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Abstract—We present a novel technique for pollen identifi-
cation from sets of multifocal image sequences obtained from
optical microscopy. Our algorithm analyzes the visual texture of
pollen grains for each focal image, and performs identification
using a fast sequence-matching algorithm. Although we develop
a pollen-recognition protocol, the method is applicable to other
microscopy object-recognition tasks. The proposed method re-
quires little manual interaction, and does not rely on specialized
imaging procedures such as florescence and deconvolution. We
test our method on images of tropical fossil pollen.

I. INTRODUCTION

The identification and counting of pollen grain are both cen-
tral and time-consuming tasks in palynology research. Despite
recent developments in modern computing and automation, au-
tomatic pollen-grain identification remains a largely unsolved
problem. Representing the rich visual variability for hundreds
of pollen types is major challenge. The problem’s complexity
is further increased by the pollen’s 3-D nature and the small
depth of field available in optical microscopes. The limited
depth of field means that only a small part of the pollen
surface is in focus during the analysis. Thus, distinguishing
grain features are only visible when imaged at the correct focal
plane (Figure 1, top left). Traditionally, pollen recognition by
visual inspection is done by measuring morphological surface
attributes such as the presence of pores and salient geomet-
ric features [1] (e.g., ridges and spikes). This identification
methodology is suitable for human inspection but it does not
directly leads to computational algorithms.

In the last two decades, most automatic pollen recognition
methods have focused on measurements of visual texture, con-
tour, and in some cases, three-dimensional shape. For example,
Carrion et al. [2] described a method for classifying honeybee
pollen using multiscale texture signatures. Similar approaches
include the works by Li et al. [3] and by Zhang et al. [4].
These algorithms used texture descriptors calculated at small
fixed-sized image subregions. However, image subregions may
not capture the full complexity of the texture across a whole
grain. In addition, some pollen grains cannot be distinguished
by texture measurements only.

Some recent methods analyze the pollen’s three-dimensional
shape, which is reconstructed from a sequence of confocal-
microscopy images. Ronneberger et al. [5] classified aerial

pollen by reconstructing grains using fluorescence confocal
microscopy. Although 3-D reconstruction provides information
about the whole grain, the method requires expensive confocal-
microscopy hardware. Furthermore, fluorescence microscopy
is not suitable for fossil pollen that are the basis of most
paleoecology studies. A similar approach was developed by
Boucher et al. [6] who used expert palynological knowledge
for feature identification by measuring morphological features
such as size and number of pores, ridges, and grain’s diameter.
Of course, measurements of morphological features require
both accurate 3-D reconstruction and feature detection.

Pollen grains can be also distinguished by the shape of
their outer contour [7], [8]. These methods used a pollen’s
contour descriptor to classify certain types of pollen that have
distinguishable shapes. However, the contour of a 3-D object
in images changes with the imaging viewpoint. This apparent
deformation, along with occasional collapsing of the grain’s
surface limit the practical use of contour shape as a main
feature for automatic pollen identification.

We present a novel pollen-identification technique that uses
multifocal image sequences from optical microscopy. Figure 1
shows a graphical overview of the method. Our algorithm an-
alyzes the pollen’s surface texture across varying focal planes.
The method consists of three main steps. First, we use an
active-contour segmentation method to extract the entire sub-
volume containing the pollen grain regions from the multifocal
image sequence. Image regions in these subvolumes contain
relevant visual information (e.g., texture, blob features, and
contour fragments) while discarding unwanted neighboring
information (e.g., background clutter and debris). Secondly,
we represent the texture appearance inside the segmented
multifocal subvolume using a histogram of responses from
a set of representative filters. This appearance model carries
information about both the scale and orientation of pollen sur-
face features for each focal plane. Finally, pollen identification
is performed by matching sequences of multifocal appearance
descriptors using a robust sequence-alignment method. We test
our method on images acquired at Florida Tech’s Paleoecology
Laboratory using an optical microscope. Experiments show the
potential of our method for pollen recognition (Section VI).
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Fig. 5 Bank of filters used in our method. Set of 4 oriented filters and
3 multi-scale rotation-invariant filters.
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Fig. 6 Normalized representation of pollen texture. (a) Original pollen
grain. (b) Polar representation (r, �), where r is the distance from a
boundary pixel to the estimated centroid of the grain’s boundary, and �
is the angle of r. (c–f) Responses from four filters in F . Filter images
are displayed larger for visualization purposes. Filters’ actual size is
64�64. Filter responses for each focal image in S were obtained using
Equation 8.

Fig. 7 Appearance model of a single focal slice. Model consists of
concatenated normalized frequency histograms of filter responses de-
scribing scale and orientation of local features on the pollen grain sur-
face. (The filter responses are obtained for the polar map of the original
focal slice.)

To reduce the effects of scaling and orientation, we perform
a polar mapping on the segmented pollen region before ap-
plying filter convolution. Here, each segmented pollen is
represented by a distance-angle map (r, ✓), where r is the
distance from boundary pixels to the grain’s estimated cen-
troid, and ✓ is the angle of vector r. Figure 6(b) shows an
example of the polar mapping for the pollen shown in Fig-
ure 6(a). The mapping flattens the region containing the pollen
surface into a rectangular normalized representation (i.e.,
standard pre-defined size). This polar map is scale invariant,
and rotation invariance can be also accomplished (i.e., grain
rotation is mapped into a simple translation in our flattened
map). Indeed, in the specific case of our application, rotation
ambiguity is significantly reduced by pollen texture inherent

symmetry. In our implementation, we use simple normal-
ized histograms of filter response values as appearance de-
scriptors. A descriptor of a specific focal slice is obtained by
concatenating the normalized frequency histograms of filter
response values for all filters. Figure 7 illustrates this data
representation for a single focal slice.

DTW Robust matching 

Fig. 8 Matching results using the DTW algorithm, and the robust
LCSS algorithms. Standard DTW algorithm aligns sequence but uses
defocused images into final matching score calculation. LCSS robust
matching manages to ignore defocused images during alignment.
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Finally, each multifocal volume is represented by a data
vector sequence V = (v1, . . . , vk), where vi is a descriptor
for the filter-based decomposition of the i-th polar-mapped
focal slice. Our pollen classification method treats the mul-
tifocal sequence V as a multidimensional time series. Next,
we describe how pollen recognition can be accomplished by
means of a sequence alignment algorithm.

4 Classification by Sequence Matching

In this paper, pollen recognition is posed as a sequence-
matching problem. More specifically, we perform recogni-
tion by matching multifocal image sequences represented by
texture descriptors. In this section, we describe the sequence
matching algorithm used in our recognition framework. A
traditional sequence alignment method is the Dynamic-Time
Warping (DTW) algorithm [25,26]. DTW provides a dis-
tance measure between two time series while achieving se-
quence matching using temporal warping [27,28].

However, a key challenge in matching multifocal pollen
sequences is that different focal lengths may be required
to produce similar focal slices of two pollen grains of the
same kind. In this case, standard DTW-based alignment will
be significantly distorted as the algorithm will attempt to
assign point correspondences to all sequence data points.
For example, consider the matching results produces by the
DTW algorithm in Figure 8 (column 1). The two focal se-
quences of the Scalesia pollen are misaligned in depth. As
a result, the images acquired beyond the extension of the
grain’s surface will compromise the overall distance mea-
sure. Indeed, a suitable distance measure should not be af-
fected by the presence of additional out-of-focus pollen im-
ages in the sequence. We address this issue by using the ro-
bust Least Common Subsequence (LCSS) matching scheme
introduced in [20] rather than traditional DTW alignment.
We begin by defining a distance measure between two se-
quences. Let V = (v1, . . . , vm) and W = (w1, . . . , wn)

represent two multifocal image sequences for two different
pollen grains. The measure used in the LCSS scheme can be
defined for an integer � and a real number 0 < ✏ < 1 as
follows:

LCSSm,n
�,✏ =

8
>>>>>>>>><

>>>>>>>>>:

0 if m = 0 or n = 0

1 + LCSSm�1,n�1
�,✏

if ||vm, wn|| < ✏ and |n � m|  �

max

⇣
LCSSm�1,n

�,✏ , LCSSm,n�1
�,✏

⌘
,

otherwise.

(9)

Here, LCSSi,j
�,✏ = LCSS�,✏ ((v1, . . . , vi), (w1, . . . , wj)), and

||. , .|| is the distance between the points vm and wn. The pa-
rameter ✏ is the threshold on the maximum distance between

a pair of matched points, and � controls the maximum num-
ber of consecutive points without a match. The similarity
between the two sequences is then measured as

D�,✏(V, W ) = 1 � LCSSm,n
�,✏

min(m, n)

. (10)

Our formulation is different from that in [20] where the pa-
rameter ✏ controlled the maximum absolute difference be-
tween each of the vector components. The distance between
two focal slices as required by Equation 9 can be defined as:

||vi, wj || = �2
(vi, wj), (11)

where �2 is the chi-square histogram distance [11]. An ex-
ample of a pair-wise correspondence assignment produced
by the above algorithm is provided in Figure 8 (column 2).
The matching algorithm described above eliminates the need
for manual alignment of focal sequences with respect to se-
quence size.

Finally, pollen classification in our proposed method is
achieved as follows. First, we create multifocal appearance
models for a set of known pollen grains. These models, called
templates, are stored to be compared with unknown sequences
for recognition. This is the learning stage of our method.
More formally, given the templates {bV1, . . . , bVM}, the iden-
tification of an unknown test sequence V can be performed
using sequence alignment in Equation 9. We use a nearest-
neighbor classification scheme [29] based on the similarity
measure produced by the sequence alignment algorithm. Al-
gorithm 1 lists the steps of our recognition method.

Algorithm 1 Euclids algorithm
1: Pre-process S using non-linear diffusion filtering.
2: Obtain boundary of multifocal volume using curve propagation

(Equation 4).
3: Obtain the polar mapped representation of every region inside seg-

mented subvolume (Section 3).
4: Calculate the filter response map for each polar-mapped image in-

side the segmented subvolume. These maps are calculated by con-
volving the images with the filters of the filter bank F .

5: Obtain a descriptor vi for each focal slice by concatenating the
frequency histograms of filter response maps for all filters.

6: Create sequence representation V = (v1, . . . , vk) (Section 3).
7: Obtain the best match between V and templates �Vi using the

sequence-alignment method in Equation 9.

Template sequences bVi are obtained by performing the
first four steps to a set of known pollen types.

5 Detecting Pollen Grains

The sequence matching method described in this paper can
be also used for detecting (i.e., localizing) known pollen
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Fig. 1. Overview of our method. A multifocal image sequence containing a pollen grain (Darwiniothamnus pollen shown as an example)
is given as input. Pollen regions in each image are segmented using an active-contour method, which creates a multifocal pollen volume.
Each pollen focal plane is then represented by a frequency histogram of filter responses forming a sequence of appearance models. The
appearance-model sequence representing the pollen is matched to the ones in a database using the robust sequence-matching algorithm.

II. CONTRIBUTIONS

We propose a method that uses visual information from
sequences of focal planes to identify pollen grains in optical
microscopy images. Our method does not require images
to be acquired at fixed focal-length intervals. We propose
a multifocal volume segmentation method that allows us to
extract both textured regions inside the pollen boundary and
boundary-shape information. The visual information inside
this segmented volume is then used for constructing an appear-
ance model of the pollen’s surface texture for each focal plane.
The identification step considers the multifocal volume as a
data sequence (sequence of appearance models). Although we
focus on the recognition of fossil pollen grains, an extension to
other microscopic objects is straightforward. Finally, domain-
specific information such as symmetry, contours, and colors
can be also included into the model. An overview of the main
steps of our method is given below:

a) Step 1 - Multifocal volume segmentation.: In this
step, we automatically extract the region inside the boundary
of the pollen grain for the entire multifocal volume using
an active-contour segmentation method. Here, rather than
processing each focal slice individually, we use information
from the entire multifocal volume to support the segmentation
task. By treating the entire volume as a single object, our
method can improve segmentation by combining useful data
from different focal slices while discarding inconsistent noisy
pixels. Section III describes the segmentation method.

b) Step 2 - Modeling the texture content.: In our appear-
ance model, each pixel in the polar-mapped images is repre-

sented by a vector of Gabor filter responses [9]. Filter response
maps are obtained by convolving the original focal slices with
a bank of multi-scale and multi-orientation filters. Here, the
bank of filters represent a set of basic shapes at varying scales
that, when convolved with the pollen images, will produce
vectors describing the information in each pixel in terms of
filter-bank components. This filter-based representation also
encodes, to some extent, information about the pollen contour
at each focal slice. Our filter bank is a reduced representation
of the one proposed by Leung and Malik [10], [11]. Section IV
describes our filter-based appearance model.

c) Step 3 - Classification by sequence matching.: Once
the texture descriptor for the segmented multifocal pollen
sequence is obtained, identification and detection are ac-
complished using a sequence-matching method. We use a
modified version of the longest-Common Subsequence (LCSS)
matching scheme introduced by Vlachos et al. [12]. Details of
this step are described in Section V.

III. MULTIFOCAL POLLEN VOLUME SEGMENTATION

The first step of our method is to detect the boundary of
the multifocal sequence (multifocal volume) containing the
target pollen grain. Challenges to be overcome in detecting
pollen boundaries in images include: (1) the boundaries can
be undefined or blurred due to microscope’s small depth of
field, (2) debris might be present in the area surrounding the
grain, and (3) background and foreground image regions might
have similar intensity and color.



We address these problems by using information from the
whole multifocal image sequence. Our goal is to detect the
surface separating pollen grain regions from the surrounding
multifocal volume. We use a curve-propagation approach
often applied in medical-image segmentation [13], [14]. The
probabilistic curve-propagation framework presented in [13] is
particularly appealing as it accounts for nondeterminism in the
input image data. The method estimates a statistical description
of both the background and foreground image regions while
propagating a 2-D deformable curve that adapts itself to the
shape of the pollen’s multifocal subvolume. The deformable
curve starts at the edges of the rectangular multifocal images,
and iteratively deforms its shape while trying to maximize
the foreground statistics inside the closed boundary surface.
This segmentation method uses information from the entire
multifocal sequence. Next, we provide a formal description of
the boundary-segmentation method.

A. Variational image segmentation

We begin by describing the variational formulation proposed
by Rousson and Deriche [13] for the segmentation of a multi-
channel image. Let S = (S1, . . . , Sk) be a sequence of mul-
tifocal images of a pollen grain obtained using measurements
at k consecutive depths (i.e., image Sk is acquired at the
lowest depth). We treat the multifocal sequence as a single
multi-channel image. Thus, each data point is represented
by a vector of pixel values from all focal slices. In the
formulation proposed in [13], the segmentation of foreground
and background regions in S can be accomplished by maxi-
mizing the posterior probability p (⌦), where ⌦ = {⌦b, ⌦f}
is the image domain divided into two partitions representing
the background region ⌦b and the foreground region ⌦f .
Additionally, let u(x) be the measurement value at spatial
location x, where u : R ! Rn. Let pb and pf , be the
probability density functions (PDF) for the value u(x) to be
in regions ⌦b and ⌦f , respectively. Following the method
described in [13], segmentation is obtained by minimizing the
following energy functional:

E(⌦b, ⌦f ) = �
Z

⌦b

log pb (u (x))dx

�
Z

⌦f

log pf (u (x))dx

+ length(@⌦), (1)

where @⌦ is the boundary between ⌦b and ⌦f , and length(@⌦)

is a normalization term (i.e., boundary energy) added to
prevent oversegmentation. Prior to performing curve propaga-
tion, we preprocess all images using the non-linear diffusion
filtering method in [15]. This pre-processing step helps reduce
noise while preserving descriptive geometrical details present
on the object’s surface. In our algorithm, filtering is performed
on the gray-level versions of the multifocal slices. Figure 2
shows an example of a non-linearly diffused sequence.

Noise and debris may still remain in the images, and can
cause incorrect segmentation of the target pollen. Figure 3

Fig. 2. Nonlinearly diffused multifocal sequence. The diffused se-
quence contains less noise while preserving edge information.

shows a segmentation example for a multifocal sequence
containing a non-uniform background region. Here, artifacts
can cause significant gradient variations in background regions
of the diffused images (e.g., dark and bright regions separated
by the dashed curve in Figure 3.b), leading the segmentation
method based on Equation 1 to segment dark and white regions
well while failing to extract the pollen grain (Figure 3.c).
Also, this method does not automatically label background
and foreground regions. Thus, a post-segmentation labeling
procedure is required.

To resolve the background- and foreground-labeling ambi-
guity, we incorporate a non-informative background prior into
the segmentation process by adding a regularization term to the
background energy in (1). This term measures the information
content for pixels inside region ⌦b (in the sense of Shannon’s
theorem [16]). We can then re-write Equation 1 as:

E(⌦b, ⌦f ) = �H (⌦b) �
Z

⌦b

log pb (u (x)) dx

�
Z

⌦f

log pf (u (x)) dx

+ length (@⌦) , (2)

where H (⌦b) is the information entropy calculated in the
background region ⌦b. The background entropy is given by:

H (⌦b) = �
Z

⌦b

pb (u (x)) log pb (u (x)) dx. (3)

The entropy term in Equation 2 is designed to enforce the
background region’s non-informity. We substitute (3) into (2),



and combine the integrals to obtain:

E(⌦b, ⌦f ) = �
Z

⌦b

(1 � pb (u (x))) log pb (u (x))dx

�
Z

⌦f

log pf (u (x))dx

+ length(@⌦). (4)

The integrals in (4) can be extended to the entire multifocal
volume by using the level-set function � : ⌦ ! R defined in
terms of the distance transform D as:

⇢
�(x) = D(x, @⌦), if x 2 ⌦b

�(x) = �D(x, @⌦), if x 2 ⌦f .
(5)

(a) (b)

(c) (d)

Fig. 3. Segmentation of Alternanthera pollen. A single image of the
segmented multifocal volume is shown. Segmentation is performed
on the whole volume. (a) Original image, (b) Filtered image, (c)
Segmentation without using a background prior (i.e., Equation 1),
and (d) Segmentation using our background prior (i.e., Equation 4).

Fig. 4. Pollen grains and corresponding detected contours using our
method. Contours are displayed for a single slice in the multifocal
volume. Actual segmentation is performed on the entire sequence.

Using the regularized form H(z) of the heaviside function
as proposed in [14], we obtain the following evolution equation

for level-set surface �:

�t(x) = �(�(x))

⇥[⌫.div
✓ r�

|r�|
◆

+ (1 � pb (u (x))) log pb (u (x))

� log pf (u (x))], (6)

where �(�) = H 0
(�). As in [13], for simplicity, we assume

that the distributions pb and pf are Gaussian. In general,
gaussianity assumption may not entirely hold for distributions
pb and pf in a particular focal slice. But, because we segment
all focal slices simultaneously, our method works well, while
keeping the model simple. The densities’ parameters are
updated at each iteration of Equation 6 as follows:

8
<

:
µi(�) =

R
⌦ u(x)YidxR

⌦ Yidx

⌃i(�) =

R
⌦(µi�u(x))(µi�u(x))T YidxR

⌦ Yidx
,

(7)

with Yb = H(z) and Yf = 1 � H(z). Here, µi(�) and ⌃i(�)

are the mean vectors and covariance matrices of pb and pf .
When updating the parameters in (7), we assume statistical
independence of spatial information provided by different
focal slices. This assumption simplifies the computations of
the inference process. Figure 4 shows examples of detected
contours using our method. The output of this segmentation
process is a volume containing the pollen grain regions. With
the segmented multifocal volume of the pollen at hand, we
can create a representation of pollen’s surface texture in all
focal images.

IV. MODELING THE TEXTURE APPEARANCE

The pollen’s surface contains descriptive features including
the symmetric placement of blob-shaped regions and elongated
shapes, that can appear at various scales and orientations. We
represent the visual texture in these images in terms of the
responses of a bank of multi-scale and multi-orientation filters.
Each image is convolved with the filters in the bank.

Let F = (f1, . . . , fNf ) be a filter bank containing Nf filters
of different orientations and shapes. The filter bank contains
7 filters (i.e., Nf = 7) including 4 filters with different
orientations at a single scale and 3 isotropic (i.e., rotation-
invariant) filters of different scales.

Image Si is then represented by a feature vector r =

(r1, r2, . . . , rNf )

T describing local texture appearance in terms
of filter responses. The components in r are obtained by
convolving filter bank F with image S as follows:

rj = fj ⇤ S, j = 1, . . . , Nf . (8)

where the symbol ⇤ denotes the convolution operation. Fig-
ure 5(c–f) shows the results of convolving the original se-
quences in Figure 1 with some of the multi-scale multi-
orientation filters in filter bank F .

Pollen appear at various sizes and rotations when seen
under the microscope. To reduce the effects of scaling and
orientation, we convert the segmented pollen regions into a
scale-normalized representation using polar mapping before
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Fig. 5. Normalized representation of pollen texture. (a) Original pollen
grain. (b) Polar representation (r, ✓), where r is the distance from a
boundary pixel to the estimated centroid of the boundary, and ✓ is
the angle of r. (c–f) Responses from four filters in F . The insets
display the corresponding filters (actual filter size is 64⇥ 64). Filter
responses for each focal image in sequence S were obtained using
Equation 8.

Fig. 6. Example of appearance model of a single focal slice. Model
consists of concatenated normalized frequency histograms of filter
responses (Figure 5.c–f).

applying filter convolution. This transformation flattens the
near-circular pollen region into a rectangular shape of pre-
defined size. Here, each segmented pollen is represented by
a distance-angle map (r, ✓), where r is the distance from
boundary pixels to the grain’s estimated centroid, and ✓ is
the angle of vector r. The resulting polar map is scale
invariant, and rotation of the grain is mapped into a simple
translation. Indeed, in the specific case of our application,
rotation ambiguity is significantly reduced by pollen texture
inherent symmetry. Figure 5(b) shows an example of the polar
mapping for the pollen shown in Figure 5(a).

A simple appearance descriptor for each focal images is
then obtained by concatenating the normalized frequency
histograms of filter response values for all filters. Figure 6
illustrates this descriptor for a single focal slice. Finally, each
multifocal volume is represented by a data vector sequence
V = (v1, . . . , vk), where vi is a descriptor for the filter-based
decomposition of the i-th polar-mapped focal slice.

V. CLASSIFICATION BY SEQUENCE MATCHING

The Dynamic-Time Warping (DTW) algorithm [17] is
widely used for aligning sequences of data points. DTW

provides a similarity measure between two time series while
achieving sequence matching using temporal warping [18].
However, a key challenge in matching multifocal pollen se-
quences is that different focal lengths may be required to
produce similar focal slices of two pollen grains of the same
kind. In this case, standard DTW-based alignment will be sig-
nificantly distorted as the algorithm will attempt to assign point
correspondences to all data points. Thus, rather than using the
traditional DTW alignment, we use the more robust longest
Common Subsequence (LCSS) matching scheme introduced
in [12]. We begin by defining a distance measure between
two sequences. Let V = (v1, . . . , vm) and W = (w1, . . . , wn)

represent two multifocal image sequences for two different
pollen grains. The measure used in the LCSS scheme can be
defined for an integer � and a real number 0 < ✏ < 1 as
follows:

LCSSm,n
�,✏ =

8
>>>>>>>>><

>>>>>>>>>:

0 if m = 0 or n = 0

1 + LCSSm�1,n�1
�,✏

if ||vm, wn|| < ✏ and |n � m|  �

max

⇣
LCSSm�1,n

�,✏ , LCSSm,n�1
�,✏

⌘
,

otherwise.

(9)

Here, LCSSi,j
�,✏ = LCSS�,✏ ((v1, . . . , vi), (w1, . . . , wj)), and

||. , .|| is the distance between points vm and wn. The param-
eter ✏ is the threshold on the maximum distance between a
pair of matched points, and � controls the maximum number
of consecutive points without a match. In the original LCSS
method in [12], the parameter ✏ controls the maximum abso-
lute difference between each of the data points. The similarity
between the two sequences is given by:

D�,✏(V, W ) = 1 � LCSSm,n
�,✏

min(m, n)

. (10)

We define the distance between two focal slices as required
by Equation 9 as:

||vi, wj || = �2
(vi, wj), (11)

where �2 is the chi-square histogram similarity [19]. Finally,
pollen classification is achieved as follows. First, we create
multifocal appearance models for a set of known pollen grains.
These models, called templates, are stored to be compared with
unknown sequences for recognition. This is the learning stage
of our method. Formally, given templates {bV1, . . . , bVM}, the
identification of an unknown test sequence V is done using
the adapted LCSS method in Equation 9. We use a nearest-
neighbor classifier based on the similarity measure produced
by the LCSS algorithm.

VI. EXPERIMENTS

To assess the classification performance of our algorithm,
we obtained multifocal sequences for the Alnus, Alternan-
thera, Darwiniothamnus, Scalesia, and Waltheria pollen. The
sequences were extracted at 25 consecutive focal lengths. For



Fig. 7. Confusion matrix (76.0% recognition rate). The highest
confusion occurred between the Alternanthera and Darwiniothamnus
grains. Method was successful in identifying pollen types that are
usually difficult to classify by visual inspection.

each pollen type, we extracted 20 multifocal sequences. We
applied a “leave-one-out” classification scheme for evaluation.
Here, we selected one image sequence from the dataset to be
the test sequence. Templates for each class were then obtained
from the remaining sequences. The templates were used to
classify the test sequence, and the classification error was
computed based on the number of correct recognition.

The confusion matrix generated by our classification results
is presented in Figure 7. This matrix describes the average
percentage of correct classification (i.e., matrix’s main di-
agonal) for test images with respect to all other templates
in the dataset. The off-diagonal values in the matrix show
the average incorrect classification percentage. Overall, our
algorithm accomplished 76.0% recognition performance. The
highest confusion occurred between the Alternanthera and the
Darwiniothamnus pollen. This confusion can be the result
of similarity in outer boundary of the pollen. These results
suggest that more descriptive information about the internal
geometry and symmetry of surface features may be needed to
improve classification of similar pollen types.
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VII. CONCLUSION

We presented a pollen-classification algorithm based on
matching sequences of multifocal images. Our appearance
model captures scale and orientation information of local
geometric features on the pollen’s surface. These geometric
information is represented by the responses of a bank of
multi-scale oriented and isotropic filters. Rotation and scale
invariance are achieved by a polar mapping of segmented
images. The novelty of our approach lies in addressing the
optical microscopy recognition problem from a
sequence-alignment perspective, with the multi-focal texture

modeling. The method uses optical microscopy and does not
rely on specialized imaging procedures such as florescence
and deconvolution. It is therefore applied to a wide variety
of recognition tasks in day-to-day laboratory activities.
Additionally, image sequences of any size can be used, with
no requirements on focal-step uniformity during image
acquisition. Finally, the appearance models can be easily
extended to represent information such as color, geometry,
and feature symmetry.
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