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Abstract

Image moments have been widely used for design-
ing robust shape descriptors that are invariant to rigid
transformations. In this work, we address the prob-
lem of estimating non-rigid deformation fields based on
image moment variations. By using a single family of
polynomials to both parameterize the deformation field
and to define image moments, we can represent image
moments variation as a system of quadratic functions,
and solve for the deformation parameters. As a result,
we can recover the deformation field between two im-
ages without solving the correspondence problem. Ad-
ditionally, our method is highly robust to image noise.
The method was tested on both synthetically deformed
MPEG-7 shapes and cardiac MRI sequences.

1. Introduction

Moments have been widely used in computer vision
to achieve invariance to transformations [7, 13, 14, 9].
Key applications of moments include the design of ro-
bust shape descriptors [11], and the estimation of local
image deformation [12, 10]. In this paper, we address
the problem of calculating non-rigid deformation fields
between image pairs. We propose a moment-based
method that recovers dense deformation fields between
shapes. Unlike some previous approaches [14, 9], that
rely on feature matching, our method estimates nonrigid
motion without any feature correspondence.

Our main contribution is based on the observation
that moments are integral transforms of an image func-
tion f(x, y) with bivariate polynomials xpyq . By pa-
rameterizing image deformation using a single family
of polynomials, i.e., xpyq , changes in image moments
can be approximated as a quadratic function of the de-
formation parameters. Solving this quadratic function

results in deformation parameters that best describe the
changes in the moments. Furthermore, our method does
not rely on prior information about object shape. Fi-
nally, image moments accomplish a robust global rep-
resentation that do not rely on differential image proper-
ties such as intensity or gradients. The proposed method
recovers accurate deformation fields from highly noisy
images, paving the way for potential applications such
as motion tracking in MRI or ultrasound images.

Moments have been mainly used as invariant local
descriptors [14, 9] for affine and rigid transformation
groups. However, few approaches address the problem
of recovering image deformation directly from changes
in images moments. For example, the idea of estimating
dense deformation fields from texture moments was ex-
plored by Sato et al. [12]. Recently, Domokos et al. [5]
proposed an affine registration algorithm using polyno-
mial equations built from shape moments. Our work
differs from [12] and [5] in three ways. First, we ex-
tend the affine-deformation model to a parameterized
polynomial model. Secondly, our method is based on
a simple numerical approximation, that leads to accu-
rate and robust registration results. Thirdly, the method
in [5] is restricted to binary images, while our method
works for both binary and grayscale images. Finally,
we define both the deformation field and moments using
the same family of basis polynomials, leading to a sim-
plified computation procedure. Polynomials are effec-
tive in modeling nonrigid motion fields [8, 6], but to our
knowledge, this is the first work studying the interaction
between polynomial models and image moments.

2. Image Deformation Model

Given a continuous function f(x, y), the moment of
order (p+q) is usually defined by the following integral
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transform of the polynomial kernel function xpyq:

Mp,q =
∫∫

Ω

xpyqf(x, y)dxdy, (1)

where p, q ≥ 0, and the integration takes place over the
whole support Ω ⊆ R2 of f(x, y). As a result, Mp,q is
influenced by all values in Ω, making image moments
quite robust to image noise.

Estimating the non-rigid deformation field between
two images, f(x, y) and f ′(x′, y′), is an ill-posed prob-
lem. The ill-posedness is usually alleviated by casting
deformation field estimation as a parametrized model-
fitting problem. For this, we can write the coordinate
transform of the local image deformation as:

x′ = x+ u(x, y) and y′ = y + v(x, y), (2)

where [u(x, y), v(x, y)]
T

is the deformation field. By
assuming a continuous deformation field, analytic to the
order N , we can parameterize it using xpyq as in (1):

u(x, y)=

s,t=NX
s,t=0

as,tx
syt and v(x, y)=

s,t=NX
s,t=0

bs,tx
syt. (3)

Here, when N = 1, we have the usual affine model.
Other choices of polynomial kernels exist including
the Zernike polynomials [13] that produce Zernike mo-
ments. In principle, our method is independent on the
choice of specific polynomials, provided that the same
family of polynomials are used for deformation-field
parameterization and to moments definition.

3. Variation of Image Moments

We begin by defining the moments of transformed
image f ′(x′, y′) as [7]:

M ′p,q =
∫∫

x′
p
y′

q
f ′(x′, y′)dx′dy′

=
∫∫

(x+ u)p(y + v)qf (x, y) |J |dxdy, (4)

where |J | is the determinant of the Jacobian matrix
which is given by:

J =

[
∂x′

∂x
∂x′

∂y
∂y′

∂x
∂y′

∂y

]
=
[
1 + ux uy

vx 1 + vy

]
. (5)

By assuming that (u, v) is both small and continuous
compared to the object’s scale, we can normalize the
coordinates (x, y) by the image size such that x, y ∈
[0, 1] for x, y ∈ Ω, and u, v � 1. Additionally, since

(u, v) is analytic, ux and uy are also� 1. As a result,
|J | can be approximated as:

|J | = 1 + ux + vy + ux vy − uy vx

≈ 1 + ux + vy

= 1 + div(u, v). (6)

Additionally, the following approximation is also valid:

(x+ u)p ≈ xp + pxp−1 u

(y + v)q ≈ yq + qyq−1 v (7)

and:

(x + u)p(y + v)q ≈ (xp + pxp−1 u)(yq + qyq−1 v)

≈ xpyq + yqxp−1 p u + xpyq−1 q v. (8)

Here, we can drop the product term of u, v. Substituting
(6) and (8) into (4) and expanding, we have:

M ′p,q ≈

Mp,qz }| {ZZ
xpyqf(x, y)dxdy

+

ZZ
(yqxp−1 p u + xpyq−1 q v)f(x, y)dxdy

+

ZZ
xpypf(x, y)div(u, v)dxdy

+

ZZ
(yqxp−1 p u + xpyq−1 q v)| {z }

shape variation

f(x, y)div(u, v)| {z }
area variation

dxdy. (9)

Notice that div(u, v) measures the infinitesimal area-
change ratio of the deformation field. Equation 9 shows
that the moments after transformation can be approxi-
mated by four components: the original moment Mp,q ,
the change caused by shape variation (i.e., the second
term), the change caused by the transform’ stretching
(or shrinking) effect (i.e., the third term), and the change
caused by the combination of these two factors (i.e., the
last term). Next, we show how to recover the deforma-
tion field given both M ′p,q and Mp,q .

4. Deformation Field Recovery

Since we parameterized the deformation (u, v) using
polynomials xpyq , Equation 9 can be further simplified.
For example, its second term can be expressed as:ZZ

(yqxp−1 p u + xpyq−1 q v)f(x, y)dxdy

=

ZZ
p

s,t=NX
s,t=0

as,tx
s+p−1yt+qf(x, y)d xd y

+

ZZ
q

s,t=NX
s,t=0

bs,tx
s+pyt+q−1f(x, y)d xd y

= p

s,t=NX
s,t=0

as,tMs+p−1,t+q + q

s,t=NX
s,t=0

bs,tMs+p,t+q−1 (10)
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Figure 1. Deformation fields (synthetic images). First and second columns show the image and
distorted images corrupted by salt-and-pepper noise (0.2 density). The third column shows the
ground truth deformation field, and the last column shows the reconstructed results.

From (3), we obtain:

ux =

s,t=NX
s=1,t=0

s as,tx
s−1yt and vy =

s,t=NX
s=0,t=1

t bs,tx
syt−1. (11)

As a result, div(u, v) can also be expressed as a poly-
nomial. Following the same argument for the third and
fourth term, Equation 9 can be rewritten as:

M ′p,q = Mp,q +

s,t=NX
s,t=0

[as,t(p + s)Ms+p−1,t+q]

+

s,t=NX
s,t=0

[bs,t(q + t)Ms+p,t+q−1] + Q (as,t, bs,t) , (12)

where Q (as,t, bs,t), s, t = 0, . . . , N is the last term
in (9), and Q (as,t, bs,t) is quadratic. If X =
[a0,0, b0,0, . . . , aN,N , bN,N ]

T

are the unknown parame-
ters, we can rewrite Equation 12 as:

∆Mp,q = R
T

p,qX +Q(X), (13)

where ∆Mp,q = M ′p,q − Mp,q , and Rp,q is the co-
efficient matrix for the linear term. For each pair of
(p, q), we obtain a quadratic function. Then, many nu-
meric schemes can be used to solve the overdetermined
system. For example, we could use the analytic form
of Q(X) = X

T

Q̃X where Q̃ is the symmetric and
semi-definite matrix of the quadratic form. Then, al-
gorithms for solving general quadratic equations could

be deployed. In this work, we adopt the fixed-point iter-
ation algorithm [4], in which the previous solution Xt

is updated to Xt+1 by solving the linear equations:

εtp,q = ∆Mp,q −Q(Xt) = R
T

p,qX
t+1, (14)

with X0 initialized to zeros. Additionally, since higher-
order image moments tend to be less reliable, we weight
Equation 14 based on its order W (p+ q) = e−(p+q).

Two issues should be mentioned. First, Equation 14
works for small deformations only. But large deforma-
tions can be handled by incremental warping. Secondly,
deforming object parts might enter and exit the image
region, causing undesired variation in image moments.
We are currently studying ways to address these issues.

5. Experiments

Synthetic Deformations. We randomly selected 15
shapes from MPEG-7 database [2]. For each shape,
we used the polynomial model to synthesize 10 differ-
ent deformation fields, that were in turn used to warp
the original images. To show the algorithm’s robust-
ness, we added independent salt-and-pepper noise to all
images. The deformation model was set to have order
N = 2 (i.e., affine model). Results were compared with
Domoko’s method 1 [5]. Figure 1 shows the synthesized
images and the estimated deformation fields.

1http://www.inf.u-szeged.hu/˜kato/
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Figure 3. Cardiac MRI sequence. First
row: two frames of a cardiac contraction
cycle and the estimated deformation field.
Second row: relaxation cycle.

To measure the reconstruction quality quantitatively,
we used the concept of Average End-Point Error (APE)
from optical flow [3]. In Figure 5, we plot the APE
mean and variance as a function of noise energy level.
In comparison with Domoko’s method, our method has
lower estimation error and smaller estimation variance.

Figure 2. APE in terms of noise. Recon-
struction error of deformation increases
moderately as the noise level increases.

Cardiac MRI Sequence. We tested our algorithm on
a 95×80-pixel Cardiac MRI sequence [1]. We used de-
formation model orderN = 3, that is more flexible than
the affine model. Figure 3 shows the deformation field
estimated from the cardiac contraction and relaxation

cycles. Unlike [1] and many existing works, our algo-
rithm does not need prior shape or appearance models.

6. Conclusion

We presented a image-deformation estimation
method that uses a polynomial deformation model and
image moments. Future work includes the use of differ-
ent basis functions as well as integrating the approach
into spline-based registration methods.
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