. There are three types of prior information used for
continuum-motion estimation. First, physics laws and continuum
mechanics explain how elastic objects or fluid deform. Thus, they can
be used to augment image evidence, and provide a model-driven
approach for motion estimation. On the other hand, continuum-
motionmodels can also be statistically learned from training data, and
this can be regarded as a data-driven approach. Statistical models
are popular in shape reconstruction [116], segmentation [117], or
classification [13]. However, they usually do not provide enough
accuracy for motion estimation, and for fluid motion, the solution
space often has very high number of free-dimensions that prohibit
learning of any meaningful statistical model. In this survey, we do not
provide further discussion of statistical models. An alternative
approach for including prior information is to use simple heuristics.
For example, many existing works assume the deformation function
to be smooth. Heuristics are often expressed as variational functionals
to regularize the deformation field [1,56].

In general, physics models ensure deformation consistency, and
are able to produce physically meaningful deformations given initial
and boundary conditions [118,119]. Nevertheless, using these models
often involves solving higher-order PDEs, that can be computationally
expensive [9]. Physics models also make assumptions on material
properties such as elasticity, viscosity, and density [118,119], and
different models have different admissible objects. Statistical models,
on the other hand, make little or no physics assumptions. Instead,
prior information is directly learned from training data, and motion
estimation is formulated as the problem of maximizing the posterior
probability given image evidence [13,117]. A drawback of statistical
models is their need to be trained beforehand, and that ground-truth
training data can be difficult to obtain. Finally, the use of heuristics can
be considered as aweaker prior than physics and statistical models, as

they only make very general assumptions about the deformation
[6,9,120]. Smoothness heuristics can be simple and efficient, but they
are also more sensitive to image noise and outliers.

It is worth pointing out that the boundary between these
approaches to solution regularization is not always clear. For instance,
in medical imaging [10,121], fluid-registration methods use fluid-
dynamics models as heuristics to regulate large image deformation,
although the target objects (human organs) are generally not fluid.
Also, statistical priors can be combined with smoothness heuristics
[122], leading to improved robustness, and they can also be used to
estimate material parameters for physics models. Finally, some
smoothness regularizers have physical meanings, e.g., thin-plate
energy.

5.1. Physics and continuum mechanics models

Physics and continuum mechanics provide natural prior infor-
mation for continuum motion, based on fundamental physical laws
[119] such as the conservation of mass, conservation of momentum,
and conservation of energy. By applying these laws to fluid or elastic
objects, differential equations can be derived to describe their dy-
namic behavior. In Section 3, we have already discussed the appli-
cation of mass constancy in both fluid [6] and elastic objects [36].
These applications, however, only use the relationship between the
deformation's divergence and image-intensity variation, and this
relationship is not related to the objects' dynamics. In this section, we
introduce two of the most popular models in continuum-motion
estimation, namely, the elastic solid mechanics model, and the fluid
Navier–Stokes equations [123].

5.1.1. Elastic solid mechanics
Elastic models have been used in nonrigid image registration and

computer graphics for many years [124,125], and they are popular in
medical imaging applications [2,126,127]. In fact, medical imaging is
mostly concerned with elastic biological tissues, and the modeling of
these tissues using elastic-solid mechanics is an important subject in
biomechanics [70]. Due to the large amount of work using elastic-
physics models, our survey focuses on the most typical assumptions
and applications.

Most elastic models assume the source image to be an isotropic-
elastic continuum with linear elasticity, i.e., the material stress is
proportional to its local infinitesimal deformation (i.e., strain).
Formally, the strain tensor ! can be calculated from the divergence

of the deformation, i.e., ! =
1
2

∇u + ∇uð ÞT
h i

, and the stress tensor σ
is the inner product of the constant material stiffness tensor C and
the strain tensor, σ = C⋅! (Hooke's law). The 1-D case of the linear
elasticity is equivalent to the deformation of a spring.

For motion estimation, elastic models are often used in two
different ways. On one hand, the elastic potential ∫ΩσT ! dΩ can be
used as a regularizer [70,128,129] to penalize undesired variations in
the estimated deformation field. In this case, elastic models are
usually combined with a data term describing the similarity between
the warped source image and the target image, and the deformation
field is obtained by minimizing a variational functional. As discussed in
Section 3, the similarity measure can be squared-sum-of-differences
(SSD) [70,129] or the mutual information (MI) [31,38,73].

On the other hand, elastic models can also be used to propagate
deformation from landmarks' motion, where correspondences of
landmarks or image features are given as boundary conditions. Then, a
dense deformation field is obtained by solving the equilibrium
equations [130,131] (also called Lagrangian equations [26,27]), in-
stead of solving the inverse problem directly. Some existing works use
image evidence as external forces [132], but many others only select a
sparse set of salient features as landmarks, obtain their correspon-
dences, and enforce the correspondences as boundary conditions to

518 W. Liu, E. Ribeiro / Image and Vision Computing 29 (2011) 509–523



the equilibrium equations [26,27,130,131]. Generally speaking, this
approach is a direct extension of the methods used in both mechanics
engineering and computer graphics.

5.1.2. Navier–Stokes equations
The Navier–Stokes equations describe the motion of fluid sub-

stances, and they are derived from the law of momentum conserva-
tion, together with the assumption that the fluid stress is the sum of a
diffusing viscous term, plus a pressure term [118]. Formally, a basic
form of the equation is given by:

ρ
Dv
Dt

= −Δp + Δ⋅T + f; ð19Þ

where v is the velocity field, ρ is the fluid density, p is the pressure,T is
the stress tensor, and f represents the body forces. The physical

meaning of Eq. (19) is straightforward. On the left-hand side,
Dv
Dt

describes the fluid acceleration, and the right-hand side of the
equation is the summation of the body forces and divergence of
stress (i.e., pressure p and shear stress T). The basic form in Eq. (19)
has many variants for different types of fluids (see [118,119] for more
details).

The Navier–Stokes' equations and their variants have been used in
fluid-motion estimation. For example, Cuzol et al. [3,133] represented
fluid flows with a sparse set of singular points (i.e., vortices and
sources). These singular points form the boundary conditions for the
flow field, and the dense fluid motion can be efficiently estimated or
tracked, by solving the Navier–Stokes equations. Motion estimation
can also be formulated as a filtering or an optimal control problems
[134,135]. In this case, Navier–Stokes' equations become the system
equations, while the image evidence is used as feedback.

Navier–Stokes equations are also used for registering medical
images undergoing large deformations [10,121]. Here, the source
image is modeled as a viscous fluid, and gradually deformed into the
target image. Unlike the elastic solid model that penalizes local
deformation proportionally to its magnitude, Navier–Stokes equa-
tions are not biased towards small deformations, yet they still ensure
spatially smooth deformations. As for some elastic solid models,
image evidence provides external forces, i.e., f in Eq. (19). For
example, Christensen [10] proposed the first nonrigid image regis-
tration method based on fluid dynamics, where the external force is
derived from image gradients. Agostino et al. [121] extended this
work to 3-D, and derived the external force from mutual information.

5.2. Smoothness regularizers

In many motion-estimation problems, high accuracy can be
achieved by simply regulating the deformation's smoothness. Horn
et al. [1] proposed the classic smoothness regularizer for optical-flow
estimation. Horn–Schunck's optical-flow estimation method can be
formulated as the minimization of the following functional:

E = ∫
Ω
‖I′ x + uð Þ−I xð Þ‖2dx

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Data Term

+ λ∫
Ω

*****

*****
∂u
∂x

*****

*****

2

+

*****

*****
∂u
∂y

*****

*****

2

;

 !

dx

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Regularizer

; ð20Þ

where the regularizer penalizes the deformation field's spatial
variation, and λ controls the relative importance of the regularizer.
Horn–Schunck's regularizer has two problems. First, it does not
handle outliers robustly, and thus tends to over-smooth motion
boundaries for general optical-flow computation. However, this is not
a serious problem for continuum motion, and can be addressed using
robust statistics [30], or changing the regularizer to the L1 norm [52].

Secondly, Horn–Schunck's regularizer is biased towards piecewise-
constant deformations, as this one is indeed the only deformation
field that makes the regularizer term vanish.

There are two higher-order regularizers commonly used in
continuum-motion estimation. For elastic solids, the most commonly
used regularizer is based on second-order derivatives. In 2-D, this
regularizer takes the following form [56]:

Csmooth = ∫∫
Ω

∂2u
∂x2

 !2

+
∂2u
∂y2

 !2

+ 2
∂2u
∂xy

 !2" #
dxdy: ð21Þ

The regularizer in Eq. (21) is not biased to piecewise-constant
deformations, and it resembles the stress energy of an elastic thin-
plate [68]. In the case of fluids, a second-order regularizer can be
defined by penalizing the spatial variation of the deformation's
divergence and rotation [6], i.e.,

Csmooth = ∫Ω ‖∇div u‖2 + ‖∇rot u‖2
% &

dx: ð22Þ

This regularizer was first used for data approximation [136], using
so called vector-splines. Suter et al. [22] extended it for optical-flow
computation, and then it was applied to fluid-motion estimation by
Corpetti et al. [6,20]. Some recent works on fluid-motion estimation
also use this regularizer [9,19,120]. Meanwhile, the vector-spline
regularizer was used in medical image registration [137,138].

6. Quantitative evaluation

In the previous sections, we have reviewedmany existingmethods
for estimating continuum motion, and compared their strengthens
and weaknesses. However, we did not comment on the problem of
how to quantitatively evaluate these methods. Extensive quantitative
evaluation that includes all motion estimation methods is difficult to
obtain due to a number of reasons. In this section, we first introduce
the challenges in evaluating continuum-motion estimation methods,
and then we summarize existing evaluation methodologies and
approaches.

6.1. Challenges in quantitative evaluations

First, the performance of a motion-estimation method depends on
all of its three components: similarity measure, deformation model,
and regularizer or prior information. It is difficult to single out the
contribution of individual components, and finding the best combi-
nation of these components is still an unsolved problem. Thus, it is
common for researchers to limit the scope of their evaluation by fixing
components of the compared methods. For example, Penny et al.
[139] compared six similarity measures used in 3-D to 2-D image
registration, by limiting the deformation to a rigid transformation.

Secondly, there are many intertwined and even conflicting goals in
designing motion-estimation algorithms. For example, trade-offs
between computational efficiency and accuracy are common. Fur-
thermore, depending on the application, there are other designing
goals that are equally desirable, and sometimes even more important.
In medical image registration for instance, the ability to produce
diffeomorphic deformations is indispensable for computational
anatomy [140], despite the fact that diffeomorphic registration
methods may produce less-accurate results [141] in comparison
with their non-diffeomorphic counterparts.

Finally, the problem of continuum-motion estimation includes a
large range of applications. Even though the general principles of
continuum motions apply, one still faces different challenges in each
application as well as the need to use datasets of different nature. In
medical image registration, it is well known that performance of
registration methods varies with image modalities (e.g., MRI and CT)
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and the type of registered objects (e.g., brain, breast, and lungs) [2,39].
Similarly, fluid-motion estimation methods that perform well on PIV
images may produce poor results on satellite images [6,17].

Due to these challenges, quantitative evaluations of continuum
motions often focus on specific applications and datasets [17,141],
that are worthy dedicating an entire paper [141–143] to describe their
evaluation methodologies, datasets, and settings. In this survey, we
find it more helpful and plausible to provide a road-map for future
investigation, by summarizing existing evaluation methodologies
and datasets, instead of attempting to provide a single universal
evaluation.

6.2. Methodologies and datasets

Existing quantitative-evaluation methodologies can be classified
into direct and indirect methods, depending on the availability and
usage of ground-truth data. If ground-truth motion data is available,
then the estimatedmotion can be directly comparedwith it. However,
obtaining ground-truth data for real-world motions is notoriously
difficult. Thus, researchers sometimes resort to simulated image
sequences where motion data is readily available [144,145]. Still,
synthetic datasets are rather limited and simplistic in comparison
with real-world applications, so they are commonly used for base-
line evaluation. In this case, many error metrics can be used to
measure the estimation results' accuracy, such as the classic L1 and L2
metrics [17], and the angular and end-point error used in optical-flow
benchmark evaluations [51].

In many other cases, ground-truthmotion data is not available, but
comparison of estimation methods can still be performed based on
some high-level indirect measurement, especially when motion
estimation is used as a preprocessing step. For example, in medical
image registration, the estimated deformation is often used to
propagate image segmentation labels from a template image to the
registered target images. Then, motion-estimation results can be
evaluated by the quality of propagated labels, according to the
percentage of overlapping between the propagated segmentations
and the manually labeled ground-truth segmentations [141,142,159].
Motion estimation results can also be indirectly evaluated according
to their applications in object recognition [160], or feature tracking
[3,156]. In Table 3, we compiled a list of popular datasets for
evaluating continuum-motion estimation methods together with
some representative evaluations performed on those datasets. This
table is by no means a complete list of all available datasets, but
provides a broad view of such resources and applications that should
be useful for those who are embarking in the study of this rich subject.

7. Discussion and conclusion

In the previous sections, we provided a review of continuum-
motion estimation methods. Despite the large number of existing
works in continuum-motion estimation and analysis, there are still

many open problems.Wewould like to conclude this survey bypointing
out a number of possible directions for future study. To summarize,
these directions are:

1. Diffeomorphic motion estimation.
2. Motion estimation with missing or partial data.
3. GPU-based real-time motion estimation.
4. Validation and benchmarking of motion estimation algorithms.

Most existing works on continuum-motion estimation are focused
on producing smooth deformation fields. Emerging applications such
as computational anatomy [161] requires the deformation field to be
not only smooth, but also invertible [162]. In other words, the nonrigid
mapping is diffeomorphic, and there is an one-to-one correspondence
between the source image and the deformed target image. Recently,
diffeomorphism has been mainly studied in the context of medical
image registration [140,147,159,162]. Rueckert et al. [162] extended
the B-spline-based registration method [56], and produced invertible
registration results, by enforcing the deformation field's Jacobian
matrix to be positive-definite. Ashburner [159] extended fluid-
registration methods [10,121] by using an invertible fluid dynamic
system to regulate the deformation field. Following these ideas, it is
interesting to see how diffeomorphism can be enforced in other
existing registration methods, especially meshless methods [29,74].

In clinical practice, medical image registration algorithms may
have to work with images with missing or partial data due to image
noise, occlusion, and other clinical conditions [163]. Most existing
works use variational methods with robust kernel functions [163] to
reduce the influence of outliers, or train a statistical model from
ground-truth data [146]. Variational methods are less robust and less
efficient than their statistical counterparts, while statistical methods
require large amount of training data which are expensive to obtain. A
promising direction might be to combine the variational framework
with statistical models. Thus, the robustness of variational methods
can be improved, while training requirements of statistical models
can be reduced.

A common drawback of recent nonrigid motion estimation
methods is their high computational cost, limiting their usage in
real-time and interactive applications. With the development of
graphics processing unit (GPU), many vision computations can be
implemented as parallel algorithms running on affordable consumer
graphics cards. Zach et al. [52] implemented a real-time optical-flow
algorithm based on GPU. Parallel implementations of nonrigid image
registration algorithms are even more appealing since most registra-
tion algorithms are concerned with 3-D image data that demand
more computational power [164–166]. GPU implementation of fluid-
motion estimation algorithms have been mostly focused on classic
window-based cross-correlation methods [167], and little attention
has been given to recent variational methods that produce state-of-
the-art results.

Finally, despite the large number of studies in nonrigid image
registration and fluid motion estimation, evaluation methods and

Table 3
Public available datasets for quantitative evaluation.

Dataset Description and evaluations

BrainWeb [144] 3-D brain MRI images undergo simulated deformations. Fluid registration [121], spline models [146], and diffeomorphic Demons [147].
YORKU [148] 3-D cardiac MRI image sequences. Meshless [109] and polynomial models [54]
Visible Human [149] CT images and 3-D human body models. Biomechanical models for registration [150] and simulation [151,152]
LPBA40 [153] Brain MRI data with manually labeled segmentations. Volume-based and surface-based registration [141,143].
EUMETSATa Satellite images obtained from both visible- and invisible-channel sensors. Second-order regularizer [6], and vector-spline model [9].
PIV-STD [145] 3-D synthetic PIV images. Variational fluid-motion estimation [17]. Physics-based spatial–temporal regularization [154].
FLUIDb Synthetic and experimental PIV image sequences. Fluid tracking [133] and vector-spline model [9].
MMIc [155] 2-D facial expression image sequences. Robust estimators for tracking facial expressions [41]. FFD-based surface registration [156].
BU-4DFE [157] 3-D range data with color texture of facial expressions. 3-D face tracking based on mesh models [158].
a http://www.eumetsat.int/.
b http://www.fluid.irisa.fr.
c http://www.mmifacedb.com/.
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benchmarks for comparing different algorithms are relatively limited.
On one hand, ground-truth data for nonrigid motion estimation is
difficult to obtain. As a result, many researchers use synthetic
images for evaluation [9,168,169]. On the other hand, due to the
large number of different applications of motion estimation, many
algorithms were evaluated in different context with different goals
[170]. For example, in medical imaging, registration algorithms have
been evaluated in the tasks of segmentation [57], deformation
predication [159], and classification [146]. There have been recent
efforts for providing a unified evaluation framework and dataset for
nonrigid registration methods [142,169]. However, datasets are still
mostly synthetic, and the availability of a dataset containing real-
world ground-truth, like the one available for optical-flow computa-
tion [51], is highly desirable.
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