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Abstract—We propose a method to recognize pollen grains
using a two-stage classifier. First, texture classification categorizes
the pollen grains into sub-groups. Then, a final classification
of individual pollen types is done by segmenting the image
int multiple layers of regions for each pollen image. The main
novelty in our method is threefold: (1) Adopting two successive
classification stages. (2) Combining hierarchical clustering and
SVM algorithms to merge similar pollen types into sub-groups.
(3) Adopting a layering approach prior to performing feature
extraction. The combination of these aspects gives excellent
results. We evaluated our method using 1,063 light-microscopy
images of pollen grains from 30 species. The results show that: (1)
the layering technique increases the classification rate by almost
almost 7% over using the same features directly. (2) adopting two
classification stage increases the classification rate by 6%. (3) the
proposed system outperformed traditional techniques.

I. INTRODUCTION

Pollen is a granular substance that carries male reproductive
cells of plants. Well known for causing respiratory allergies,
pollen is also key to a number interesting applications. For ex-
ample, by analyzing fossil pollen from soil collected from the
bottom ancient lakes, ecologists map past climate dated over
thousands of years [1]. Pollen from archaeological sites give
archaeologists clues about vegetation and climate [2]. Forensic
scientists solve crimes by geo-locating pollen collected from
crime scenes [3]. Pollen also plays a role in energy exploration
as it can point the way to petroleum fields [4].

Most applications of pollen analysis, a study field called
Palynology, require the counting and identification of pollen
species. Currently, palynologists identify pollen visually,
spending hours looking at pollen through microscopes while
measuring visual attributes such as shape, texture, and orna-
mentation [5], [6]. Automating pollen-identification was first
proposed by Flenley [7], and can drastically increase research
throughput in Palynology and related areas.

Early automated approaches to pollen identification fo-
cused on measuring morphological and texture characteristics
of pollen grains. Treloar et al. [1] measured grain’s shape
roundness, perimeter, and area to classify 12 types of pollen
from scanning electron microscopy (SEM) images. This work
was then extended by Li et al. [8] to include measurements
of visual texture for characterizing pollen grains in light-
microscopy images. Here, texture characteristics were based
on gray-level co-occurrence statistics.
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Newer approaches to pollen classification have used a
combination of visual cues. For example, Lagerstrom et al. [9]
used shape, geometry, and texture to classify 15 pollen types
from light-microscopic images. Lagerstrom et al.’s measured
43 characteristics including histogram statistics, moments,
grey-level co-occurrence, and multi-scale multi-orientation
Gabor features. Marcos et al. [10] combined gray-level co-
occurrence, Gabor features, local binary patterns, and moments
to classify 15 pollen types. While there has been good progress
towards the development of an automated system for pollen
classification pollen, the problem remains largely unsolved.
Additionally, most existing methods have been tested only on
a few pollen types (i.e., from 5 to 17 types).

In this paper, we describe a pollen-classification method
that uses various attributes of the grain in a multilayer de-
composition of regions in the pollen image. Here, we use a
hierarchical-classification scheme. Our method’s first stage use
texture attributes to pre-classify pollen grains into subgroups.
The second stage further classify the pollen in each subgroup
using a region-clustering technique (i.e., region segmentation).
This segmentation decomposes the pollen grain into multiple
layers from which we extract features that finally classifies
pollen types individually. We tested our method using 30 types
of pollen in a dataset of 1,063 images. Figure 1 shows one
sample from each pollen type in our dataset. The proposed
method achieved a classification rate of 94%, which is among
the highest classification rate obtained in this problem.

II. OUR METHOD

We propose a multi-layer hierarchical classifier to classify
pollen grains. Recognition is done in two phases of classifica-
tion. The first phase pre-classifies pollen into subgroups using
texture features. The second phase decomposes the pollen
images into multiple layers of regions using segmentation.
Finally, features are extracted from each layer to classify
pollen species individually within each subgroup.

A. Feature extraction

Our method’s two-stage recognition process aims at de-
creasing the confusion caused by trying to classify a large
dataset directly. The first stage divides the dataset into two
subgroups using texture classification. The Leung-Malik filter
bank [11] is used to describe the visual texture of the pollen
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Alternanthera filifolia Apium leptophyiluum Bursera simaruba

Unonopsis floribunda

Bidens triplinervia Chaenoctis sterioides

Clibadium surinamensis

Mauritia flexuosa, Mauritiella armata

Puya roldanii

Dilenia indica Euphorbiaceae manihot Exotheca paniculata

Pinus palustris

Psychotria nervosa

Vibrinium oboratum
- %
-

Ambrosia arborenscens

Dictyocarium sp. Euterpe edulis Iriartea deltoidea

Sabal palmetto Syagrus botryophora Urera elata

Fig. 1. A sample of each pollen type of our dataset. The dataset has 1,063 images of 30 pollen types, provided by the Florida Tech’s Paleoecology Laboratory.

grains. This filter bank has 48 filters which are divided into two
groups: 36 oriented filters and 12 circular filters. The oriented
filters are created at 6 orientations, 3 scales, and 2 phases.

Pollen images are convolved with the filter bank to produce
48 responses for each image. Then, a local binary pattern
histogram [12] is extracted for each response map to build
a feature vector for each pollen grain sample. Figure 2 shows
the block diagram of the feature extraction in the first stage.
After creating the features vectors using texture information,
we train a classifier using images of pollen-grain subgroups.
Using hierarchical clustering and SVM algorithms, we divide
the pollen grains into two groups. The first group includes 13
pollen types, and the second group contains 17 pollen types.
After that, the individual pollen-grain types are classified
within each subgroup. Prior to this individual classification,
the quality of the pollen images is enhaced using histogram
equalization, which increase contrast of image intensities.

Then, we cluster the pollen image into multiple layers of
regions. Here, we use a modified version of the K-means algo-

rithm. To keep layers of regions of similar pollen consistent,
we sort the resulting clusters based on the gray-level intensity
of their means. The final set of regions is given by:

R={Li,Ly,...,Lq}, (1)
where d is the number of layers and L represents an individual
layer of a pollen-grain image, with L; = {¢;,V;}. Here, ¢;
is the cluster center of the i-th layer, and V; are the pixels
inside cluster ¢. We re-order set R according to the intensity
of the cluster centers. This sorting process helps keep the
order of the layers consistent, from darker to lighter regions.
Feature extraction is done on each layer to create a feature
vector for the pollen image. We use various features. Local
binary pattern histogram and fractal dimension are used to
describe each layer. In addition, gray level and histogram
statistics are extracted and combined to create features. We
calculate the fractal dimension of decomposed images using
the Hausdorff algorithm [13]. Figure 3 shows a diagram of the
feature extraction used in the second stage.
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Fig. 2. Feature extraction in the first stage. Each pollen grain is convolved with the filter bank to create 48 responses. For each response, a local binary

pattern histogram is extracted. These histograms form the final feature vector.

B. Group-merging technique

Two stages of classification are adopted in this work.
The grouping procedure is implemented by combining an
agglomerative-clustering algorithm and the SVM classification
technique. First, each pollen-grain type is considered as one
group. Then, we measure the similarity among the groups
to combine the two closest groups together. Using a greedy
approach, we re-measure the similarity of groups at each
step to merge the closest two groups until all similar groups
are merged together. This technique is similar to that of
hierarchical clustering [14]. However, we choose the confusion
matrix as a similarity distance. Algorithm 1 summarizes the
steps of the group-merging technique.

By using the above grouping procedure, we can divide our
pollen dataset into two subgroups. The first group contains
13 pollen types and the second contains 17 types. The major
benefit of the grouping technique is revealed when we train the
multi-class classifier according to ECOC technique. Instead of
training a 30-type classifier, which needs 435 binary classifiers
(Equation 3), we train two types classifiers.

Algorithm 1 Subgroup categorization from texture features

1: Apply convolution process between pollen grain images
and the filter bank.

2: Create feature vectors by extracting local binary pattern
histogram from each map response.

3: Define each pollen grain type as a subgroup.

4: Train SVM classifier to build texture classifier.

5: Compute confusion matrix to measure the similarity
among the groups.

6: Check all the off-diagonal elements of the confusion
matrix to find the two closest subgroups.

7: Combine the closest two subgroups in a new subgroup.

8: Repeat steps 4,5,6, and 7 until all the off-diagonal ele-
ments of the confusion matrix are zeros (i.e., there is no
similarity among the merged subgroups).

C. Classification

Our method uses two types of classification technique: a
single multi-class classifier approach, and an ensemble of
muti-class classifiers. The initial results are implemented using
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Fig. 3. The block diagram of features extraction method in the second stage. First, histogram equalization is used to to enhance the contrast of the image
and then clustering process is performed to decompose the pollen grain into layers. Finally, we extract a feature vector from each layer.

SVM as a single multi-class classifier. Then, an ensemble-
classifier technique is also implemented in this work.

a) Support vector machine (SVM).: Let D be a training
dataset consisting of n samples of the form:

D= {(xuyl)"rl S vayi € {17 _1}}7 (2)

where x is a training sample, y is its class label, and p is the
dimension of the samples [15]. SVM determines a hyperplane
in high-dimensional space that classifies the data into two
categories. This hyperplane is:

3)

where w and b are the hyperplane parameters, which are deter-
mined by finding the nearest samples to that hyperplane. These
samples are the support vectors and the distance between them
is the margin distance. The solution is a convex-optimization
problem that finds the hyperplane that maximizes the margin
between the two classes [16].

SVM is a binary classifier. To classify 30 classes of pollen,
we adopt the error-correcting-output-code (ECOC) technique,
which extends SVM to multiple classes. ECOC has two stages:

F(x;) = whaz; + b,

coding and decoding. In the coding stage, we use a one-versus-
all technique to build the codeword for each class. The number
of binary classifiers trained with K class is:

N =K(K —1)/2. (4)

In the decoding stage, we adopt a loss-based function to
predict the class label by minimizing the sum of the binary
losses of the trained binary classifiers [17], i.e.:

N

k = argmin Z Imilg(meg, s;),
k -
j=1

®)

where k is the predicated label, my; is the element of the
coding matrix, s; is the score of the trained binary classifier,
and g is the binary loss function.

b) Ensemble of classifiers.: Ensemble methods build a
set of classifiers and then combine their prediction results [18].
Methods for combining classifiers include majority voting, and
weighted majority voting. Sometimes a separate classifier is
learned to find the final result. Accuracy and diversity are
required conditions in the ensemble-of-classifiers technique to



provide performance improvement [19]. The intuition behind
the performance improvement is the diversity of the combined
classifiers [18]. The accuracy depends on the classifiers that
are used to construct the ensemble technique. Diversity can be
achieved in many ways such as manipulating the training data
and the feature space. In this work, we use the most popular
ensemble techniques: Bagging, adaptive boosting, random
forests, and stacking. Next, we summarize these techniques.

Bagging is the simplest method to re-sample the training
data to train multiple base classifiers. Here, bootstrap re-
sampling creates different copies of training data by randomly
drawing a subset from the original data with replacement to
achieve diversity [20]. Each subset of the training dataset is
used to train a base classifier.

Adaptive boosting transforms the training data by assigning
different weights to each training data subset. Multiple weak
classifiers are learned. The samples that are misclassified using
the first weak classifier are given large weights to increase their
change to be more likely re-sampled in the next classifier [21].

Random forest uses a decision tree as a base classifier.
Similar to the bagging technique, bootstrap is used to perform
training data re-sampling. However, the main difference is that
random forest uses a random subset of the features. Random
selection of features is also called bagging of features [22].

Stacking achieves diversity by adopting different classifi-
cation algorithms instead of choosing a single predictor as a
base classifier of the ensemble. In addition to doing majority
voting, a separate learner predictor is trained to combine the
output of the trained classifiers [23].

III. RESULTS

We divided our dataset into 75% for training and 25%
for testing. The dataset was used for testing our method and
also for comparing it with a number of approaches using our
pollen dataset. These traditional approaches segment the pollen
grains and perform features extraction directly to perform the
classification process. We used the following features: his-
togram features (i.e., mean and variance of histogram), gray-
level statistics (i.e., mean,variance, and entropy), geometrical
features (i.e., area, perimeter, compactness, roundness, and
aspect ratio based on minor and major axes), fractal dimension,
gray level co-occurrence matrix (GLCM), moments invari-
ant, Gabor features, histograms of oriented gradient (HOG)
descriptors, and local binary pattern histogram (LBP). After
performing feature extraction, we trained a support vector
machine classifier based on these features.

Additionally, we compared our method with two approaches
in the literature that combined multiple features: Marcos’s
method [10] and Silva’s work [24]. Marcos combined gray-
level co-occurrence matrix, Gabor features, local binary pat-
terns, and discrete moments. Silva decomposed pollen grains
into four layers using wavelets and then computed gray-level
co-occurrence matrix to create features vectors. Table I shows
the classification rates of this comparison.

To try to increase classification rates and analyze the suit-
ability of the classification algorithms, we repeated the training

TABLE I
CLASSIFICATION RATES

Method Classification (%)
Histogram features,Gray level statistics 70.97%
Geometrical features,fractal dimension 71.97%
Gray level co-occurrence matrix 51.34%
Moments invariants 44.59%
Gabor features 67.36%
HOG 62.34%
LBP 77.07%
Silva’s Method 67.36%
Marcos’s Method 78.92%
Histogram, gray-level statistics, fractal dimension, LBP 80.19%
Our proposed Method(using one stage) 86.94 %
Our proposed Method(using two stages) 93.32%

step using different classification techniques. In addition to
support vector machine, the random- forest classifier was used.
Bagging and adaptive boosting were used to train multiple
classifiers of the same type. Finally, stacking was implemented
to train different classifiers such as support vector machine,
K-nearest neighbors, linear discriminate, neural network, and
decision tree. Majority voting was adopted to classify the test
samples in the testing phase.

TABLE II
CLASSIFICATION RATE USING DIFFERENT CLASSIFIERS

Classification algorithm Classification Rate

Support Vector Machine 93.32%
Adaptive boosting 72.46%
Bagging of Decision Tree 92.08%
Random Forest 92.83%
Bagging of SVM 93.07%
Stacking of SVM,KNN,LDA,DT, and ANN 94.12%

To show that our method is an improvement over traditional
approaches, we compared the multi-layer hierarchical tech-
nique with a feature-combination method that used histogram,
gray-level statistics, fractal dimension, and LBP as features.
This method achieved a 80.19% classification rate. After we
applied a significance test, the P-value was 8.65 x10~" which
rejected the null hypothesis. Additional classification metrics
are shown in Table III including average of precision, recall,
sensitivity, specificity, and F-score [25]. Figure 4 illustrates the
recognition rate of individual species for both the proposed
method and one using features combination.

TABLE III
EVALUATION MEASUREMENTS

Method Precision Recall sensitivity  specificity  F score
Features combination 81.16% 79.68% 79.68% 99.31% 79.31%
Our Method 94.58% 93.33% 99.33% 99.78 % 93.59%

IV. CONCLUSION AND FUTURE WORK

We proposed a method to identify pollen grains in im-
ages. Our method uses a two-stage classification approach.
In the first stage, the method pre-classifies pollen species
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Fig. 4. Recognition rate for each species.

into two broad groups based on texture appearance. This pre-
classification stage converts the large classification problem
into two simpler subproblems. In the second stage, the method
classifies pollen using a decomposition technique that creates
multiple layers for each sample. A set of features were
used to describe each layer to create features vector that
represent pollen grain images. Experimental results showed
that our method has superior performance over the traditional
techniques. For future work, we plan to use different layer-
decomposition techniques and add classification stages to
create more subgroups.
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