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Abstract

We present a novel method for learning human motion
models from unsegmented videos. We propose a unified
framework that encodes spatio-temporal relationships be-
tween descriptive motion parts and the appearance of in-
dividual poses. Sparse sets of spatial and spatio-temporal
features are used. The method automatically learns static
pose models and spatio-temporal motion parts. Neither
motion cycles nor human figures need to be segmented for
learning. We test the model on a publicly available action
dataset and demonstrate that our new method performs well
on a number of classification tasks. We also show that clas-
sification rates are improved by increasing the number of
pose models in the framework.

1. Introduction

Human motion recognition is of relevance to both the
scientific and industrial communities. Despite significant
recent developments, general human motion recognition is
still an open problem. Approaches usually analyze dynamic
information in image sequences. Successful approaches
have focused on probabilistic inference [13, 9]. Spatio-
temporal features have been shown to be effective for mo-
tion recognition [16, 14]. Additionally, the importance of
static information [15] combined with advances in prob-
abilistic constellation models [13] have also been demon-
strated. However, most methods still require segmentation
of either human figure or motion cycles from videos. This
limitation implies the need of substantial data preparation.

In this paper, we propose a human motion model con-
sisting of constellation models “tuned” to recognize spe-
cific human poses combined with a constellation model of
the motion’s spatio-temporal data. This combination of
static and spatio-temporal (dynamic) information is the key
idea of our method. Our model allows us to develop effi-

cient learning and recognition procedures. The main dif-
ference between ours and other approaches [13] is that, in
our framework, poses and motion dynamics are modeled
explicitly. Also, unlike [9], learning and classification do
not require the input of manually extracted motion cycles.
We demonstrate the effectiveness of our method on a se-
ries of motion classification experiments. A comparison
with a recent motion recognition approach is also provided.
Our learning algorithm allows for the unsupervised discov-
ery of representative pose models. This contrasts with re-
lated approach by Niebles and Fei Fei [13] where spatio-
temporal and static features from different frames are com-
bined within a bags-of-words framework. Our unsupervised
learning algorithm has significant advantages over existing
supervised part-based motion recognition approaches. The
enforcement of spatio-temporal constraints between model
parts enables us to reduce information loss inherent to some
bags-of-words methods. Our results show an improvement
in recognition rate (75.3% and 88.9%) over Niebles and
Fei Fei’s approach (72.8%), and the avoidance of manual
dataset preparation (e.g., manual input of motion cycles).

Human motion recognition approaches can be grouped
into data-driven and model-based methods. Data-driven ap-
proaches operate directly on the data. Dollar et al. [7] per-
form action classification using support vector machines.
Leo et al. [12] use projection histograms of binary sil-
houette’s for modeling human pose deformation. Unfortu-
nately, high ambiguity of features in videos can be a prob-
lem to these methods. On the other hand, model-based ap-
proaches explicitly include higher-level knowledge about
the data by means of a previously learned model. How-
ever, the performance of these approaches strongly depends
on both the choice of the model and the availability of prior
information. For example, Boiman and Irani [3] propose
a graphical Bayesian model for motion anomaly detection.
The method describes the motion data using hidden vari-
ables that correspond to hidden ensembles in a database of
spatio-temporal patches. Niebles and Fei Fei [13] represent



actions using a probabilistic constellation model. The per-
formance of model-based approaches strongly depends on
the choice of the model and learning procedure. Addition-
ally, in the absence of prior information about the models’
structure, the learning task may become intractable.

2. Human Motion Model

Let us begin by considering V as an N-frame human
motion video sequence. V records a human pose’s tempo-
ral variation. Let P = {P1,...,Px} be a set of poses,
K < N, sampled from all possible representative poses of
a human motion type. Let M represent the video’s spatio-
temporal information. M describes the video frames’ tem-
poral variations obtained from measurements such as opti-
cal flow [8] or spatio-temporal features [13]. Also, let X
represent simultaneously a particular spatio-temporal con-
figuration of pose and human motion dynamics. The likeli-
hood of observing a particular video sequence given a hu-
man motion’s spatio-temporal configuration is p(V|X’). We
assume statistical independence of appearances of both pose
and dynamics. The likelihood function can then be factor-
ized as follows. From Bayes’ rule:

p(X[V) o< p(V|X) p(X)

x p(P|X) p(M|X) p(X) ()
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Our method’s underlying idea is that spatio-temporal ar-
rangement of pose parts and motion dynamics are encoded
into the prior probability while the likelihood distributions
encode their appearances. Pose and dynamic information
are represented by directed acyclic star graphs (i.e., graph
vertices are conditioned to a landmark vertex). The factor-
ization is inspired by the part-based object model in [6].

2.1. Spatio-Temporal Prior Model

Part-Based Pose Models. Let us assume that poses P; =
{(agz)’ (2>)7 (35\2? ,XN )} are subdivided into Np,

non-overlapping subregions. Each pair (a ( (¢ ) x!! )) contains
the local appearance a and the spatio- temporal location x
of subregion j of pose model P;, respectively. The pose’s
temporal position in the sequence serves as the temporal
coordinate of the parts’ locations. Pose subregions are as-
sumed to be arranged in a star-graph configuration in which
the pose’s landmark vertex is (ag),xg)). The graphs in
Figure 1(a) and Figure 1(b) illustrate the pose models.

Part-Based Motion Dynamics Model. Dynamics in-
formation required by our model is given by a sparse

set of spatio-temporal features [7, 11]. Let M =
M M M M
(™M), (@) =

ay .. Xy, )} be aset of Ny rep-
resentative spatio- temporal interest features. The set

M is also arranged in a star-graph configuration with
(a 7(~ iM)) as the graph’s landmark vertex. Figure 1(c)

shows a dynamics model graph.

Integrated Model of Poses and Motion Dynamics. Fi-
nally, a global multi-layered tree-structured model is built
by conditioning the landmark vertices of pose model graphs
on the landmark vertex of the dynamics model graph as
shown in Figure 1(d) (graph arrows indicate conditional de-
pendences between connected vertices). In this layer, the
spatio-temporal locations of the partial models are the loca-
tions of the corresponding landmark image subregions. The
joint distribution for the partial models’ spatial configura-
tion can be derived from the graphical model in Figure 1(d):

p(x) =p(x") T »(x
PP

xxM) )

where x(*) is the spatio-temporal configuration of the pose
P;, and x(M) is the dynamics model” spatio-temporal con-
figuration. The probability distributions in (2) are:

M
(M) = pe) [T M) )
J#T
PO ) = pe? M) T 6% @)
i
The above partial models’ dependence is based only on their
spatio-temporal configuration. This follows from our as-

sumption that the partial models are statistically indepen-
dent with respect to their appearance.

2.2. Appearance Models

Under the independence assumption, the appearance
likelihood of pose P; can be written as:

H p(al”x}” 5)

Similarly, the appearance likelihood of the motion dynam-
ics model is given by:

p(Pi|X) =

p(M|X) = Hp (@M x*M) (6)

As aresult, the likelihood term in Equation 1 becomes:

p(V|X) = p(P|X) p(M|X)

K Np;
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Figure 1. Learning spatio-temporal configurations of human pose and motion dynamics. (a,b) pose models: Multiple frames of the same
pose are extracted. Interest regions are extracted from the edge maps of frames. Representative pose parts are learned. (c) dynamics
model: Spatio-temporal features are extracted [7]. Representative spatio-temporal parts are learned. (d) Final integrated model.

3. Model Learning

Model parameters are estimated from a set of unseg-
mented sequences {V1,..., V}. Our learning method is
divided into the following steps (Figure 2).

Interest Subregions Extraction Step 1 - Leaming Model of Dynamics Step 3 - Creating Global Model

Initial Revised
™| Model of ™| Model of N
| Dynamies | [ Dynamics | Initial Revised
_ Global f—» Global
Sequences — Model Model
Poses Initial
| Training [ Pose
2D Patches Data Models

‘Step 2 - Creating Initial Pose Models

Figure 2. Human motion learning process.

Learning Step 1 - Learning the Dynamics Model. In
this step, the initial parameters of the partial model for

motion dynamics are estimated. The subregion locations’
probabilities in (3) are modeled using Gaussian joint prob-
ability distributions. Fortunately, conditional distributions
relating independent Gaussian distributions are also Gaus-
sian [1]. As a result, the conditional densities in (3) and (4)
take a particularly simple form (i.e., the joint probability
distribution can be formed by simply combining the means
and covariance matrices of the corresponding independent
densities). To proceed, we extract a set of subregions cen-
tered at spatio-temporal interest points [7]. We adapted the
learning process described by Crandall and Huttenlocher [6]
to work with spatio-temporal configurations of parts. The
initial spatio-temporal model is created, and the optimal
number of parts is determined. An E.M.-based procedure is
used to simultaneously estimate the parameters of the distri-
butions p(x(-M) |x7(~M)) in (3) and the dynamics appearance
in (6). The outcome of this step is a preliminary motion dy-
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Figure 3. Creating the initial pose models.

namics model. In the next step, this preliminary model will
be used to guide the selection of representative poses to be
integrated into the final global representation.

Learning Step 2 - Creating Initial Pose Models. The
goal of this step is to estimate the initial candidate pose
models. The input to this step consists of a set of interest
subregions extracted from all frames of the videos. Each
subregion has a spatial image location and a temporal lo-
cation associated with it. However, direct clustering used
in the previous step is not applicable here due to a number
of reasons. First, some subregions have similar appearance
across a wide range of frames (e.g., the appearance of the
head is usually constant during the walking cycle). Hence,
clustering would make indistinguishable some similar parts
that belong to different poses. Secondly, all parts of a pose
model must have zero temporal variance as they naturally
belong to the same frame. We address this initialization
problem by using the motion dynamics model to constrain
the space of input subregions during learning. More specif-
ically, for every training sequence, we obtain the MAP dy-
namics model locations using the maximization:

%M = arg max p(M|x)p(xM) ®)

For every sequence, the maximization in (8) results in
the location of the model’s landmark part (i.e., *M) =
(&,9,%)). Initial samples to = {t1,%a, ..., tx } of temporal
displacements are generated, where ¢; indicate the temporal
displacement of a pose P; from the landmark node of the
dynamics model. For a pose P;, we select from the training
sequences those subregions for which temporal displace-
ments from the localizations of the dynamics model land-
mark node belong to the interval (¢; — At, t; + At), where
At is a constant value that defines the span of frames con-
taining the pose. These subregions are subsequently used
to obtain candidate parts and initial model parameters for

pose P;. Pose parts selection is performed as in Step 1.
Pose subregions are clustered to form initial parts of the
underlying pose. Learned pose parts are organized into a
star-graph structure with the most descriptive part represent-
ing the landmark node. The initial spatio-temporal param-
eters are estimated from the maximum likelihood locations
of parts as follows (Figure 3):

%9 = arg max p(Pi|x) ©)

Learning Step 3 - Creating the Global Model. We com-
mence by obtaining an initial estimate of the parameters of
the conditional distributions p(xg) \x&M)) in (4) from the
MAP locations of the dynamics model and initial maxi-
mum likelihood location of pose models. However, not only
the initial pose models contain noisy parts, but the parame-
ters of the conditional distributions p(xﬁi) xg,M)) in (4) are
very inaccurate. We use E.M. algorithm to revise the global
model parameters. Figure 5(a) shows cross-sections of the
conditional distributions along the time axis. An example
of the corresponding cross-sections of the revised condi-
tional distributions is shown on Figure 5(b). Our MAP
estimation algorithm considers only model configurations
in which pose parts belong to the same frame. This al-
gorithm is presented in Section 4. While the revised con-
ditional distributions become better defined, the updated
model still contains a number of overlapping parts. We
remove overlapping parts and re-estimate model parame-
ters with the E.M. algorithm once again (Figure 4(b)). Fig-
ure 5(c) shows examples of the cross-section of the resulting
conditional distributions along the time axis. Finally, only
poses that are temporally well-defined are retained. This
is accomplished by pruning pose model subgraphs whose
landmark nodes have the largest temporal variances when
conditioned on the dynamics model. Moreover, when two
intervals (t; — At,t; + At) and (t; — At, t; + At) over-
lap, several instances of a same pose may be incorrectly
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Figure 4. Creating the global model. (a) Initial pose models are combined with the model of dynamics; (b) Nodes corresponding to
overlapping parts are pruned; (c) Finally, only temporally well defined poses are retained (Pose 1 and Pose 3).
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Figure 5. Temporal cross-sections of partial models conditional distributions (five-pose models). (a) Initial pose models are created; (b)
Initial global model parameters are revised; (c) Overlapping parts removed and model parameters revised. (d) Two final remaining pose
models. Note: three pose subgraphs were pruned to enforce the minimum temporal distance between poses to be four-frames.

learned. To address this problem, we greedily select a sub-
set of pose models such that, when conditioned on the dy-
namics model’s landmark node, the mean temporal loca-
tions of their landmark nodes are separated by a pre-defined
distance (e.g., one frame)(Figure 4(c)).

4. Classification

For recognizing a human motion in a video sequence,
we seek for the video’s spatio-temporal location that maxi-
mizes the posterior probability in (1). In the case of the tree-
structured Bayesian network, the proposed representation
is equivalent to the Random Markov Fields (RMF) model
in which the potential functions are conditional probabil-
ity densities. As mentioned earlier in this paper, we expect
same-pose parts to belong to the same frame in the video
sequence. This observation allows us to significantly re-
duce the global model’s MAP search space. The steps of

our exact inference algorithm are: (a) Consider all XSM);

(b) Consider all X;—M); (c) Consider all xﬁf); (d) For every
xg), consider only those xlgi) that have the same temporal
coordinate as xg). (e) Calculate the configuration’s poste-
rior probability.

5. Experimental Results

We tested our model on the human action dataset from
[2]. This database contains nine action classes performed
by nine different subjects. Since our method is view-
dependent, the direction of the motion in all input videos
is the same in all sequences (e.g., a subject is always walk-
ing from right to left). We extracted square patches cen-
tered at the image locations detected by a Harris operator.
Gaussian smoothed edge-maps are generated from the ex-
tracted square subregions. The edge maps served as input
to build static-pose models. Features required to create the
dynamics model were obtained using the spatio-temporal
interest point detector described in [7]. Principal compo-
nent analysis (PCA) was used to reduce the dimensionality
of all features. However, the similar background appear-
ance in the sequences from [2] induced bias in the learning
process. To address this issue, we synthesized background
data for the dynamics model training step from portions of
sequences containing no subjects. Corresponding frames
served as background data for the pose learning module.

We compared our results with the results reported by
Niebles and Fei Fei [13]. Similarly, we adopted a leave-
one-out scheme for evaluation. Labeling decision is based
only on the best match for each model. Results suggest that
the dynamics model alone is not sufficient to perform accu-
rate classification. In our experiments, human motion mod-
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Figure 6. Classification confusion matrices (a) 75.3% correct clas-
sification; (b) 88.9% correct classification.

els using no pose models achieved classification rate of only
35.8%. In order to obtain the initial pose models, pose mod-
els’ relative temporal distances to the dynamics model were
manually set to to = {—20, —10, 0,10, 20}. In our experi-
ments, we set At = 5 frames.

In the first experiment, we retained only the temporally
best defined pose. This model’s classification confusion
matrix is shown in Figure 6(a), and presents a 75.3% over-
all recognition rate. This rate is superior to the 72.8% clas-
sification rate reported in [13]. In the second experiment,
we increased the number of pose models. In our imple-
mentation, the number of pose models is indirectly con-
trolled by an inter-pose temporal distance threshold. We
set this threshold value to four frames. This model’s clas-
sification confusion matrix is presented in Figure 6(b). The
figure also displays (in parentheses along side the motion
types) the average number of poses retained in the global
model for a specific motion. The overall recognition rate
was 88.9%. The method mostly misclassified those actions
where the pose does not change significantly during the mo-
tion (e.g., “jump” and “pjump” actions). Figure 7 provides
qualitative results for action models from the latter exper-
iment. More specifically, it displays several motion mod-
els superimposed on the test sequences at the detected lo-
cations. Plots at the top of corresponding actions repre-
sent cross-sections of “dynamics-pose” conditional distri-
butions along the time axis. They provide the answer to
the question of at what temporal displacement from dynam-
ics a specific pose is expected to be located. White bor-
ders indicate static-pose parts. Grayed rectangles represent
slices of the landmark’s spatio-temporal subregion in cor-
responding frames. The results allow us to make the fol-
lowing conclusions: (1) The inclusion of additional pose
models helps remove overall classification ambiguity. (2)
Final global model’s conditional distributions may signif-
icantly differ from the initial ones. See, for example, the
plot in Figure 7, fourth column, where all pose models have
positive temporal displacements.

6. Conclusions

We presented a novel method for learning human motion
models from unsegmented sequences. More specifically,
we demonstrated how partial models of individual static
poses can be combined with partial models of the video’s
motion dynamics to achieve motion classification. We
demonstrated the effectiveness of our method on a series
of motion classification experiments using a well-known
motion database. We also provided a comparison with
a recently published motion recognition approach. Our
results demonstrate that our method offers promising
classification performance. We understand that limitations
of the benchmark dataset does not allow us to show the
approaches’ full potential in presence of complex actions.
For this reason, we intend to further investigate the perfor-
mance of our method on private datasets. Future directions
of investigation include a study of the possibility of using
alternative appearance models, and the development of a
new framework for classifying human-object interactions.
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