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Abstract—In this paper, we address the problem of visual
tracking in videos without using a pre-learned model of the
object. This type of model-free tracking is a hard problem because
of limited information about the object, abrupt object motion,
and shape deformation. We propose to integrate an object-
agnostic prior, called objectness, which is designed to measure
the likelihood of a given location to contain an object of any
type, into structured tracking framework. Our objectness prior
is based on image segmentation and edges; thus, it does not
require training data. By extending a structured tracker with
the prior, we introduce a new tracker which we call ObjStruck.
We extensively evaluate our tracker on publicly available datasets
and show that objectness prior improves tracking accuracy.

I. INTRODUCTION

Tracking objects in video is a computer-vision problem
whose solution underpins many practical applications in-
cluding augmented reality and video surveillance. Tracking
approaches can be model-based or model-free. Model-free
approaches start tracking with no information about the object,
except for its initial position in an image. To pursuit the
object across frames, model-free trackers must adapt to object’s
changing appearance as the object deforms, becomes occluded,
changes shape and size. It is unsurprising that the best trackers
in benchmarks [18, 27] were adaptive.

Adaptation ability of modern trackers is achieved by using
semi-supervised learning algorithms, where unlabeled data
(i.e., object’s location in an image) is used for the training
(i.e., tracker detects object then uses it for adaptation). Trackers
based on various semi-supervised learning algorithms such
as multiple-instance learning [2], structured support vector
machine [12], Gaussian-process regression [11] were proposed.
However, reliance on unlabeled data for adaptation can cause
trackers to learn incorrect object appearance once it makes a
single mistake - a problem known as drift.

Drift is addressed in many ways. Wen et al. [25] perform
joint tracking and segmentation in a unified energy minimiza-
tion framework. Lee et al. [20] choose the most consistent
trajectory from a set of trajectories based on texture, color, and
illumination. Trackers based on cascade of classifiers were also
considered. The tracker [11] uses a latent variable to control its
state and consists of two regressors that are fused to perform
detection. The two regressors model long and short-term object
appearances, so one is updated aggressively on each frame, and
the other is updated conservatively. Inspired by the Atkinson-
Shiffrin’s model of the human memory, Hong et al. [14] cast
tracking as a short and long-term memory retrieval. The short-
term component adapts to the changing object appearance on-
the-fly while the long-term component stores a stable object

model. However, drift remains unsolved.

In this paper, we improve tracking-by-detection by includ-
ing object-agnostic measures to it. These measures indicate the
potential for an object to be in a given image location. They are
known as objectness, and were first used for object detection
[1]. The two objectness measures we use are straddling and
edge density. The measures are well-suited to tracking as
they are fast to compute and do not need training data.
We summarize our contributions as follows: (i) We increase
tracker’s robustness to drift by adding an objectness prior that
penalize locations that are unlikely to contain an object. (ii)
We show that, because they are fast to compute, straddling and
edge density can be used on all locations considered by the
tracker, without resorting to pruning heuristics (iii) Based on
extensive tests done on benchmark datasets by Wu et al. [27,
26] and by Kristan et al. [19], we show that our objectness
prior improves various tracking metrics.

II. RELATED WORK

Our tracker is based on the structured tracker by Hare
et al. [12]. It uses the structured support vector machine to
build the object’s appearance model in an on-line manner. The
model is built using selected features such as histograms and
Haar features. To run in real time, the number of support
vectors is fixed. In a recent benchmark [27], the structured
tracker achieved state-of-the-art results. Also recently, adap-
tive correlation filters gained attention after their successful
application to visual tracking [4, 13, 21, 9]. Trackers based on
correlation filters detect objects by finding the image location
that maximizes the correlation response. After their introduc-
tion by Bolme et al. [4], correlation filters were extended
to use kernels [13], and to work on multiple scales [21, 9].
Alternatively, Gao et al. [11] used Gaussian-process regression
for tracking.

Model-free trackers use limited information about the
object. We can make up for this limitation by providing
extra cues about the object to the tracker. Saliency cues or
“objectness” of the bounding box can help the tracker to detect
objects. Objectness is an object-agnostic measure of how likely
is the bounding box to contain any object [1]. In object-
detection approaches, objectness serves two functions: to prune
bounding boxes that are unlikely to contain objects and to serve
as a prior for recognition on a set of bounding boxes. For a
saliency detection survey, see [6]. Carreira and Sminchisescu
[7] generate object proposals by doing segmentation, after
which segments are ranked according to attributes such as
region, graph partition, and Gestalt laws. Endres and Hoiem
[10] ranks object proposals using the structured SVM with a
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Fig. 1: Our tracker. Left column (top) shows the image with the ground-truth bounding box, while the bottom shows the part of
the image that is used for the tracker’s search step. The second column shows the images that correspond to support vectors and
their coefficients. In the middle, the result of the segmentation and edge detection are shown. The third column shows locations
where the bounding box is more likely to be based on the straddling measure and edge density. The last column shows a linear
combination of the discriminative function and objectness measures.

modified loss function. While these approaches work well on
object-detection benchmarks, they do not run in real-time, a
common requirement in tracking.

Proposal generation can be done in real time. Cheng et al.
[8] compute objectness at rates up to 300 fps. Their method
produces objectness proposals from a linear SVM learned
on small-size binarized normed gradients. In this paper, we
use straddling and edge density - unsupervised objectness
measures introduced by Alexe et al. [1]. Straddling assumes
that after segmentation, bounding boxes that fully enclose
segments are more likely to contain the object, unlike boxes
that divide segments. Edge density assumes that objects have
well-defined boundaries that are more likely to contain edges.
These two measures are well suited for tracking as they are
fast to compute and need no external data for training.

Including objectness in tracking is a hot topic. To detect
changes in scale during tracking, Huang et al. [15] used edge
boxes as a post-detection step. The tracker by Liang et al.
[22] fuses object-specific structured SVM with a structured
SVM based on BING features [8]. The method initializes the
objectness model from the weights learned on the VOG 2007
dataset. Zhu et al. [30] re-rank sampled boxes based on a
structured SVM learned using edge-box scores. Methods [15,
30] sample few bounding boxes (i.e., 200) as input for a

proposal-generation step. Our method, unlike [22], uses unsu-
pervised objectness scores. Unlike trackers introduced by [15,
30], our tracker does not filter bounding boxes when applying
the objectness prior. This is possible because the objectness
measures we use are fast to compute - both straddling and edge
density are computed in constant time per bounding box, which
allows us to add the object-agnostic prior over all bounding
boxes sampled by our tracker.

III. TRACKER

A. Structured tracker

Our work builds on the structured tracker Struck by Hare
et al. [12]. Struck uses the structured support vector machine.
The learning step is done using the OLaRank algorithm by
Bordes et al. [5]. To keep computational complexity constant,
the total number of support vectors (i.e., the budget) is fixed.
The tracker has two steps. In the search step, the tracker
samples bounding boxes around the object’s predicted location
and then chooses the best location that matches the appearance
model. In the update step, it samples another set of bounding
boxes and updates the appearance model. During the search
step, our tracker samples fixed-size bounding boxes throughout
the image, while varying the aspect ratio (e.g., one of the
dimensions). Let b = {cx, cy, wprev, hprev} be a bounding box



where (cx, cy) is the location of the bounding box’s center, and
(w, h) are its dimensions. Given the object’s bounding box in
the previous frame, bounding boxes for search and update are
sampled from the following set:

B(m,n,R,w, h) = {b = (c

0
x, c

0
y, w, h)}, (1)

such that � 2 [0,

2⇡
m , . . . , 2⇡] and ⇢ 2 [0,

R
n , . . . , R], with c

0
x =

cx + ⇢ cos� and c

0
y = cy + ⇢ sin�. Our tracker’s features are

a combination of histogram-of-oriented gradients (HOG) and
grayscale histograms. These features are similar to those used
by Hare et al. [12]. We also use fast implementation of an
intersection kernel [23].

B. Robust Kalman filter

To improve the tracker’s robustness to both false-positive
detections and short-time occlusions, we use the Robust
Kalman filter [24] with a constant-velocity model to correct
the location of the best-detected bounding box. Our correction
strategy is as follows. If the filter’s bounding box has a small
overlap (i.e., less than 50%) with the detector’s, the tracker
is not updated. Also, if the filter and detector disagree, we
perform the search step both in the neighborhood of the
tracker and in the neighborhood of the filter. This search
strategy allows our tracker to recover if the detector makes
a mistake. Using the robust variant of the Kalman filter is
important because the standard Kalman filter’s correction is
heavily affected by the detector’s bounding box which might
be wrong. In contrast, the filter’s robust counterpart allows us
to identify incorrect detections and limit their influence, which
helps the tracker recover subsequent video frames.

IV. OBJECTNESS MEASURES

Object tracking is closely related to object detection. In
tracking, the tracker not only has to find the best location of
the object, but also it needs to find its dimensions. Solving
these two problems simultaneously is hard because the tracker
must also handle variations of object scale. To help guide the
tracker through changes in object scale and shape, we propose
to use a objectness measure. Objectness is a measure of how
likely a given bounding box is to contain an object in an
object-agnostic manner. According to Alexe et al. [1], a good
objectness measure has at least one of the following properties:
(i) Be sensitive to the object’s boundary, and/or (ii) Capture
bounding boxes that look different from its surroundings.
We propose to use two objectness measures as a prior over
bounding boxes in the tracker’s search step. These measures
are straddling and edge density.

A. Straddling

Alexe et al. [1] suggested the use of superpixel segmenta-
tion for capturing closed boundaries in bounding boxes. Their
intuition is as follows. Ideally, a perfect segmentation separates
object from background. As a result, the bounding box that
contains such a segmentation, and does not divide other
segments into large parts is likely to contain the object. The
straddling metric captures the degree of which the bounding
box is cutting segments. Formally, let b = [cx, cy, w, h] be
a bounding box, also let S be a set of superpixels after

segmentation. Straddling [1] measures how much the bounding
box divides the superpixels:

s(b) = 1 �
X

i2S

min(|i \ b|, |i \ b|)
|b| , (2)

where s(b) 2 [0, 1], 8b. For a given boundig box b =

{cx, cy, w, h}, straddling is computed over smaller bounding
box enclosed in the b. This allows to make sure that the object
is completely contained within the larger bounding box, but
not on the exact boundry. Mathmatically, this is corresponds
to computing straddling over the bounding box parametrized
via scale, ✓, i.e.:

s✓(b) = s([cx, cy, ✓w, ✓h]). (3)

where ✓ < 1. Alexe et al. [1] compute straddling in time
proportional to the number of superpixels. The method uses
integral images and is independent of bounding-box location.
We use this fast method in our implementation.

B. Edge density

Edges can serve as an objectness measure [1, 31]. Here,
we use a metric based on the edges known as edge density [1].
Edge density is the fraction of pixels classified as edges in the
bounding box, divided by the perimeter:

e(b) =

P
(x,y)2Perimeter(b) edge(x, y)

2(w + h)

, (4)

where edge(x, y) is a binary mask with ones at edge pixels.
Edge masks are computed using the Canny edge detector. As
for straddling, we augment edge density with the scale:

e✓(b) = e([cx, cy, ✓w, ✓h]). (5)

For a given bounding box, edge density can also be computed
in constant time from integral images for horizontal and
vertical edges.

V. OBJECTNESS IN TRACKING

To include objectness in tracking, we use it as a prior in our
tracker’s search step. Let b = (cx, cy, w, h) be the bounding
box, and d(b) ! [0, 1] be a tracker’s detector function. In
our case, we normalize the scores calculated using structured
SVM’s discriminative function to lie in the range [0, 1]. To
find the best location in the current frame, we use a linear
combination of the detector, straddling, and edge density, i.e.:

ˆ

d(b) = d(b) + �ss✓(b) + �ee✓(b), (6)

ˆ

b = argmax

b2B

ˆ

d(b). (7)

where �s,�e 2 [0, 1] and B is the set of bounding boxes from
around the previous tracker’s location. Objectness measures do
not have explicit object-appearance information. Thus, �s,�e

contribute less than the tracker’s detector function. Figure 2
shows the difference between the discriminative functions of
the tracker with and without objectness measures.

Our tracker is designed to be robust to both partial oc-
clusions and false positives. Thus, if the filter’s and detector’s
bounding boxes have small overlap, we search in the neighbor-
hood of both. In this case, objectness priors may lead to more
false positives. Consequently, if filter and detector overlap less
than 50%, objectness priors are ignored.



Fig. 2: Comparison of the detection functions of ObjStruck and RobStruck as a function of center translation. Left column: original
image. Middle column: RobStruck discriminative function. Right column: ObjStruck discriminative function from Equation 6.

VI. IMPLEMENTATION

Tracker parameters We set the tracker’s learning param-
eters as in [12], i.e., C = 100, B = 100, nO = 10, and
nR = 10. Given a bounding box, HoG features are extracted
by resizing the image so that the bounding box’s height and
width of are both 32 pixels. HoG parameters are: Window
size is 32⇥ 32, block size is 16⇥ 16, cell size is 4⇥ 4, block
stride is 16 ⇥ 16, and the number of bins per histogram is 8.
Histograms on each level of the pyramid, L, are calculated
by first dividing the bounding box into L ⇥ L cells and then
concatenating resulting histograms into a feature vector. The
histograms are then normalized to sum to 1. Histograms are
calculated using 16 bins (i.e., we set L = 4). The total size
of the feature vector is 992, which is given by the sum of the
sizes of HoG features (512) and histograms (480).

Objectness parameters. To compute straddling, we crop
an extended area around the bounding box of a size of 60 extra
pixels in each direction of the bounding box. Then, superpixel
segmentation [3] is done with 200 superpixels. To calculate
edge density, we apply the Canny edge detector with the lower

threshold equal to 0.66 times the image mean, and the higher
threshold equal to 1.33 times the image mean. Parameters
�e,�s are set to 0.4, 0.3, respectively, which were chosen
empirically. In our experiments, any values of �e,�s 2 (0, 0.5]

increased tracking accuracy w.r.t. the baseline. ObjStruck runs
at 1.7 frames per second (FPS) with objectness priors and at
1.75 FPS without on a single-core 2.4 GHz processor.

VII. RESULTS

Evaluation metrics. We tested our method on benchmark
datasets [27, 26, 19]. The two most-common metrics for
tracking evaluation are precision and success rate. Precision
measures the average distance between the track and ground
truth. The ground truth is given as rectangular with known
center, width and height. For frame k, precision is defined as
the distance between the center of the tracked object, rt, and
the ground truth, rgt:

pk = ||rgt � rt||. (8)

The precision plot, P (�), shows the fraction of frames where
pt  �. Success rate, S(�), is a measure of overlap, which is
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Fig. 3: (a) Overlap metric on [27] dataset. (b) Precision metric on [27] dataset. (c) Overlap metric on [26] dataset. (d) Precision
metric on [26] dataset.

defined as the fraction of frames where
rt \ rgt

rt [ rgt
� �. (9)

Evaluation setup. In all experiments, to assess how ob-
jectness affects tracking, we compared our tracker with (i.e.,
ObjStruck) and without objectness measures (i.e., RobStruck).

A. OTB50 dataset

The dataset in [27] has 50 videos. It includes evaluations
of 29 different trackers such as MIL [2], SCM [29], and
TLD [16]. Additionally, we added other trackers which were
highly ranked on datasets such as MUSTer [14], MEEM [28],
and TGPR C [11]. Figures 3 (a), 3 (b) show that objectness
improves tracking results, compared to the baseline.

B. OTB100 dataset

The benchmark [26] is an extension of the [27] benchmark.
It contains 100 videos. Same metrics, precision and overlap,
were used in the evaluation. Figures 3 (c), 3 (d) show that
objectness similarly improves tracking results. Interestingly,
ObjStruck outperforms MUSTer tracker on precision metric.
This suggests that objectness measures reduce overfitting by
providing additional cues of the target’s location.

C. VOT 2015

TABLE I: Evaluation results on the [19] dataset.

Tracker name Overlap

MDNet 0.3783
DeepSRDCF 0.3181
EBT 0.3130
srdcf 0.2877
LDP 0.2785
sPST 0.2767
scebt 0.2548
nsamf 0.2536
struck 0.2458
ObjStruck 0.2355
sumshift 0.2341
SODLT 0.2329
DAT 0.2238
RobStruck 0.2198
MUSTer 0.1950

The benchmark [19] contains 60 videos which were chosen
to maximize visual attributes such as illumination change,
object size change, and object motion. The benchmark is



different from others because of its evaluation protocol. In [19],
whenever the tracker fails (i.e., fail is defined as a detection
that has zero overlap with ground truth), the tracker is re-
initialized. This strategy allows to reduce overfitting during
tracking evaluation [17]. Results are shown in Table I. Here,
objectness improves tracking as success for ObjStruck are
higher than for RobStruck.

Overall, objectness measures improve both success and
precision metrics on all of the datasets with different evaluation
protocols. This is surprising as ObjStruck uses exactly the same
set of potential candidates as RobStruck.

VIII. CONCLUSION

We extended structured tracking by including object-
agnostic measures of the bounding box to improve the tracker’s
discrimination power. The measures, known as straddling and
edge density, guide the tracker to bounding boxes that are more
likely to contain objects. The resulting tracker, which we call
ObjStruck, improves tracking metrics on major datasets [27,
26, 19]. Although we used the objectness prior along with a
robust version of the structured tracker, our objectness measure
works with any tracker that samples bounding boxes. Strad-
dling and edge density are fast to compute and unsupervised,
which makes them ideal for tracking.

The objectness measures we used work independently on
each frame. This could limit their accuracy and increase
computational cost as both segmentation and edge detection
have to be done in each frame. In the future, we plan to
address this issue by reusing computations and extending the
objectness measure in the temporal domain.
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