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Abstract. In this paper, we approach the problem of determining the
basic components from repetitive textured surfaces undergoing free-form
deformations. Traditional methods for texture modeling are usually based
on measurements performed on fronto-parallel planar surfaces. Recently,
affine invariant descriptors have been proposed as an effective way to ex-
tract local information from non-planar texture surfaces. However, affine
transformations are unable to model local image distortions caused by
changes in surface curvature. Here, we propose a method for selecting
the most representative candidates for the basic texture elements of a
texture field while preserving the descriptors’ affine invariance require-
ment. Our contribution in this paper is twofold. First, we investigate the
distribution of extracted affine invariant descriptors on a nonlinear man-
ifold embedding. Secondly, we describe a learning procedure that allows
us to group repetitive texture elements while removing candidates pre-
senting high levels of curvature-induced distortion. We demonstrate the
effectiveness of our method on a set of images obtained from man-made
texture surfaces undergoing a range of non-rigid deformations.

Key words: texture learning, non-rigid motion, texture classification,
dynamic texture

1 Introduction

In this paper, we investigate the problem of learning representative local texture
components from repetitive textures. In particular, we focus on the specific case
in which the learning stage is performed by observing a textured surface under-
going unknown free-form deformations. Figure 1 shows samples of such textured
surfaces presenting a range of curvature deformations.

Perceiving and modeling the appearance of repetitive textures are impor-
tant visual tasks with a number of applications including surface tracking [8,
14], texture classification [3, 12], and texture synthesis [16, 9]. However, obtain-
ing accurate descriptions from non fronto-parallel texture fields is not a trivial
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Fig. 1. Sample frames of sequences of surface textures under non-rigid deformation.
Local planarity of texture primitive is often disturbed by abrupt changes in local surface
curvature where the surface tends to curve into folds.

problem as the underlying texture appearance varies significantly with both the
perspective geometry and the orientation of the observed surfaces [21, 9, 16, 12].
While this appearance variation represents a rich source of information for shape-
from-texture methods [25, 19], it is also a main source of problems for standard
texture learning methods. Indeed, changes in local curvature produce nonlinear
warping of some image regions. Consequently, texture descriptors evaluated on
these warped image regions are likely to produce unreliable measurements.

Our primary goal in this paper is to study the effects of surface curvature
variation on local texture descriptors when the observed surface undergoes non-
rigid deformations. In particular, we show how local texture appearance models
can be estimated from deforming textured surfaces with high level of curvature
distortion. The contribution of the study presented in this paper is twofold.
First, we investigate the distribution of extracted affine invariant descriptors
on a nonlinear manifold embedding. Here, we assume that the population of
affine invariant descriptors lie on a lower dimensional manifold describing mainly
variations in surface orientation and curvature. This lower dimensional manifold
seems to describe the departure from local planarity of local affine invariant
descriptors. Secondly, we describe a learning procedure that allows us to group
repetitive texture elements while selecting the best set of candidates to represent
the actual undistorted basic texture components.

The remainder of this paper is organized as follows. Section 2 provides a
survey of the related literature. In Section 3, we discuss the effects of curvature
distortion on affine invariant texture measurements. Section 4 describes the de-
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tails of our texture primitive selection method. The preliminary results of our
study are shown in Section 5. Finally, in Section 6, we present our conclusions
and directions for future investigations.

2 Related literature

Modeling texture appearance is usually the initial step in the solution of many
texture-related problems including recognition [3, 12], tracking [8, 14], and syn-
thesis [16, 9]. Nevertheless, finding general representations for texture is a chal-
lenging problem. In fact, despite extensive research efforts by the computer vi-
sion community, there is no currently widely accepted method to model the
complexity found in all available textures. State-of-the-art texture classification
algorithms have successfully approached the texture representation problem by
means of statistical descriptors. These descriptors can be obtained from mea-
surements based on the response of convolution filters [13, 24, 26], image regions
and pixel distributions [12], and frequency-domain measurements [7, 2].

Most texture modeling methods are based on measurements obtained from
planar fronto-parallel texture fields [13, 24, 26, 7]. For example, Leung and Ma-
lik [13] introduced a filter bank-based descriptive model for textures that is
capable of encoding the local appearance of both natural and synthetic textures.
Since then, many extensions of this work have been proposed [24, 5]. Indeed,
these methods achieve high classification rates due to their ability to learn rep-
resentative statistical models of each texture. However, it is unclear how they
would perform on non-rigid deforming surfaces.

There has been some recent research effort aimed at addressing the texture
learning problem from non-rigid, non fronto-parallel texture images [21, 9, 16,
12]. For example, Chetverikov and Foldvari [4] use a frequency-domain affine-
invariant representation for local texture regions. Bhalerao and Wilson [2] also
use a frequency-based affine-invariant descriptor for texture segmentation. Miko-
lajczyk et al. [17] describe a local affine frame measurement for wide-baseline
stereo followed by a comparison of affine region detectors. Zhu et al. [26] present
a multilevel generative image model for learning texture primitives based on
Gabor-like filter measurements. Hayes et al. [9] address the problem of learning
non-rigid texture deformations on regular and quasi-regular lattices. They pro-
pose a feature matching algorithm to discover lattices of near-regular textures in
images. Their final goal is to synthesize fields of texture from a set of examples.

The focus of this paper is on non-rigid deforming texture surfaces. Recent
work by Lazebnik et al. [12] addresses the problem of learning texture models
from images of non fronto-parallel texture surfaces. They propose a texture clas-
sification method based on learned texture components using affine-invariant de-
scriptors. This approach is very effective under the assumptions of orthographic
viewing and low-curvature surfaces. However, for surfaces with high levels of
curvature deformation, the surface folds and bends will reduce the ability of
affine-invariant descriptors to capture correct local texture representations. As a
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result, the learned appearance of basic texture components using this approach
is likely to be less representative of the actual surface texture.

Depending on the curvature of the observed surfaces, the deformation of tex-
ture elements can present a significant degree of nonlinearity. Nonlinear manifold
learning techniques such as Isomap [23], Local Linear Embedding (LLE) [20], and
Laplacian Eigenmaps [1] are suitable candidates for the analysis of such deforma-
tions. For example, Souvenir and Pless [22] characterize deformations in magnetic
resonance imaging. Nonlinear manifold learning is also a useful technique for the
synthesis of dynamic textures. Liu et al. [15] approach the dynamic texture syn-
thesis problem using nonlinear manifold learning and manifold traversing.

3 Curvature-induced distortion of texture elements

In this section, we investigate the effect of surface curvature on affine-invariant
descriptors. The aim of this section is twofold. First, we show how changes in
local curvature can reduce the quality of affine-invariant descriptors. Secondly,
we analyze the distribution of local affine-invariant descriptors using a nonlinear
manifold learning technique.

We will represent the local texture appearance using the affine-invariant de-
scriptor proposed in [12]. This descriptor is essentially a pixel gray-level intensity
histogram calculated on a scale-invariant polar representation of an image sub-
region. It represents the radial frequency of normalized pixel intensities. The
representation is normalized to minimize the effects of illumination. The polar
representation of the pixel intensity maps rotations onto translations. The his-
togram representation that follows is translation invariant. This representation
allows for full affine invariance when calculated at locations centered at image
patches. Figure 2(a) illustrates the affine-invariant region extraction process, and
is described in detail next.

Single texture patch distortion. We begin by analyzing the influence of
surface curvature on a single affine-invariant descriptor calculated on a small
texture subregion. The selected region contains a single planar texture element
from the textured surface. Here, we artificially project the extracted region on a
cylindrical surface observed under perspective viewing. We proceed by bending
the surface to increase the local curvature while using the standard Euclidean
distance to measure the error between the affine-invariant descriptor of a planar
patch and its curved versions. The plot in Figure 2(b) shows the Euclidean
distance measuring the departure from the original planar patch for increasing
levels of curvature deformation. The plot shows that the information in the
affine-invariant descriptor remains almost constant when the local curvature is
low. However, the difference from the planar patch increases significantly for
medium and high surface curvatures. This behavior is surely expected as, for
curved surfaces, texture affine-invariance is only valid for small planar regions.

Distortion distribution of local affine-invariant descriptors. The previ-
ous analysis suggests that local texture affine invariance is not preserved if the
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Fig. 2. (a) affine-invariant region extraction. Elliptical regions centered at affine-
invariant interest points are extracted from the image. The elliptical regions are nor-
malized to a circular shape. A translation invariant radial histogram of pixel intensities
is build to represent the extracted regions. (b) Deviation from the original texton with
increase in curvature observed in the affine-invariant space.

texture region is deformed by the 3-D surface’s local curvature. We now would
like to turn our attention to the distribution of distortions of affine-invariant de-
scriptors across a deforming surface. In this analysis, we commence by detecting
a large set of interest points in a sequence of images of a non-rigid deform-
ing surface. A sample image of the analyzed surface is shown in Figure 2(a).
The set of interest point locations is obtained using the affine-invariant inter-
est point detector proposed by Kadir and Brady [11]. This detector provides
information about the affine scale of the neighborhood of each detected interest
point. Once these image locations are at hand, we use the scale information pro-
vided by the detector to extract elliptical regions from the images. These regions
are subsequently normalized to a standard rectangular size and represented by
the rotation-invariant descriptor proposed by Lazebnik et al. [12] to remove the
inherent rotational ambiguity. At this stage, we would like to point out the fol-
lowing: (a) we expect the distribution of local texture patches to form groups
representing various basic texture components and their parts; (b) repetitive tex-
ture patterns can be compactly represented by statistical descriptors based on
affine-invariant measurements. However, localization errors and incorrect scale
axes are likely generate redundant groups in the distribution (i.e., non-centered
similar patches will form separate groups); (c) the distribution of distorted tex-
ture elements can be assumed to lie on a low dimensional manifold modeling
both patch location noise and curvature-induced distortions.

We now use Isomap [23] to obtain an embedded representation of the lower
dimensional nature of the distortion distribution presented by the subregion de-
scriptors. Isomap manifold embedding preserves “geodesic” distances between
data points. Figure 3 illustrates the two-dimensional manifold learned using
Isomap for the local affine-invariant patch distribution. The figure also shows
the embedded image subregions back-projected onto the image domain. We ex-
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Fig. 3. 2-D Isomap embedding of the affine-invariant field. Undistorted texture com-
ponents form the large cluster close to the center of the plot. Nonlinearly deformed
elements also tend to form clusters. Border points usually represent noise.

tracted a large number of affine-invariant descriptors from the sequence of images
shown in the first row of Figure 1. The figure shows a highly dense cluster near
the center of the plot containing mostly locally planar patches. On the other
hand, nonlinearly deformed patches tend to group themselves into clusters with
respect to their deformation similarity. Finally, occluded or distorted elements
form relatively sparse groups with large within-class variation.

4 Our Texture Component Learning Method

Our goal in this paper is to build an algorithm for learning compact represen-
tations of textures from images of surfaces undergoing non-rigid deformations.
While this represents a significantly challenging capture setup, it also allows us
to apply our method to more realistic imaging situations such as capturing the
basic patterns from a piece of waving textured cloth, a moving animal’s natural
skin pattern, and clothes worn by a moving person. In this section, we use some
of the insights obtained from the analysis presented in the previous section to
derive a algorithm for selecting a set of representative components of a texture
pattern. The main steps of our texture learning algorithm are given as follows.
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Extraction of affine-invariant regions. The first step of our algorithm con-
sists of extracting a large number of image subregions from a set of video frames
of the observed surface. This step is subdivided into two main parts. First, we
detect a large set of affine-invariant interest points on each image or video-frame.
We use the Kadir and Brady’s salient feature detector [11] as it provides informa-
tion about the affine scale of image features. The salient feature detector outputs
elliptical regions centered at each feature of interest. Subregions extracted us-
ing this detector can be normalized to a common scale invariant shape (e.g., a
circle). The remaining rotation ambiguity can then be removed by representing
the normalized subregions using the spin-image affine-invariant descriptor pro-
posed in [12]. Accordingly, let S = (s1, s2, . . . , sN ) be the set of affine-invariant
descriptors obtained by this step, where N is the total number of subregions.

Manifold learning representation of affine descriptors. Our aim is to ob-
tain a compact representation of the most significant repetitive patterns on the
image. However, the nonlinear nature of the distortion present in the dataset
does not allow for correct distance measurements in the original feature space.
Additionally, spin-image descriptors carry a significant level of information re-
dundancy. To accomplish a better description of the variation in the dataset,
we assume that both the basic texture elements as well as their nonlinear defor-
mations lie on a low-dimensional nonlinear manifold in which the two intrinsic
dimensions of variability describe local surface orientation and curvature dis-
tortion. Based on this assumption, we perform Isomap [23] nonlinear manifold
learning on the original distribution S . Isomap allows for a reduction of the di-
mensionality of the data while preserving the manifold’s intrinsic geometry, and
is stable even for sparse sets of data points. The resulting reduced dimension
dataset of extracted subregions is then given by X = (x1,x2, . . . ,xN ).

Learning representative texture components. The goal of this step is to
determine the most representative classes of texture elements in X. We be-
gin by modeling the distribution of affine-invariant descriptors as a mixture
of K Gaussian densities given by p(x|Θ) =

∑K
i=1 αipi(x|θi), where x is an

affine-invariant descriptor in the Isomap manifold space, αi represent the mix-
ing weights such that

∑K
i=1 αi = 1, Θ represents the collection of parameters

(α1, . . . , αK , θ1, . . . , θK), and pi is a multivariate Gaussian density function pa-
rameterized by θi = (µi,

∑
i), such that:

p(x|j) =
1

(2π)
d
2 |Σj |1/2

exp{−1
2

(x− µj)
T

Σ−1
j (x− µj)} (1)

where µj and Σj are the mean vector and covariance matrix of the texture ele-
ment j, respectively. Each mixture component represents a set of texture descrip-
tors of similar appearance on the image. The mixture of Gaussians model param-
eters can be estimated by the Expectation-Maximization (EM) algorithm [6].

A straightforward consequence of the mixture of Gaussians modeling is that
texture descriptors closer to the mean vector in each class will present less
curvature-induced distortion when compared to descriptors that are further away
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from the class mean. In order to obtain sharper representations of the learned
texture components, we select a single descriptor from each cluster to repre-
sent a basic texture component in the image. In other words, a set of texture
components is selected as:

τ j = arg max
xi

p(xi|j) j = 1, . . . ,K (2)

A set of basic components is obtained by this process and is used to create
a dictionary representation d = {τ 1, . . . , τK}. However, the nonlinear nature
of the surface distortion will compromise the representativeness of some of the
learned mixture components. As a result, the learned clusters might not represent
actual texture components but a geometrically warped version of them. Next,
we propose a way to remove these non-representative elements from our dataset
of learned texture primitives.

Ranking of learned texture components in the dictionary. Our main
goal in this step is to distinguish between distributions of affine transformed
basic texture elements and their nonlinearly deformed counterparts. The nature
of the nonlinear deformations is mostly anisotropic (i.e., directional appearance
distortion). Consequently, we expect to have a relatively small number of data
points belonging to clusters of non-affine distorted elements. Thus, distributions
with low prior probability will most likely correspond to regions that were dis-
torted by nonlinear transformations. Elements falling within such distributions
can be safely discarded and therefore removed from the dictionary.

The remaining distributions may represent two cases. The first case corre-
sponds to classes of affine transformed elements that are representative of the
texture. The second case represents classes consisting of nonlinearly distorted re-
gions. Our experiments have shown that the distribution of nonlinearly distorted
elements tend to have high within-class variation. Based on this observation, we
rank the remaining dictionary elements based on the decreasing order of the
within-class variation of their classes (i.e., the determinant of the covariance
matrix for the class, |Σj |). Finally, the top-ranked elements are selected as the
ones that represent classes of locally planar regions:

d = {τ j} such that |Σj | ≥ |Σj+1| (3)

5 Experimental results

Our experiments were divided into two main parts. First, we evaluated our algo-
rithm on video sequences of a number of deforming texture surfaces. The surfaces
used in our experiments consisted of patterned fabrics bought from a local shop.
To produce the deformations, we have waved and deformed the fabrics manually
while recording the video sequences. Three of these patterns are shown in Fig-
ure 4. Secondly, we show qualitative results of extracted basic texture elements
using a standard K-Means learning approach similar to the one proposed in [12].
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(a) (b)

Fig. 4. Learning locally planar regions. Three distinct textures. Column (a) shows
the three top-ranked learned texture elements (top to down). Column (b) shows the
corresponding learned elements (in red color) mapped on a sample video frame.

We commenced by extracting a large set of subregions from a sample of
frames of the video sequence. Our current method does not use any temporal
information and a sparse set of frames was usually sufficient for our algorithm to
work. We extracted approximately 2,000 local affine-invariant descriptors from
the set of images of the fabric surfaces. The feature extraction stage was followed
by a ten-dimensional Isomap embedding of the corresponding affine-invariant de-
scriptors. In our experiments, the EM learning step was performed using diagonal
covariance matrices. After the EM learning step was performed, the algorithm
automatically selected the classes with the highest prior probabilities such that
the sum of priors formed 60% of the total population. For every such a class, the
basic texture element was selected using Equation 2. Finally, the ranking stage
was performed to remove noisy components and rank the most representative
ones. Here, the 75% top-ranked elements were selected by the program. These
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Fig. 5. Texture components learned using standard K-Means method. For every tex-
ture The affine-invariant space was clustered using k-means clustering algorithm. The
learned texture elements are shown on the right-hand side of each sample frame.

thresholds were chosen experimentally. We selected a single patch descriptor
whenever the calculations produced no resulting components. Our results were
consistent for different values of K for the EM algorithm. It is common that
among the top-ranked texture primitives there will be several exemplars of the
same element. Such a situation may occur due to imprecisions in the region de-
tection process as well as due to illumination changes. Figure 4 shows the results
for three types of patterned fabrics used in our experiments. Figure 4(a) shows
(from top to down) the ranked sequence of learned texture components obtained
by our method. Figure 4(b) shows three frame images with the learned locally
planar texture components superimposed on the fabric’s surface.

At this point, we would like to turn the reader’s attention to the third row in
Figure 4. In the figure, the learned texture components represent a texture with
flower-shaped elements as well as the first three top-ranked elements discovered
by our method. While texture elements with large area are more likely to be
distorted, some of their parts still may be locally planar. In the case of this
texture, a part of a larger element received the second highest “planarity” rank.
This suggests that our method is able to discover locally planar regions even
in the presence of strong deformations by selecting those distributions that are
most resistant to distortions.

In the second part of our experiments, we provide a qualitative comparison
between the results obtained by our algorithm and typical results obtained by
clustering the affine-invariant feature space using the K-Means clustering algo-
rithm. Figure 5 shows a sample of results from this experiment. Basically, we
use the same feature extraction steps as in the previous experiment. However,
the nonlinear manifold learning step was not performed, and the EM algorithm
clustering was substituted by the K-Means. Additionally, there was no texture
component selection procedure performed on the clustered results. The figure
shows a sample image-frame of each texture with some of the extracted affine
regions indicated by red ellipses. The learned texture components produced by
this procedure are shown on the righ-hand side of each texture sample. In this
case, the resulting learned texture components present significant levels of de-
formation when compared to the ones obtained by our method.
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These results show that our method is able to distinguish between locally
planar texture elements and their nonlinearly distorted versions. For illustration
purposes we selected only the first three top-ranked elements for every texture.
Increasing the size of the dictionary of representative elements leads to classifying
more regions as locally planar. However, lower ranked texture elements usually
come from distributions with large covariance and are likely to contain noisy
data. The investigation of this trade-off is important and is left for future work.

6 Conclusions and future work

In this paper, we proposed a method for learning the basic texture primitives of
patterned surfaces distorted by non-rigid motion. The proposed algorithm uses
nonlinear manifold learning to capture the intrinsic dimensionality of curvature
distortion on non-rigid deforming texture surfaces. A selection procedure for
determining the most representative local texture components was presented.
A qualitative comparison between our texture primitive learning method and
a standard K-Means learning procedure was also presented. Our experiments
demonstrated the effectiveness of our method on a set of images obtained from
patterned fabric surfaces undergoing a range of non-rigid deformations.

Interesting future directions include the further investigation of the effects
of curvature on the local texture measurements as well as the introduction of
both spatio-temporal information and inherent texture repetitiveness into the
nonlinear manifold learning stage [10, 18]. Extending the method to include color
information is also a possibility. We plan to apply our ideas to the classification
of deforming texture surfaces. Studies aimed at developing these ideas are in
hand and will be reported in due course.
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