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Abstract

In this paper, we propose a method for detecting patterns of interest in vector fields. Our method detects patterns in a scale- and
rotation-invariant manner. It works by approximating the vector-field data locally using a Laurent polynomial weighted by radial
basis functions. The proposed representation is able to model both analytic and non-analytic flow fields. Invariance to scale and
rotation is achieved by combining the linearity properties of the model coefficients and a scale-space parameter of the radial basis
functions. Promising detection results are obtained on a variety of fluid-flow sequences.
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1. Introduction

The ability to automatically detect patterns of interest in
vector fields is useful in many applications such as texture anal-
ysis [1, 2], fingerprint classification [3, 4], and fluid analysis
[5, 6, 7]. Some relevant patterns include convergence (diver-
gence) flows such as sources (sinks) and rotational flows such
as vortices. Broadly speaking, detecting interest patterns in vec-
tor fields is similar to detecting interest features in scalar images
[8, 9]. Once detected, these features are compactly represented
by descriptors that can subsequently be used for solving higher-
level problems such as flow-field recognition [5], visualization
[10], classification [3, 4], and tracking [7, 6].

Most vector-field descriptors are limited in two aspects. First,
many approaches use symbolic representations [1, 2, 3] that are
less sensitive to subtle appearance variations. Secondly, rota-
tion and scaling can be an issue with vector-field descriptors, in
contrast to modern image-feature detectors [8, 9].

Our main contribution is an algorithm for detecting and de-
scribing patterns in 2-D vector fields. The proposed method
compensates for scale and rotation transformations. We com-
mence by modeling vector fields locally using a Laurent poly-
nomial (Section 3), in which the model coefficients provide a
compact representation that we use to measure similarity be-
tween vector-field regions. The complex-domain monomials
used in our approximation model allows us to handle vector-
field rotations and scalings algebraically (Sections 4 and 5).
Following the results reported in [11], we combine these ideas
into a SIFT-like multi-scale detection algorithm that searches
the vector-field scale-space for singular patterns as local max-
ima of a pre-defined energy function (Section 6). We evaluated
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our detector on both synthetic turbulent flow fields and real-
world satellite images (Section 8). The method produced very
good detection results on flow fields undergoing rotation and
scaling, which demonstrates the potential of our method.

2. Related work

In contrast with scalar images that are often unstructured
and contain many discontinuities, vector-field data usually orig-
inate from continuous physical processes such as fluid motion
and natural dynamic textures. Thus, it is expected that model-
based approaches for singular-pattern detection in vector fields
are common in the literature. For this class of approaches, the
choice of model requires special attention regarding the bal-
ance between simplicity and descriptiveness. Here, the sim-
plest model is a template flow, making template-matching a
common technique of many detection methods based on con-
volution [12], correlation [13] or filtering operations [4]. While
these detectors generally work well, the detected patterns are
often required to match the template’s size, shape, and orienta-
tion. Further descriptive flexibility is added to these methods by
calculating the Winding number (or Poincaré index) [14]. This
number has been used for locating singular patterns in finger-
print indexing and classification [15, 3]. However, noise sensi-
tivity in its calculation is a common issue.

Some model-based methods use locally affine models for
detecting singular points in vector fields. These approaches cat-
egorize flow fields into symbolic classes using the linear phase-
portrait method [1]. An extension to a nonlinear flow model was
proposed by Ford et al. [16], and has been used for fingerprint
classification [17]. Recent work by Kihl et al. [18] improved it
further to detect multi-scale singular points.
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Table 1: Related Work

Year Representative works Invariance ApplicationLaminar Scale Rotation

1992 Rao and Jain [1] No No Yes Texture
1993 Sherlock and Monro [19] No No No Fingerprint
1997 Nogawa et al. [2] No No Yes Texture
2003 Nilsson and Bigun [4] No Yes Yes Fingerprint
2003 Gu et al. [20] No No No Fingerprint
2004 Copetti et al. [5] Yes No Yes Fluid
2006 Li et al. [17] No No Yes Fingerprint
2007 Schlemmer et al. [13] No Yes Yes Visualization
2008 Kihl et al. [18] No Yes Yes Fluid
2008 Fan et al. [3] No No Yes Fingerprint
2009 Wong and Yip [21] No Yes Yes Fluid
2009 Xu et al. [7] No No Yes Fluid
2010 Our work [11] Yes Yes Yes Fluid

Two-dimensional vector fields can also be represented us-
ing complex-domain functions, which provide a more compact
representation for vector fields than their real-valued counter-
parts. For instance, Shelock and Monro [19] used the complex
zero-pole model to represent and detect singular points in fin-
gerprint images. Nogawa et al. [2] modeled singular patterns
based on Cauchy’s residue theorem. Possible issues in this case
are noise sensitivity as well as the presence of multiple singular
points. Multiple singular points can be addressed by means of a
complex Laurent series as shown by Zhou and Gu [22] in their
representation of fingerprint’s ridge-flow patterns. The method
we propose in this paper also uses a linear combination of neg-
ative and positive powers of z 2 C. However, instead of ob-
taining a global representation, we focus on local rotation-scale
invariant descriptions of patterns in a vector field.

The way singular patterns are defined is key to detection.
As in the case of scalar-image features, the definition of sin-
gular patterns in vector fields can be ambiguous. As Jiang et
al. [23] pointed out, a precise definition does not exist even
for basic patterns such as vortices. The term singular points
is commonly used to describe regions of interest in fluid pat-
terns, even though fluid patterns are characterized by their sur-
rounding flow field. In this paper, we call these regions singular
patterns (as a region descriptor rather than a point descriptor).

Among all singular patterns, vortex detection is an impor-
tant, yet difficult problem that has been studied mostly in sci-
entific data visualization [23]. A common approach is to re-
late vortices to local maxima of flow-field properties such as
vorticity [24] and helicity [25]. Another approach is to ana-
lyze the characteristics of patterns surrounding singular points.
For example, Sadarjoen et al. [26] examines the rotation angle
of the surrounding streamlines, and then groups the ones that
share common central points. This method not only detects the
vortices, but also determines their sizes (scales). Nevertheless,
these methods are restricted to vortex detection and provide lit-
tle descriptiveness for general singular patterns.

A natural way to locate singular patterns is to define their
position to be at the vanishing points of vector fields (i.e., the
points at which the flow is zero). This definition, common in
approaches for directional texture and fluid analysis [1, 13, 18,
21], is simple and includes many interesting patterns such as

vortices, sinks, and sources. However, vanishing-point loca-
tions may become corrupted by the presence of a background
(or laminar) flow. This problem can be minimized by decom-
posing flow fields into background and foreground flows [5].
The ability to handle the presence of background flows is im-
portant to practical applications such as the analysis of weather
images; as patterns generated by hurricanes, which may have
their centers shifted when rotating as a vortex [5].

When complex-valued functions are used to represent flow
fields, singular patterns are often defined as discontinuities, and
coincide with the singularities in the differentiability sense [19,
22, 27]. Some complex-valued models are specifically designed
to represent vortices and sinks (or sources), e.g., the Rankine
models [5]. Despite their compactness, these definitions can
represent only a subset of the possible vanishing points. In this
paper, we also use complex-valued functions as our represen-
tation, but we define singular patterns as local maxima of a
multi-scale singular-energy function (Section 6). Our definition
includes classic vanishing points. Additionally, our model im-
plicitly handles background flows; making our singular-pattern
detection method fairly robust to background flows in a way
similar to that of the Galiean invariant defined in [23].

Few approaches achieve scale and rotation invariance in the
description of vector-field patterns, presenting a clear contrast
with available affine-invariance feature descriptors for scalar
images [8, 9]. For some vector-field descriptors, rotation in-
variance is implicitly achieved by adopting simplistic symbolic
descriptions [2, 5]. Rotation invariance can also be achieved
from geometric properties such as symmetry [4], but these de-
scriptors can be restricted to specific types of flow patterns such
as vortices [2, 5] or to applications such as fingerprint analy-
sis [4]. Recently, Fan et al. [3] detected singular patterns of dif-
ferent orientations based on a Hough-transform voting scheme,
and Xu et al. [7] directly extended the spin-image method for
scalar images to describe vector fields. Wang et al. [27] stud-
ied the rotation of fingerprint singular patterns using analytical
models based on the Fourier Transform.

On the issue of achieving scale invariance, researchers have
attempted to adapt the scale-space theory of scalar images to
vector fields [28]. However, the scale-space concept has not
been extensively used in detecting multi-scale flow patterns.
For example, Kihl et al. [18] detect singular patterns of different
scales by varying the size of searching windows, and Wong et
al. [21] fit a scale-parameterized model to flow fields. Multi-
scale detection has also been performed through multi-scale fil-
tering [29] or multi-resolution analysis [30]. In our work, we
adopt a scale-space representation that allows us to accurately
handle different scales of flow patterns.

A recent work by Schlemmer et al. [13] developed the equiv-
alence of Hu moment invariants [31] for flow fields, resulting
in a scale-rotation invariant descriptor. Nevertheless, their de-
tection method is a type of template-matching, and is limited
by the template’s shape. To the best of our knowledge, only
Schlemmer et al. [13] and our method provide a framework for
detecting and describing general singular patterns in flow fields,
while simultaneously addressing invariance to both scale and
rotation transformations. Recently, Marquering et al. [32] has
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Figure 1: Basis flows �k,j for j = 1, 2. Row 1: basis flows derived from zk for k = 0, . . . , 3.
Row 2: basis flows derived from izk for k = 0, . . . , 3. Row 3: basis flows derived from zk for
k = �4, . . . , �1. Row 4: basis flows derived from izk for k = �4, . . . , �1.

41

Figure 1: Basis flows �k, j for j = 1, 2. Row 1: flows derived from zk for k =
0, . . . , 3. Row 2: flows derived from izk for k = 0, . . . , 3. Row 3: flows derived
from zk for k = �4, . . . ,�1. Row 4: flows derived from izk for k = �4, . . . ,�1.

proposed an interesting application of our method [11] for the
detection of singular patterns in blood flows.

Finally, complex-valued representations and transformations
have also been studied in the context of filtering. For exam-
ple, Reisert et al. [33] used holomorphic filters for analyzing
the orientation of flow fields, and Wang et al. [34] studied the
rotational invariants of polar Fourier Transforms in a similar
fashion to Zernike moment invariants. Rather than finding nu-
merical invariants, our method aligns flow fields to a predefined
set of basis flows to achieve a rotationally invariant comparison.
In Table 1, we summarize some of the related work discussed in
this section based on their abilities to handle background flow,
scaling, and rotation transformations.

3. Modeling vector fields

Our main goal is to detect regions presenting some degree
of singularity in 2-D vector fields. We call these regions sin-
gular patterns. In this section, we describe how we can model
vector fields locally using a power series of complex mono-
mials. These complex monomials are weighted by radial ba-
sis functions to produce a scale-space representation for multi-
scale pattern detection. The model coefficients are calculated
by projecting the input vector field onto the monomial functions
using cross-correlation as an inner-product operator.

3.1. Local approximation of 2-D vector fields as a power series
Broadly speaking, a vector field is defined by a function that

assigns a magnitude and direction (i.e., a vector) to each point
of its domain. A 2-D vector field can be intuitively represented

by a complex-valued function F defined on a finite domain⌦ ⇢
C. Because our goal in this paper is to detect singular patterns
rather than modeling vector fields exactly, we approximate field
F locally as a linear combination of simpler vector fields (i.e.,
basis vector fields) as follows:

F(z) ⇡ f (z) =
NX

k=�L

ak�k(z,�), (1)

where ak 2 C are the coefficients, and �k(z,�) are complex
monomials zk weighted by the following radial basis function:

�k(z,�) =

8>><
>>:

1
Ck
kzk�k zk exp

⇣
�kzk2/�2

⌘
if kzk > 0,

0 otherwise.
(2)

Here, Ck is a normalization constant to ensure that the squared
magnitudes of the vectors in the basis vector fields sum to unity.

The radial basis function in (2) plays two main roles. It lim-
its the size of the local support of zk, providing some degree
of locality control for the approximation [33]. This control is
desirable because the monomials zk are globally supported, and
the magnitude of the vector fields represented by them grows
fast as a function of their distance to the origin. In addition, we
use the radial basis function to establish a scale-space represen-
tation for singular-pattern detection (See Section 6.2).

Equation 1 resembles a Laurent polynomial [35, 36], which
is a complex power series with negative and positive powers
(originally without the radial weighting). If only the nonnega-
tive powers were used (i.e., L = 0) then Equation 1 would be
similar to a Taylor series, which can represent only vector fields
modeled by analytic functions, therefore excluding important
fields such as the ones originated from the shear and conjugate
flows [11]. By contrast, the Laurent polynomial is more general
and is able to represent, under certain conditions, vector fields
modeled by non-analytic functions.

The approximation in Equation 1 is related to existing mod-
els such as the Rankine (Appendix B.1) and the phase-portrait
(Appendix B.2). In addition, our model can be related to ho-
momorphic filters [33] and spherical Fourier transforms [34],
by rewriting the complex monomials using polar coordinates.

3.2. Calculating the approximation coefficients
Let us now focus our attention on the problem of estimating

the coefficients ak of the polynomial in (1). These coefficients
can be calculated by using an inner product to project a local
vector field f onto the basis functions �k as follows:

ak =

Z

C
f (z) �k (z,�) dz

=

Z

C
f (z) · �k(z,�) dz

|                   {z                   }
real part

+ i
Z

C
f (z) · i �k(z,�) dz

|                    {z                    }
imaginary part

= ak,1 + i ak,2, (3)

where �k is the complex conjugate of �k, and the · symbol is
the dot product between the vectors in the input vector field f
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Figure 2: Cross-correlation between the flow field and the first four bases �k,1(z). Map A1,1 indicates a divergence-free flow field. Peaks in A1,2 indicate vortices.
Blue: matching orientation between filter and flow data. Red: reverse orientation.

vector field f onto the basis functions �k as follows:

ak =

Z

C
f (z)�k (z,�) dz

=

Z

C
f (z) · �k(z,�) dz

|                   {z                   }
real part

+ i
Z

C
f (z) · i �k(z,�) dz

|                    {z                    }
imaginary part

= ak,1 + i ak,2, (3)

where �k is the complex conjugate of �k, and the · symbol is
the dot product between the vectors in the input vector field f
and the vectors in the basis vector field �k (i.e., if f (z) = (a, b)T

and �k(z,�) = (c, d)T, then f (z) · �k(z,�) = (a, b)(c, d)T). To
simplify the notation, we define the following operator to rep-
resent the integral calculations in the real and imaginary parts
of Equation 3. Given two vector fields f and g, we define:

h f , gi =
Z

C
f (z) · g(z) dz. (4)

Let us now briefly focus our attention on Equation 3. Ba-
sically, it shows that the real and imaginary parts of Hermi-

tian inner-product (i.e., ak,1 and ak,2) can be calculated through
simple dot-product operations between vectors from the vector
field f and from the basis function �k. We also notice that vec-
tor fields generated by the term i�k that appear in the imaginary
part of (3) can be thought as a counter-clockwise 90-degree ro-
tation of the vectors in �k. Thus, we will denote the monomials
�k and i�k as �k,1 and �k,2, respectively, and use them as the ba-
sis functions of our approximation model. This extended set of
monomials has the advantage of making explicit the modeling
of patterns such as vortices (which is given by i�1). Given this
updated notation, we write the calculation of ak,1 and ak,2 as:

ak, j = h f (z), �k, j(z,�)i for j = 1, 2. (5)

The operator h., .i is the vector-field dot product in Equation 4.
By using the coefficients ak,1 and ak,2 along with the two basis
monomials �k,1(z,�) and �k,2(z,�), we can rewrite our vector-
field approximation in (1) as follows:

f (z) =
NX

k=�L

⇥
ak,1�k,1 (z,�) + ak,2�k,2 (z,�)

⇤
. (6)

Finally, we conclude the description of our vector-field rep-
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Figure 2: Overview of our vector-field representation. The input vector field is projected on the basis flows using cross-correlation. Vector a contains the model
coefficients represent the flow appearance at a position (x, y) on the vector field. Basis flows are weighted by radial basis functions that help control the locality of
the approximation (scale parameter �). Vector flow can be reconstructed using the approximation model (Equation 1).

and the vectors in the basis vector field �k (i.e., if f (z) = (a, b)T

and �k(z,�) = (c, d)T, then f (z) · �k(z,�) = (a, b)(c, d)T). To
simplify the notation, we define the following operator to rep-
resent the integral calculations in the real and imaginary parts
of Equation 3. Given two vector fields f and g, we define:

h f , gi =
Z

C
f (z) · g(z) dz. (4)

Here, the dot product · can be similarly explained using the stan-
dard inner product on vector space.

Let us now briefly focus our attention on Equation 3. It
shows that the real and imaginary parts of the Hermitian inner-
product (i.e., ak,1 and ak,2) can be calculated through simple
dot-product operations between vectors of the vector field f and
of the basis flow �k. We also note that vector fields generated
by the term i�k that appear in the imaginary part of (3) corre-
spond to a counter-clockwise 90-degree rotation of the vectors
in �k. We will denote the monomials �k and i�k as �k,1 and
�k,2, respectively, and use them as the basis functions of our
approximation model. This extended set of monomials has the
advantage of making explicit the modeling of patterns such as
vortices (which is given by i�1). Given this updated notation,

we write the calculation of ak,1 and ak,2 as:

ak, j = h f (z), �k, j(z,�)i for j = 1, 2. (5)

The operator h., .i is the vector-field dot product in Equation 4.
By using the coefficients ak,1 and ak,2 and the two basis mono-
mials �k,1(z,�) and �k,2(z,�), we can rewrite the vector-field
approximation in (1) as follows:

f (z) =
NX

k=�L

⇥
ak,1 �k,1 (z,�) + ak,2 �k,2 (z,�)

⇤
. (6)

We conclude the description of our vector-field representa-
tion by observing that, because we will be calculating the lo-
cal approximation at every point z0 of vector field F, the val-
ues of the coefficients ak,1 and ak,2 in (5) can be computed us-
ing the cross-correlation (sliding dot-product) between F(z) and
�k, j(z,�) for j = 1, 2, which is given by:

h f (z), �k, j(z,�)i = (F ⌦ g)(z0)

=

Z

C
F(z + z0) · �k, j(z,�) dz. (7)

Equation 7 results in a matrix of coefficient values for each set
of basis flows, i.e., Ak, j = F(z) ⌦ �k, j(z;�), for j = 1, 2.
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The local vector field at a point z0 can then be represented
by a vector a =

�
a�L,1, a�L,2, . . . , aN,1, aN,2

�T of size 2(N +L+1)
constructed by concatenating the values of the coefficients in
the Ak, j maps for each point z0 (Figure 2). Equation 7 is similar
to the correlation operator used in [13], and can be implemented
efficiently using the Fast Fourier Transform (FFT).

In the next two sections, we show how rotation and scaling
transformations affect our vector-field model.

4. The effect of rotation

The rotation of a vector field f by an angle ✓ can be defined
by the following operator:

�✓ ( f (z)) = e�✓i f (ze✓i). (8)

The term e�✓i is the contravariant factor that ensures the coor-
dinate invariance [37]. In contrast to scalar images, rotation of
vector fields not only involves a coordinate transformation, but
also a subsequent rotation of the vectors themselves (i.e., a con-
travariant transformation). Further information about covari-
ant and contravariant transformations of vectors can be found
in [37]. Because rotation is a linear transformation, rotating a
vector field in our representation corresponds to a sum of ro-
tated basis functions �k(z), i.e., if we apply the operator in (8)
to Equation 6 and re-arrange the summation terms, we obtain:

�✓ ( f (z)) =
NX

k=�L

�
ak,1�✓

�
�k,1(z)

�
+ ak,2�✓

�
�k,2(z)

��
. (9)

Interestingly, our choice of basis monomials zk and izk are eigen-
functions of the operator �✓ because rotating the basis monomi-
als results in scaled versions of the monomials themselves1, i.e.,

�✓(zk) = e(k�1)✓i zk and �✓(izk) = e(k�1)✓i izk, (10)

where e(k�1)✓i are eigenvalues. By plugging (10) into (9) and re-
arranging the terms containing the basis monomials, we obtain:

a0k,1 (✓) = cos ((k � 1)✓) ak,1 � sin ((k � 1)✓) ak,2

a0k,2 (✓) = sin ((k � 1)✓) ak,1 + cos ((k � 1)✓) ak,2, (11)

where ak, j and a0k, j are the approximation coefficients for the
original and rotated flow fields, respectively. Thus, the coeffi-
cients of the rotated and original vector fields are themselves
related by a rotation.

In our method, we want to detect singular patterns regard-
less of their rotation. Next, we use Equation 11 to devise a
simple method to align two vector-field patterns.

4.1. Principle orientations of a vector field
There is no simple method to compensate for rotation when

comparing two vector fields. A possible solution is to use Equa-
tion 11 and exhaustively search for the angle ✓ that maximizes

1We dropped the radial basis functions from the formulation as they are
rotation invariant.

terms, we obtain:

�✓ ( f (z)) =
NX

k=�L

�
ak,1�✓

�
�k,1(z)

�
+ ak,2�✓

�
�k,2(z)

��
. (9)

We dropped the radial basis functions from the formulation as
they are rotation invariant. Interestingly, our choice of basis
monomials zk and izk are eigenfunctions of the operator �✓ as
rotating the basis monomials results in scaled versions of the
monomials themselves, i.e.,

�✓(zk) = e(k�1)✓i zk and �✓(izk) = e(k�1)✓i izk, (10)

where e(k�1)✓i are the eigenvalues. By plugging (10) into (9)
and re-arranging the terms containing the basis monomials, we
obtain:

a0k,1 (✓) = cos ((k � 1)✓) ak,1 � sin ((k � 1)✓) ak,2

a0k,2 (✓) = sin ((k � 1)✓) ak,1 + cos ((k � 1)✓) ak,2, (11)

where ak, j and a0k, j are the approximation coefficients for the
original and rotated flow fields, respectively. Thus, the coeffi-
cients of the rotated and original vector fields are themselves
related by a rotation.

In our singular-pattern detector method, we want to be able
to detect similar patterns irrespective of their rotation. Next, we
use the relationship in Equation 11 to devise a simple method
to align two vector-field patterns.

4.1. Principle orientations of a vector field
There is no simple method to compensate for rotation when

comparing two vector fields. A possible solution could be to use
the observation in Equation 11 and exhaustively search for the
angle that maximizes the mutual alignment between two vector
fields. Instead, we propose to find a set of “dominant or princi-
ple directions” in a vector field, and then use these “directions”
to bring vector fields into alignment. For this, we select a set of
anisotropic “template flows” out of our basis monomials (i.e.,
we exclude the vortex and source/sink flows as they are rotation
invariant). The monomials �k,2 are also excluded from the set
of template flows as they are simply 90-degree rotations of the
vectors in �k,1. As a result, we choose the subset T = {�k,1}k,1
to be the template flows set. We then calculate the alignment
angle for each pattern f (z) as follows:

e✓ = arg max
✓

X

k,1

h�✓( f (z)), �k,1i

= arg max
✓

X

k,1

a0k,1 (✓)

= arg max
✓

X

k,1

cos ((k � 1)✓) ak,1 � sin ((k � 1)✓) ak,2, (12)

where h., .i is the vector-field dot product given by Equation 4.
The above maximization can be perfumed using efficient algo-
rithms (e.g., companion matrix method [40]). The inherent di-
rectional nature of vector fields means that (12) may have mul-
tiple solutions (at most 2N roots [41]). We call these values

of ✓ the principle orientations of the vector field, and we use
them in our method to bring detected patterns into alignment. In
practice, instead of trying to find the “best” single orientation,
we accept all the principle orientations for which Equation 12
exceeds a pre-defined threshold. Figure 4 shows examples of
vector fields and their corresponding principal orientations as
detected using the maximization in Equation 12.

Figure 4: Singular patterns with multiple principle orientations. Different col-
ors are used to indicate the relative quality of alignment between singular pat-
terns and the template flows. Brown means the best alignment, and blue indi-
cates the weakest alignment.

5. The effect of scaling

The scaling of vector fields also require a contravariant trans-
formation to scale the individual vectors following the coordi-
nate transformation. Consider the scaling operator  s(.), with
s > 0 given by:

 s( f (z)) = s f (s�1z). (13)

Similarly to the rotation, this scaling operator is also a linear
transformation, and its effect on our approximation model is
reflected on the basis functions �k, j(z,�) as follows (See Ap-
pendix A for derivation):

 s(�k, j(z,�)) = s �k, j(s�1z,�)
= s �k, j(z, s�), (14)

for j = 1, 2. Therefore, the scaled version of our basis functions
are obtained by scaling the variance of the Gaussian weighting
function followed by a multiplication by the scale factor s.

6. Detecting singular patterns in vector fields

In this section, we define a vector-field singularity measure
and propose an adapted version of the SIFT algorithm [8] for ef-
ficiently searching and locating singular patterns in the vector-
field scale-space.

6.1. Measuring singularity in vector fields
In order to detect singular patterns in vector fields we need

to define a measure of singularity. In this section, we define a
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terms, we obtain:

�✓ ( f (z)) =
NX

k=�L

�
ak,1�✓

�
�k,1(z)

�
+ ak,2�✓

�
�k,2(z)

��
. (9)

We dropped the radial basis functions from the formulation as
they are rotation invariant. Interestingly, our choice of basis
monomials zk and izk are eigenfunctions of the operator �✓ as
rotating the basis monomials results in scaled versions of the
monomials themselves, i.e.,

�✓(zk) = e(k�1)✓i zk and �✓(izk) = e(k�1)✓i izk, (10)

where e(k�1)✓i are the eigenvalues. By plugging (10) into (9)
and re-arranging the terms containing the basis monomials, we
obtain:

a0k,1 (✓) = cos ((k � 1)✓) ak,1 � sin ((k � 1)✓) ak,2

a0k,2 (✓) = sin ((k � 1)✓) ak,1 + cos ((k � 1)✓) ak,2, (11)

where ak, j and a0k, j are the approximation coefficients for the
original and rotated flow fields, respectively. Thus, the coeffi-
cients of the rotated and original vector fields are themselves
related by a rotation.

In our singular-pattern detector method, we want to be able
to detect similar patterns irrespective of their rotation. Next, we
use the relationship in Equation 11 to devise a simple method
to align two vector-field patterns.

4.1. Principle orientations of a vector field
There is no simple method to compensate for rotation when

comparing two vector fields. A possible solution could be to use
the observation in Equation 11 and exhaustively search for the
angle that maximizes the mutual alignment between two vector
fields. Instead, we propose to find a set of “dominant or princi-
ple directions” in a vector field, and then use these “directions”
to bring vector fields into alignment. For this, we select a set of
anisotropic “template flows” out of our basis monomials (i.e.,
we exclude the vortex and source/sink flows as they are rotation
invariant). The monomials �k,2 are also excluded from the set
of template flows as they are simply 90-degree rotations of the
vectors in �k,1. As a result, we choose the subset T = {�k,1}k,1
to be the template flows set. We then calculate the alignment
angle for each pattern f (z) as follows:

e✓ = arg max
✓

X

k,1

h�✓( f (z)), �k,1i

= arg max
✓

X

k,1

a0k,1 (✓)

= arg max
✓

X

k,1

cos ((k � 1)✓) ak,1 � sin ((k � 1)✓) ak,2, (12)

where h., .i is the vector-field dot product given by Equation 4.
The above maximization can be perfumed using efficient algo-
rithms (e.g., companion matrix method [40]). The inherent di-
rectional nature of vector fields means that (12) may have mul-
tiple solutions (at most 2N roots [41]). We call these values

of ✓ the principle orientations of the vector field, and we use
them in our method to bring detected patterns into alignment. In
practice, instead of trying to find the “best” single orientation,
we accept all the principle orientations for which Equation 12
exceeds a pre-defined threshold. Figure 4 shows examples of
vector fields and their corresponding principal orientations as
detected using the maximization in Equation 12.

Figure 4: Singular patterns with multiple principle orientations. Different col-
ors are used to indicate the relative quality of alignment between singular pat-
terns and the template flows. Brown means the best alignment, and blue indi-
cates the weakest alignment.
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Figure 3: Singular patterns and principle orientations. The colors indicate the
relative quality of alignment between singular patterns and the template flows.
Brown means the best alignment, and blue indicates the weakest alignment.

the mutual alignment between two vector fields. Instead, we
propose to find a set of “dominant or principle directions” in a
vector field, and then use these “directions” to bring the fields
into alignment. For this, we select a set of anisotropic “template
flows” out of our basis monomials (i.e., excluding the rotation-
invariant vortex and source/sink flows). The monomials �k,2 are
also excluded from the template flows set as they are 90-degree
rotations of the vectors in �k,1. As a result, we choose the subset
T = {�k,1}k,1 to be the template flows set. We then calculate the
alignment angle for each pattern f (z) as follows:

e✓ = arg max
✓

X

k,1

h�✓( f (z)), �k,1i

= arg max
✓

X

k,1

a0k,1 (✓)

= arg max
✓

X

k,1

cos ((k � 1)✓) ak,1 � sin ((k � 1)✓) ak,2, (12)

where h., .i is the vector-field dot product given by Equation 4.
The above maximization can be performed using efficient

algorithms (e.g., companion matrix method [38]). The inher-
ent directional nature of vector fields means that (12) may have
multiple solutions (at most 2N roots [39]). We call these val-
ues of ✓ the principle orientations of the vector field, and we use
them in our method to bring detected patterns into alignment. In
practice, instead of trying to find the “best” single orientation,
we accept all the principle orientations for which Equation 12
exceeds a pre-defined threshold. Figure 3 shows examples of
vector fields and their corresponding principal orientations as
detected by maximizing Equation 12.

5. The effect of scaling

The scaling of vector fields also requires a contravariant
transformation to scale vectors following the coordinate trans-
formation. Consider the scaling operator s(.), with s > 0 given
by:

 s( f (z)) = s f (s�1z). (13)
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The scaling operator is also a linear transformation, and its ef-
fect on our approximation model is reflected on the basis func-
tions �k, j(z,�) as follows (See Appendix A for derivation):

 s(�k, j(z,�)) = s �k, j(s�1z,�)
= s �k, j(z, s�), (14)

for j = 1, 2. Therefore, the scaled version of our basis functions
are obtained by scaling the variance of its Gaussian weighting
function followed by a multiplication by the scale factor s.

6. Detecting singular patterns in vector fields

In this section, we define a vector-field singularity measure
and propose an adapted version of the SIFT algorithm [8] for
locating singular patterns in the vector-field scale-space.

6.1. Measuring singularity in vector fields
To detect singular patterns in vector fields we need to de-

fine a measure of singularity. In this section, we define a mea-
sure of how “singular” a vector field is based on the coefficients
ak. Starting from the vanishing-point definition [18, 1, 28], we
know that the flow field vanishes at the center of singular pat-
terns, i.e., f (z) = 0 when z = 0. If we consider the vector
field approximation in Equation 6, then f (0) = 0 implies that
coefficients a0,1 and a0,2 are equal to zero. In other words, a
local flow pattern around a singular point can be approximated
by basis functions �k, j(z,�) with k , 0. We will call the set
{�k, j}k,0, j = 1, 2, the singular basis, and separate the vector
field’s local expansion into two main components, namely, the
constant background flow expanded by �0,1 and �0,2, and a sin-
gular component flow expanded by the singular basis.

Decomposing the flow into constant and singular compo-
nents achieves a similar laminar background separation as in
[5]. Nevertheless, the decomposed background flow is only an
estimation. As discussed in previous works [5, 18, 1], accurate
background-flow estimation is considered a separate problem,
often requiring prior knowledge about the flow field. Finally,
the constant-flow separation makes our definition of singular
patterns rather general compared to singular points defined in
[18, 1, 28], because a flow field may not have any vanishing
points when a background constant flow or laminar flow exists.

We now define a singular energy function E in terms of the
squared sum of the coefficients ak, j associated with the singular
basis set {�k, j}k,0 for j = 1, 2. The singular energy is given by:

E(z,�) =
1
�2

�1X

k=�L

(a2
k,1 + a2

k,2)

|                  {z                  }
Eshear

+
1
�2

NX

k=1

(a2
k,1 + a2

k,2)

|                 {z                 }
Eholom

=
1
�2

X

k,0, j

hF(z), �k, j(z;�)i2, (15)

where 1/�2 is a normalization factor so E is independent of
the sizes of the basis flows. E has two parts: Eholom which is
calculated using the coefficients of the holomorphic basis [11],

and Eshear which is calculated using the negative-indexed basis
flows. Eshear is related to flow fields of shearing patterns.

The singular energy E in (15) is a function of both the spa-
tial coordinates (i.e., z 2 C) and the scale of the basis flows (i.e.,
� 2 R+). Local maxima of E are the locations and approximate
scales of singular patterns in vector fields. Next, we describe
an efficient algorithm to detect these locations by searching for
local maxima of E over the spatial and scale dimensions.

6.2. Multi-scale search for singular patterns
We perform multi-scale search for singular patterns using

an adapted version of the SIFT detector [8] for scalar images.
We search the scale-space � for local maxima of the function
E over a sample of discrete points �02o+t/T , where o 2 Z is the
octave index, t = 0, 1, . . . ,T � 1 is the finer-scale index, and �0
is the minimum scale of detected patterns (i.e., nominal scale).

However, direct calculation of E(z,�) for large scales is
computationally expensive because it involves performing cross-
correlations with larger basis flows (i.e., �k, j(z,�) with larger
support as controlled by �). Fortunately, the calculation of
E(z,�) for large scales can be equivalently achieved by down-
sampling the original vector field f (z). From the scaling prop-
erty of the basis flows (Equation 14), we have:

E(z; s�) =
1

s2�2

X

k,0, j=1,2.

hF(z), �k, j(z; s�)i2

=
1

s2�2

X

k,0, j=1,2.

hF(z), s�1 s(�k, j(z;�))i2

=
1

s2�2

X

k,0, j=1,2.

 Z
F(z)�k, j(s�1z;�)dz

!2

=
1

s2�2

X

k,0, j=1,2.

 
s
Z

F(sz)�k, j(z;�) dz
!2

=
1

s2�2

X

k,0, j=1,2.

 
s2

Z
 s�1 (F(z))�k, j(z;�) dz

!2

=
s2

�2

X

k,0, j=1,2.

⇣
h s�1 (F(z)), �k, j(z;�)i

⌘2
. (16)

Therefore, when calculating E for large values of �, we can
scale down F(z), and use basis flows with smaller support to
reduce the computational cost.

In theory, we can choose basis flows with constant scales,
and down-sample F(z) to calculate f (z;�). However, down-
sampling the original vector-field data should be limited as it
introduces numerical errors. Instead, we adopt a hybrid ap-
proach: the vector-field data is down-sampled at large-scale in-
tervals called octaves, while within each octave, we vary the
basis flows’ scale in smaller steps. From Equation 16, the sam-
pled singular energy E(z;�02o+t/T ) is then calculated as:

E(z;�02o+t/T ) = ⇠
X

k,0, j=1,2.

h 2�o (F(z)), �k, j(z;�02t/T )i2, (17)

with ⇠ = 22(o�t/T )

�2
0

. Note that the down-sampling of F(z) can be

6



done recursively because  2�o (F(z)) =  2�1 ( 2�o+1 (F(z))). In
our algorithm, we first create a pyramid of flow fields 2�o (F(z))
through recursive down-sampling by half, and then generate
basis flows of different scales, �k, j(z;�02t/T ). Using both the
down-sampled flow fields and the multi-scale basis flows, we
calculate the multi-scale singular-energy function E(z; s�), and
then search each octave of E(z; s�) for the local maxima. Fig-
ure 4 illustrates the singular-energy function calculation, and
Algorithm 1 summarizes the detection process.

Figure 4: Multi-scale singular-energy function. Left: flow field F(z) is recur-
sively sub-sampled by half into octaves. Middle: a fine-scale pyramid of basis
flows is created, completing gaps between each octave. Right: the multi-scale
singular energy function E(z;�02o+t/T ). Octaves are obtained from the cross-
correlation between down-sampled flow-field and the pyramid of basis flows.

We further improve the algorithm as follows. First, to cap-
ture all local maxima, we overlap octaves by extending the
range of index t to t = �1, 0, . . . ,T , instead of t = 0, . . . ,T � 1.
Secondly, we refine the positions of the detected local max-
ima to sub-pixel accuracy through quadratic fitting. These tech-
niques were originally used in the SIFT detector [8].

The time and memory complexity of Algorithm 1 depend
on a number of factors, including the sizes of the input vector
field and the basis flows, the order (N and L) of the approxima-
tion model, the number of octaves No and octave sub-sampling
factor T . The influence of the size of the input vector field and
the size of the basis flows on the computational complexity is
similar to the filtering operations in [33]. When compared to
the filtering-based method in [33], Algorithm 1 has a higher
computational complexity as the subsampling of a scale-space
octave and the application of multiple basis flows involve mul-
tiple rounds of cross-correlation calculations. It can be inferred
from Algorithm 1 that both the time and memory complexity
are proportional to 2(N + L + 1)S log2 No. For the experiments
reported in Section 8, we ran our algorithm on a laptop com-
puter with 4GB of memory and 2.1 GHz dual-core CPU. On
average, it took about 4 seconds to process a 256 ⇥ 256 input
vector field, using 11⇥11 basis flows of order L = N = 4, while
scale parameters were chosen as O = 4 and T = 5. The speed
can be further improved using GPU computing [40].

7. Measuring similarity between patterns in vector fields

Before we report on our experimental results, let us define a
simple yet effective similarity measure that we use to compare
vector-field patterns while compensating for scale and rotation

Algorithm 1: Multi-Scale Singular-Pattern Detection

1 Given an input flow F(z), create octaves of  2�o (F(z)),
o = 0, 1, . . . ,N through recursive down-sampling by half, i.e.,
 2�o (F(z)) =  2�1 ( 2�o+1 (F(z))).

2 Create multiscale bases �k, j(z;�02t/T ), t = �1, 0, . . . ,T , and
k = 0, 1. As is SIFT [8], we generate T + 3 images to cover a
complete octave, with nominal scale �0 = 1.6.

3 Calculate the coefficients in each octave using cross-correlation,
i.e., ak,1(z;�02o+ t

T ) =  2�o (F(z)) ⌦ �k, j(z;�02t/T )
and
ak,2(z;�02o+ t

T ) =  2�o (F(z)) ⌦ �k, j(z;�02t/T ),
for j = 0, 1.

4 Calculate the singular energy E(z,�) at each octave.
E(z;�02o+ t

T ) =
22(o�t/T )

�2
0

P
k,0

⇣
kak,1(z;�02o+ t

T )k2 + kak,2(z;�02o+ t
T )k2

⌘
.

5 Detect the singular points at spatial position (x, y) and scale � that
maximize the singular energy E(z;�).

6 Calculate descriptor and principle orientations (Equation 12) at
detected positions.

transformations. Let f and g be two local vector-field patterns
detected using our algorithm (Section 6), with their correspond-
ing scales � f and �g. The two patterns can be represented by
coefficient vectors a f and ag, respectively (Equation 7). If the
sets {✓i} and {✓ j} are the principle orientations of f and g, re-
spectively, obtained from the maximization in (12), then we can
define the following similarity measure:

d( f , g) = min
i, j

������
a0f (✓i)
� f

�
a0g(✓ j)
�g

������ . (18)

Here, we align the patterns to their principle orientations (com-
binatorial), and take the minimum as their mutual distance. Ro-
tations are done by efficient algebraic calculation (Equation 9).

Next, we use this measure to cluster detected patterns of
similar appearance as well as to evaluate the sensitivity of our
detector to various degrees of approximation of our model.

8. Experiments

In this section, we report on results obtained using our de-
tection method on both synthetic and real-world flow-field data.
On synthetic images, we analyzed the detector’s sensitivity with
respect to flow-field rotation, scaling, background flows, and
random noise. We also evaluated the influence of algorithm pa-
rameters on detection repeatability. Flow-field data is also esti-
mated from satellite image sequences, and we use it to demon-
strate extraction of patterns in weather systems. To promote
reproducibility and for further evaluation of our method, source
code and the test data used in our experiments are available on-
line2.

2http://www.cs.fit.edu/˜eribeiro/flowdetector/
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Figure 3: Approximation of non-analytic flows. Left column: conjugate and shear flows. Middle
column: approximations using the Taylor polynomial method in [11]. Right column: approxima-
tions using the Laurent polynomial method proposed in this paper. (e) A conjugate flow f(z) = z.
(f) Holomorphic approximation of g(z). (g) A shear flow g(z) = �(z + z). (h) Holomorphic
approximation of f2(z).
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Figure 3: Approximation of non-analytic flows. Left column: conjugate and shear flows. Middle
column: approximations using the Taylor polynomial method in [11]. Right column: approxima-
tions using the Laurent polynomial method proposed in this paper. (e) A conjugate flow f(z) = z.
(f) Holomorphic approximation of g(z). (g) A shear flow g(z) = �(z + z). (h) Holomorphic
approximation of f2(z).
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Figure 5: Approximating non-analytic flows. Left: conjugate and shear flows.
Middle: approximations using the Taylor polynomial method [11]. Right: ap-
proximations using our Laurent polynomial method.

8.1. On representing non-analytic flows
We begin by demonstrating that the representation in Equa-

tion 1 provides a good approximation for vector fields generated
by non-analytic flows (e.g., conjugate and shear flows).

Figure 5 shows approximation results for two non-analytic
flows using the Taylor polynomial method in [11], which uses
only nonnegative powers of z, and for the method proposed
in this paper (Equation 1). Two non-analytic flow fields are
shown: the conjugate flow and the shear flow [41]. Clearly, a
linear combination of complex monomials zk with k � 0 cannot
represent the two flow fields (Taylor polynomial). For the con-
jugate flow, its analytic approximation does not resemble the
original flow. For the shear flow, the Taylor-polynomial cap-
tures its analytic component z, but ignores the conjugate part z.
By contrast, our Laurent polynomial gives a (qualitative) better
approximation of the conjugate flow by using basis ��1,1, which
consists of the z�1 power that is analytic everywhere on C ex-
cept at z = 0 [42], and its vector field closely resembles that of
the conjugate flow (See field ��1,1 in Figure 1). The shear flow
is basically f (z) = �(z+ z) that can be represented by a mixture
of the conjugate, ��1,1, and the source, �1,1.

By using both negative and positive powers of z as basis
monomials, our representation becomes similar to a Laurent se-
ries, which is able to model flow fields that cannot be modeled if
only positive powers of z were used (e.g., Taylor series). Nev-
ertheless, a single Laurent polynomial cannot represent flows
containing multiple singularities. This is not an issue in this pa-
per as our goal is to model individual singular patterns. These
multi-singularity flows can be approximated by orthogonal ra-
tional functions [3, 42], but it remains unclear how these func-
tions can be used to obtain scale-rotation invariance.

8.2. Synthetic flow fields
We first tested our detector on sequences of turbulent fluids

from the European FLUID database [43], and from JHU Turbu-
lence dataset [44]. FLUID contains 2-D turbulent flows of size

256 ⇥ 256 which we used to evaluate our detector’s repeata-
bility and sensitivity to rotation and scaling transformations.
The JHU Turbulence contains 3-D flow-field data sampled on a
1000⇥1000⇥1000 cube, thus having a much larger data volume
than FLUID. For this dataset, we extracted 2-D slices from it,
and used these 2-D flow data to detect large numbers of singular
patterns with the goal of evaluating our descriptor on the task
of clustering groups of meaningful detected singular patterns.

8.2.1. Detection on FLUID sequences.
Singular patterns detected by our method on a FLUID frame

are shown in Figure 6. In the figure, each pattern is enclosed by
a circle with radius proportional to the scale of the pattern. Cir-
cles are color-mapped according to the value of the pattern’s
singular energy. This dataset contains sourceless vector fields,
and most singular patterns resemble vortices appearing at multi-
ple scales. Our method detected all vortices. Elongated-shaped
vortices were detected in pairs. In these cases, some detections
could have been discarded based on their singular energy.

The JHU Turbulence contains 3-D flow-field data sampled on a
1000⇥1000⇥1000 cube, thus having a much larger data volume
than FLUID. For this dataset, we extracted 2-D slices from it,
and used these 2-D flow data to detect large numbers of singular
patterns with the goal of evaluating our descriptor on the task
of clustering groups of meaningful detected singular patterns.

8.1.1. Detection on FLUID sequences.
Singular patterns detected by our method on a FLUID frame

are shown in Figure 6. In the figure, each pattern is enclosed by
a circle with radius proportional to the scale of the pattern. Cir-
cles are color-mapped according to the value of the pattern’s
singular energy. This dataset contains sourceless vector fields,
and most singular patterns resemble vortices appearing at multi-
ple scales. Our method detected all vortices. Elongated-shaped
vortices were detected in pairs. In these cases, some detections
could have been discarded based on their singular energy.

�

�
�

�

�

� �

�

	

�


��

��

��
��

��

��
��

��

�	

�


��

��

��

��

��

��

��

��

�	

�


��

��

��

��

��

��

��

��

�	

�


��

��

��

��

��

��

��

��

�	

�


��

��

��

��

�� ��

��

��

�	

�


��





��


��


��


��


��


��


��


��


�	

�

Figure 6: Detection results on FLUID dataset. Left: detected patterns. Color in-
dicates the relative log magnitude of singular energy. Vortices are the strongest
patterns; Right: streamlines of the flow field.

8.1.2. Sensitivity analysis
Using the FLUID database, we first evaluated the impact

of the approximation orders N and L on the number of the ex-
tracted singular patterns. Table 2 shows the average number of
detected singular patterns in each frame of FLUID using differ-
ent approximation orders. With increasing approximation or-
ders, less singular patterns were detected. This effect can also
be visualized in Figure 7, where we show the singular patterns
that were detected on the same flow field using the energy func-
tions E as well as its two holomorphic and shearing components
as in Equation 15. It is clear that Eholom mostly detects vortices,
while Eshear captures shearing patterns, but as the combination
of these two energy functions, E does not necessarily produce
more detection results. We believe that this happened because
higher-order models were able to approximate the continuous
flow field better, and thus produced a smoother singular-energy
function, leading to less local maxima to be detected. The aver-
age number of singular patterns per frame seemed to converge
to approximately 86.

Then, we evaluated the sensitivity of our detector by match-
ing the singular patterns extracted from flow-fields undergoing
rotation and scaling transformations. As it was difficult to eval-
uate all the possible combinations of flow field transformations,

Table 2: How the approximation order affects the number of detected patterns.
The average number of detected patterns on FLUID decreases with both the
maximum positive and negative orders.

L = 0 L = 1 L = 2 L = 3 L = 4 L = 5 L = 6

N = 1 150.83 132.11 119.44 117.39 114.83 121.06 121.00
N = 2 141.78 115.22 104.00 102.00 100.17 105.71 105.47
N = 3 137.17 110.50 97.89 96.78 95.00 99.94 99.70
N = 4 128.00 104.06 91.72 91.28 88.83 93.41 93.18
N = 5 135.12 108.24 95.88 95.18 92.82 87.11 86.89
N = 6 134.76 106.94 94.65 94.06 92.53 86.72 86.56
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Eholom (L=0, N=4) Eshear (L=4, N=0) E (L=4, N=4) 

(a) (b) (c) 

Figure 7: Detected singular patterns using different singular energies. a) Holo-
morphic singular patterns. b) Shearing singular patterns. As expected, shearing
patterns are not captured by Eholom. c) Singular patterns using extended singu-
lar energy. Note that E actually produces less singular patterns.

we analyzed the influence of each transformation separately,
while keeping the other one constant. In the first test, we ro-
tated the flow-fields by different angles, but kept the scale un-
changed, and matched the singular patterns using the similarity
measure given by Equation 18. Figure 8 shows the average ac-
curacy of the matching as a function of the rotation angle. In
the second test, we first rotated the flow fields by 45 degrees,
and then varied the scale prior to matching the singular patterns
using the similarity measure. Figure 9 shows the accuracy as
a function of the scaling factor. Because the scale correction
might introduce more mismatches between singular patterns of
different sizes, the accuracy was slightly lower than in the first
test. However, the accuracy was still fairly stable except for the
cases when the scale was too small. For these cases, the data
loss basically destroyed singular patterns. In both tests, we tried
different approximation orders. In general, higher-order models
produced better matching accuracy.

In addition to rotation and scaling, we tested the sensitiv-
ity of our method against the presence of background flows
by adding constant background flows of random directions to
the original flow fields. Here, we removed from the model
the coefficients related to the background flow before match-
ing the detected singular patterns by simply setting them to
zero (i.e., a0,1 = a0,2 = 0). We worked under the assump-
tion that the FLUID dataset was free from background flows.
Figure 10(a) shows the matching accuracy as a function of the
background-flow magnitude. It is worth pointing out that the
maximum magnitude of the original flow fields was only 0.5, al-
lowing them to be completely skewed by the added background
flows. With increasing background flow, the matching accuracy
dropped significantly for higher-order flow-field models due to
their numerical sensitivity. However, we believe this sensitiv-
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Figure 6: Detection on FLUID dataset. Left: detected patterns. Color indicates
relative log-magnitude of singular energy. Vortices are the strongest patterns;
Right: flow-field streamlines.

8.2.2. Sensitivity analysis
Using the FLUID database, we first evaluated the impact of

the approximation orders N and L on the number of the detected
patterns. Table 2 shows the average number of detected patterns
in each frame of FLUID using different approximation orders.
As the order increased, fewer singular patterns were detected.
This effect can be seen in Figure 7, where we show the singu-
lar patterns that were detected on the same flow field using the
energy functions E as well as its two holomorphic and shearing
components as in Equation 15. It is clear that Eholom mostly
detects vortices, while Eshear captures shearing patterns. By
combining these two energy functions, E does not necessarily
produce more detections. Maybe this happened because higher-
order models approximated the continuous flow field better, and
thus produced a smoother singular-energy function, leading to
fewer local maxima to be detected. The average number of sin-
gular patterns per frame converged to about 86.

Then, we evaluated the sensitivity of our detector by match-
ing the singular patterns extracted from flow-fields undergoing
rotation and scaling transformations. As it was difficult to eval-
uate all the possible combinations of flow field transformations,

8



Table 2: The effect of approximation order on the number of detections. The
average number of detected patterns on FLUID decreases with both the maxi-
mum positive and negative orders.

L = 0 L = 1 L = 2 L = 3 L = 4 L = 5 L = 6

N = 1 150.83 132.11 119.44 117.39 114.83 121.06 121.00
N = 2 141.78 115.22 104.00 102.00 100.17 105.71 105.47
N = 3 137.17 110.50 97.89 96.78 95.00 99.94 99.70
N = 4 128.00 104.06 91.72 91.28 88.83 93.41 93.18
N = 5 135.12 108.24 95.88 95.18 92.82 87.11 86.89
N = 6 134.76 106.94 94.65 94.06 92.53 86.72 86.56

�

�

�

�
�

�

�

�

�	�

�	�

�	�

�	�

�	�

�	�

�	�

�	


�	�

�

�

�

�

�
�

�

�

�

�	�

�	�

�	�

�	�

�	�

�	�

�	�

�	


�	�

�

�

�

�

�

�

�

� �

	

	
�

	
�

	
�

	
�

	
�

	
�

	
�

	
�

	
�

�

�

��

�

�

�

���

���

���

���

���

���

��	

��


���

�

Eholom (L=0, N=4) Eshear (L=4, N=0) E (L=4, N=4) 

(a) (b) (c) 

Figure 7: Detected patterns for various singular energies. a) Holomorphic pat-
terns. b) Shearing patterns (these are not captured by Eholom). c) Patterns using
combined energy (E).

we analyzed the influence of each transformation separately,
while keeping the other ones constant. In the first test, we ro-
tated the flow-fields by different angles, but kept the scale un-
changed, and matched the singular patterns using the similarity
measure given by Equation 18. Figure 8 shows the average ac-
curacy of the matching as a function of the rotation angle. In
the second test, we first rotated the flow fields by 45 degrees,
and then varied the scale prior to matching the singular patterns
using the similarity measure. Figure 9 shows the accuracy as
a function of the scaling factor. Because the scale correction
might introduce more mismatches between singular patterns of
different sizes, the accuracy was slightly lower than in the first
test. However, the accuracy was still fairly stable except for the
cases when the scale was too small. For these cases, the data
loss basically destroyed singular patterns. In both tests, we tried
different approximation orders. In general, higher-order models
produced better matching accuracy.

In addition to rotation and scaling, we tested the sensitivity
of our method for the presence of background flows by adding
constant background flows of random directions to the original
flow fields. Here, we removed the coefficients related to the
background flow from the model before matching the detected
singular patterns by simply setting them to zero (i.e., a0,1 =
a0,2 = 0). We worked under the assumption that the FLUID
dataset was free from background flows. Figure 10(a) shows
the matching accuracy as a function of the background-flow
magnitude. It is worth pointing out that the maximum mag-
nitude of the original flow fields was only 0.5, allowing them to
be completely skewed by the added background flows. With in-
creasing background flow, the matching accuracy dropped sig-
nificantly for higher-order models due to their numerical sensi-
tivity. However, we believe this sensitivity can be reduced by
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Figure 8: Pattern-detection accuracy as a function of the rotation angle for dif-
ferent approximation orders N and L.
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Figure 9: Pattern-detection accuracy as a function of the scaling factor for dif-
ferent approximation orders N and L.

using a larger nominal-scale parameter �0 as the method might
be able to estimate background flows more accurately, which
in turn could produce less-sensitive results. Figure 10(b) and
Figure 10(c) show results produced using the same tests with
increasingly larger nominal scales. These results show that the
use of higher-order models helps improve detection.

In all pattern-matching experiments, we managed to achieve
accuracy rates above 70 percent, and for rotation-scale trans-
formations, more than 80 percent of the singular patterns were
correctly matched. In real-world applications, prior, positional,
and global information about the singular patterns may allow
us to achieve even better matching results.

Finally, we evaluated the sensitivity of our method against
the presence of noise in the flow fields. To simulate different
noise levels, we added Gaussian random noise of increasing
variance v� to the FLUID dataset, and ran our detector on the
synthetic dataset. We then measured the percentage of singu-
lar patterns that were detected and matched to the ones ex-
tracted from the original clean flow fields. Here, two singu-
lar patterns were matched if they were the closest pair both in
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Figure 8: Sensitivity of singular pattern detection against rotation angle with
different approximation orders N and L. Feature matching accuracy as a func-
tion of the rotation angle. The accuracy is largely stable and singular patterns
with higher energy tend to be more stable.
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Figure 9: Sensitivity of singular pattern detection against scaling factor with
different approximation orders N and L. Feature matching accuracy as a func-
tion of the scaling factor. The accuracy is mostly stable, except when the scaling
factor is too small.

ity can be reduced by using a larger nominal-scale parameter
�0. With larger scales, the background flow-field could be es-
timated more accurately, what produced less sensitive results.
Figure 10(b) and Figure 10(c) show results produced using the
same tests with increasingly larger nominal scales. These re-
sults show that the use of higher-order models helps improve
detection.

In all pattern-matching experiments, we managed to achieve
accuracy rates above 70 percent, and for rotation-scale trans-
formations, more than 80 percent of the singular patterns were
correctly matched. In real-world applications, prior, positional,
and global information about the singular patterns may allow
us to achieve even better matching results.

Finally, we evaluated the sensitivity of our method against
the presence of noise in the flow fields. To simulate different
noise levels, we added Gaussian random noise of increasing
variance v� to the FLUID dataset, and ran our detector on the
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Figure 10: Sensitivity of pattern detection against background flow with differ-
ent nominal scales. Increasing the nominal scale �0 increases the robustness of
higher-order models. (a) �0 = 2.02, (b) �0 = 3.23, (c) �0 = 5.16.

synthetic dataset. We then measured the percentage of singular
patterns that were detected and matched to the ones extracted
from the original clean flow fields. Here, two singular patterns
were matched if they were the closest pair both in their ap-
proximation coefficients and spatial distances. Figure 11 shows
the matching percentage as a function of the noise variance
v�. In addition, we analyzed the influence of three parame-
ters, namely, threshold of the singular energy ⌧, and approxima-
tion orders L and N of our Laurent polynomial model. Singu-
lar patterns of high singular energy were more robust to noise.
Meanwhile, higher-order approximation seems to help improve
the robustness of low-energy singular patterns, but the improve-
ment was not significant for the high-energy ones. When v� =
0.41, the signal to noise ratio (SNR) of the FLUID dataset is
already very low (32 percent). Even at this low SNR, over 70
percent of the singular patterns were still correctly detected by
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Figure 8: Sensitivity of singular pattern detection against rotation angle with
different approximation orders N and L. Feature matching accuracy as a func-
tion of the rotation angle. The accuracy is largely stable and singular patterns
with higher energy tend to be more stable.
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Figure 9: Sensitivity of singular pattern detection against scaling factor with
different approximation orders N and L. Feature matching accuracy as a func-
tion of the scaling factor. The accuracy is mostly stable, except when the scaling
factor is too small.

ity can be reduced by using a larger nominal-scale parameter
�0. With larger scales, the background flow-field could be es-
timated more accurately, what produced less sensitive results.
Figure 10(b) and Figure 10(c) show results produced using the
same tests with increasingly larger nominal scales. These re-
sults show that the use of higher-order models helps improve
detection.

In all pattern-matching experiments, we managed to achieve
accuracy rates above 70 percent, and for rotation-scale trans-
formations, more than 80 percent of the singular patterns were
correctly matched. In real-world applications, prior, positional,
and global information about the singular patterns may allow
us to achieve even better matching results.

Finally, we evaluated the sensitivity of our method against
the presence of noise in the flow fields. To simulate different
noise levels, we added Gaussian random noise of increasing
variance v� to the FLUID dataset, and ran our detector on the
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Figure 10: Sensitivity of pattern detection against background flow with differ-
ent nominal scales. Increasing the nominal scale �0 increases the robustness of
higher-order models. (a) �0 = 2.02, (b) �0 = 3.23, (c) �0 = 5.16.

synthetic dataset. We then measured the percentage of singular
patterns that were detected and matched to the ones extracted
from the original clean flow fields. Here, two singular patterns
were matched if they were the closest pair both in their ap-
proximation coefficients and spatial distances. Figure 11 shows
the matching percentage as a function of the noise variance
v�. In addition, we analyzed the influence of three parame-
ters, namely, threshold of the singular energy ⌧, and approxima-
tion orders L and N of our Laurent polynomial model. Singu-
lar patterns of high singular energy were more robust to noise.
Meanwhile, higher-order approximation seems to help improve
the robustness of low-energy singular patterns, but the improve-
ment was not significant for the high-energy ones. When v� =
0.41, the signal to noise ratio (SNR) of the FLUID dataset is
already very low (32 percent). Even at this low SNR, over 70
percent of the singular patterns were still correctly detected by
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Figure 8: Sensitivity of singular pattern detection against rotation angle with
different approximation orders N and L. Feature matching accuracy as a func-
tion of the rotation angle. The accuracy is largely stable and singular patterns
with higher energy tend to be more stable.
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Figure 9: Sensitivity of singular pattern detection against scaling factor with
different approximation orders N and L. Feature matching accuracy as a func-
tion of the scaling factor. The accuracy is mostly stable, except when the scaling
factor is too small.

ity can be reduced by using a larger nominal-scale parameter
�0. With larger scales, the background flow-field could be es-
timated more accurately, what produced less sensitive results.
Figure 10(b) and Figure 10(c) show results produced using the
same tests with increasingly larger nominal scales. These re-
sults show that the use of higher-order models helps improve
detection.

In all pattern-matching experiments, we managed to achieve
accuracy rates above 70 percent, and for rotation-scale trans-
formations, more than 80 percent of the singular patterns were
correctly matched. In real-world applications, prior, positional,
and global information about the singular patterns may allow
us to achieve even better matching results.

Finally, we evaluated the sensitivity of our method against
the presence of noise in the flow fields. To simulate different
noise levels, we added Gaussian random noise of increasing
variance v� to the FLUID dataset, and ran our detector on the
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Figure 10: Sensitivity of pattern detection against background flow with differ-
ent nominal scales. Increasing the nominal scale �0 increases the robustness of
higher-order models. (a) �0 = 2.02, (b) �0 = 3.23, (c) �0 = 5.16.

synthetic dataset. We then measured the percentage of singular
patterns that were detected and matched to the ones extracted
from the original clean flow fields. Here, two singular patterns
were matched if they were the closest pair both in their ap-
proximation coefficients and spatial distances. Figure 11 shows
the matching percentage as a function of the noise variance
v�. In addition, we analyzed the influence of three parame-
ters, namely, threshold of the singular energy ⌧, and approxima-
tion orders L and N of our Laurent polynomial model. Singu-
lar patterns of high singular energy were more robust to noise.
Meanwhile, higher-order approximation seems to help improve
the robustness of low-energy singular patterns, but the improve-
ment was not significant for the high-energy ones. When v� =
0.41, the signal to noise ratio (SNR) of the FLUID dataset is
already very low (32 percent). Even at this low SNR, over 70
percent of the singular patterns were still correctly detected by
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Figure 10: Pattern-detection accuracy against background flow for different
nominal scales. Increasing the nominal scale �0 increases the robustness of
higher-order models. (a) �0 = 2.02, (b) �0 = 3.23, (c) �0 = 5.16.

their approximation coefficients and in their spatial distances.
Figure 11 shows the matching percentage as a function of the
noise variance v�. In addition, we analyzed the influence of
three parameters, namely, threshold of the singular energy ⌧,
and approximation orders L and N of our Laurent polynomial
model. Singular patterns of high singular energy were more ro-
bust to noise. Meanwhile, higher-order approximation seems to
help improve the robustness of low-energy singular patterns,
but the improvement was not significant for the high-energy
ones. When v� = 0.41, the signal to noise ratio (SNR) of the
FLUID dataset is already very low (32 percent). Even at this
low SNR, over 70 percent of the singular patterns were still
correctly detected by our detector. We believe the robustness of
our method is partially due to the use of the cross-correlation
operator.

8.2.3. On the phase-portrait and vorticity-based methods
It is difficult to quantitatively compare existing flow-field

feature-detection algorithms because of the ambiguity in the
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Figure 11: Sensitivity of pattern detection against random noise. Different
thresholds ⌧ for singular energy were used to extract patterns. Evaluation was
performed for various orders of approximation, including (a) N = 1 and L = 0,
(b) N = 4 and L = 0, (c) N = 4 and L = 4.

definition of flow-field features [23] and the lack of ground-
truth data with manually labeled features. To provide a com-
parison, we implemented versions of two well-known flow-field
feature-detection algorithms, namely, the vorticity-based method
in [24] and the linear-portrait method [1]. The vorticity-based
method simply locates the local maxima of vorticity. For the
linear-portrait method, we implemented a singular-point detec-
tor (without classifying the types of patterns) using an 11-pixel
window size as proposed in [1]. Our goal is to relate the algo-
rithms rather than providing a ranking mechanism. Figure 12
shows detection results for the compared methods. While all
three methods produced different results, they mostly agreed
on high-energy singular patterns. Compared to our method, the
vorticity detector did not detect shearing patterns well. Despite
producing many detections, the linear-portrait method was sen-
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Figure 12: Comparison of flow-field feature detectors.

50

Figure 12: Comparison of flow-field feature detectors.

sitive to the presence of complicated flow patterns. For this
method, incremental changes to the window-size parameter sig-
nificantly changed its detection results. In addition, only our
method estimated the scales of detected patterns.

8.2.4. Detecting and clustering singular patterns
In these experiments we used our singular-flow representa-

tion for clustering singular patterns detected on the JHU 3-D
Turbulence dataset. Here, we selected 2-D slices that were per-
pendicular to the flow’s convecting direction. For better visu-
alization, we separated the detected singular patterns into two
groups according to their similarity to vortices and sources (or
sinks). This was achieved by examining whether the singular
energy was concentrated on the basis functions �1,1, �1,2. If
ka1,1k2 + ka2,2k2 consisted of more than 50% of the total sin-
gular energy, then we labeled the singular pattern as symmetric,
otherwise, we called it asymmetric. Pattern similarity was cal-
culated using the measure in Equation 18.

Detected flow patterns were re-scaled and aligned. For pat-
terns with multiple principle orientations, we generated multi-
ple aligned copies. Each group was clustered into eight clusters
using the k-means algorithm. The largest five clusters for sym-
metric patterns are shown in Figure 13, while the corresponding
asymmetric ones are shown in Figure 14. Detected and clus-
tered flows are shown using color-coded directions. Symmetric
patterns mostly corresponded to vortices and swirls (i.e., com-
bination of sources and vortices). The flow field we used in this
experiment was mostly of a divergent nature. As a result, few
sinks were detected, and no sink clusters were obtained. Asym-
metric patterns found mostly corresponded to vortices skewed
by a background laminar. For better visualization, we further

Figure 13: Clusters of symmetric singular patterns. Different rows represent
different flow-field clusters. The flow fields are color-coded based on the vec-
tors’ orientation and magnitude. Square on left-hand side is the color-coded
legend. Left-most column: cluster centers. Columns to the right: samples of
the cluster. The four clusters are mostly vortices in both directions (clockwise
and counter-clockwise), sources with slight rotation (the third row), and sources
with large rotation (the fourth row).

obtained. Asymmetric patterns found mostly corresponded to
vortices skewed by a background laminar. For better visualiza-
tion, we further decomposed the asymmetric cluster centers into
background and foreground flows. After removing the back-
ground flows, we observed many affine flow fields included
conjugate and shearing patterns. Furthermore, most patterns in
this group did not have a central vanishing point, yet they still
exhibited interesting sudden flow changes. This further sug-
gests that our singular-pattern definition is quite general.

8.2. Real-world flow fields
In this set of experiments, we apply our singular-pattern de-

tector to images of weather systems. Our detector was able to
detect interesting patterns in the clouds’ motion including vor-
tices, the sudden appearance and disappearance of clouds, and
the shearing motions between neighboring local weather sys-
tems. In all experiments we set L = N = 4. The motion of
clouds was estimated from the satellite images using a meshless
fluid-motion estimation algorithm [45]. This method produces
flow fields that are not biased to lower-order fluid motions, and
was suitable for the purpose of verifying our method.

In these experiments, we used satellite images from the Eu-
ropean Organization for the Exploitation of Meteorological Satel-
lites (EUMETSTAT) 2. The images were taken between March
10th to March 15th, 2010, by the meteorological satellite MSG-
15, using the visible-channel sensor VIS-6. In Figure 8.2, we
show examples of the satellite images (the first column) and
detected singular patterns (the third column). For better visual-
ization, we also display the flow fields as stream-slices with

2http://www.eumetsat.int
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Figure 14: Clusters of asymmetric singular patterns. The first five clusters are
shown here. The flow fields are color-coded based on the vectors’ orientation
and magnitude. Square on top is the color-coded legend. Left-most column:
cluster centers. Each row represents a flow-field cluster. The columns represent:
a) cluster centers; b) cluster centers without background flow; c) background
flows of the cluster centers; d) three instances of the cluster, respectively. With
background flows removed, it is easy to see that the five cluster centers resem-
ble: (1) conjugate flow; (2) counterclockwise vortex skewed slightly by a con-
jugate flow; 3) counterclockwise vortex; (4) clockwise vortex severely skewed
by a conjugate flow; (5) clockwise vortex.

background flows removed (the second column). The satel-
lite images exhibit large spherical distortions, but our method
still detected interesting singular patterns of different types. We
found large vortices in all three examples, together with shear-
ing patterns at the boundaries of the vortices and neighboring
weather systems.

9. Conclusions

We have proposed a method for detecting singular patterns
in flow fields. Our method consists of approximating flow fields
locally using a linear combination of complex-valued basis func-
tions. The new representation can model both analytic and non-
analytic flow fields, and detect affine singular patterns. We
demonstrated the equivalence of classic flow-field models to
the special cases of our linear combination model. The detec-
tor was tested on both synthetic and real fluid flows, by detect-
ing and clustering singular patterns of different orientations and
scales.

Limitations of our method include its inability of handle
perspective transformations, its higher computational cost and
memory need when compared to existing methods, and the re-
striction to 2-D flow fields only as complex-valued functions
cannot represent 3-D flow fields.

Future work includes extending the model to 3-D flow fields.
In a similar fashion to complex-valued 2-D representation, high-
dimensional flow fields can be conveniently represented using
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Figure 13: Clusters of symmetric singular patterns. Each row shows a different
cluster. Colors indicate vectors’ orientation and magnitude according to the
color-code legend (top). Left-most column: cluster centers. Columns to the
right: samples from the cluster. The five clusters are mostly vortices (counter-
clockwise in the first two rows and clockwise in the third and fourth rows).
Sources with slight rotation are also present (the fifth row).

decomposed the asymmetric cluster centers into background
and foreground flows. After removing the background flows,
we observed that many affine flow fields included conjugate
and shearing patterns. Furthermore, most patterns in this group
did not have a central vanishing point, yet they still exhibited
interesting sudden flow changes. This further indicates the gen-
erality of our singular-pattern definition.

8.3. Real-world flow fields
We tested our algorithm on satellite images of weather sys-

tems from the European Organization for the Exploitation of
Meteorological Satellites (EUMETSTAT)3. The images were
taken between March 10th and March 15th, 2010, by the MSG-
15 satellite, using the visible-channel sensor VIS-6.

Our method detected interesting patterns in moving clouds
including vortices, the sudden appearance and disappearance
of clouds, and the shearing motions between neighboring lo-
cal weather systems. In all experiments we set L = N = 4.
Cloud motion was estimated from the satellite images using a
meshless fluid-motion estimation algorithm [45]. This method
produces flow fields that are not biased to lower-order fluid mo-
tions, and was considered suitable for the purpose of verifying
our singular-pattern detection method.

In Figure 15, we show examples of the satellite images
(Column 1) and detected singular patterns (Column 3). For bet-
ter visualization, we also display the flow fields as stream-lines

3http://www.eumetsat.int
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Figure 13: Clusters of symmetric singular patterns. Different rows represent
different flow-field clusters. The flow fields are color-coded based on the vec-
tors’ orientation and magnitude. Square on left-hand side is the color-coded
legend. Left-most column: cluster centers. Columns to the right: samples of
the cluster. The four clusters are mostly vortices in both directions (clockwise
and counter-clockwise), sources with slight rotation (the third row), and sources
with large rotation (the fourth row).

obtained. Asymmetric patterns found mostly corresponded to
vortices skewed by a background laminar. For better visualiza-
tion, we further decomposed the asymmetric cluster centers into
background and foreground flows. After removing the back-
ground flows, we observed many affine flow fields included
conjugate and shearing patterns. Furthermore, most patterns in
this group did not have a central vanishing point, yet they still
exhibited interesting sudden flow changes. This further sug-
gests that our singular-pattern definition is quite general.

8.2. Real-world flow fields
In this set of experiments, we apply our singular-pattern de-

tector to images of weather systems. Our detector was able to
detect interesting patterns in the clouds’ motion including vor-
tices, the sudden appearance and disappearance of clouds, and
the shearing motions between neighboring local weather sys-
tems. In all experiments we set L = N = 4. The motion of
clouds was estimated from the satellite images using a meshless
fluid-motion estimation algorithm [45]. This method produces
flow fields that are not biased to lower-order fluid motions, and
was suitable for the purpose of verifying our method.

In these experiments, we used satellite images from the Eu-
ropean Organization for the Exploitation of Meteorological Satel-
lites (EUMETSTAT) 2. The images were taken between March
10th to March 15th, 2010, by the meteorological satellite MSG-
15, using the visible-channel sensor VIS-6. In Figure 8.2, we

2http://www.eumetsat.int
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Figure 14: Clusters of asymmetric singular patterns. The first five clusters are
shown here. The flow fields are color-coded based on the vectors’ orientation
and magnitude. Square on top is the color-coded legend. Left-most column:
cluster centers. Each row represents a flow-field cluster. The columns represent:
a) cluster centers; b) cluster centers without background flow; c) background
flows of the cluster centers; d) three instances of the cluster, respectively. With
background flows removed, it is easy to see that the five cluster centers resem-
ble: (1) conjugate flow; (2) counterclockwise vortex skewed slightly by a con-
jugate flow; 3) counterclockwise vortex; (4) clockwise vortex severely skewed
by a conjugate flow; (5) clockwise vortex.

show examples of the satellite images (the first column) and
detected singular patterns (the third column). For better visual-
ization, we also display the flow fields as stream-slices with
background flows removed (the second column). The satel-
lite images exhibit large spherical distortions, but our method
still detected interesting singular patterns of different types. We
found large vortices in all three examples, together with shear-
ing patterns at the boundaries of the vortices and neighboring
weather systems.

9. Conclusions

We have proposed a method for detecting singular patterns
in flow fields. Our method consists of approximating flow fields
locally using a linear combination of complex-valued basis func-
tions. The new representation can model both analytic and non-
analytic flow fields, and detect affine singular patterns. We
demonstrated the equivalence of classic flow-field models to
the special cases of our linear combination model. The detec-
tor was tested on both synthetic and real fluid flows, by detect-
ing and clustering singular patterns of different orientations and
scales.

Limitations of our method include its inability of handle
perspective transformations, its higher computational cost and
memory need when compared to existing methods, and the re-
striction to 2-D flow fields only as complex-valued functions
cannot represent 3-D flow fields.
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Figure 14: Clusters of asymmetric singular patterns. The first five clusters are
shown. Each row shows a different cluster. Colors indicate vectors’ orien-
tation and magnitude according to the color-code legend (top). The columns
show: (a) cluster centers, (b) cluster centers without background flow, (c) back-
ground flows of cluster centers, (d) three instances from the cluster. Without
background flows, cluster centers resemble: (1) conjugate flow; (2) counter-
clockwise vortex skewed by a conjugate flow; 3) counterclockwise vortex; (4)
clockwise vortex skewed by a conjugate flow; and (5) clockwise vortex.

with background flows removed (Column 2). Our method de-
tected patterns of different types despite spherical distortions
exhibited by the images. Large vortices were detected in all
three examples as well as shearing patterns at the boundaries of
vortices and neighboring weather systems.

9. Conclusions

We proposed a method for detecting singular patterns in
flow fields. Our method approximates flow fields locally using
a linear combination of complex-valued basis functions. The
new representation can model both analytic and non-analytic
flows, as well as affine singular patterns. Classic flow-field
models were shown to be related to special cases of our linear-
combination model. The detector was tested on many synthetic
and real fluid flows by detecting and clustering singular patterns
of various rotations and scales.

Limitations of our method include the inability to handle
perspective transformations, the higher computational cost and
memory need in comparison to related methods, and the restric-
tion to 2-D flow fields only as complex-valued functions cannot
represent 3-D flow fields.

Future directions of investigation include the use of geo-
metric algebra (Clifford algebra) [12] to extend our detector to
work with 3-D flow fields. In particular, one can try to derive
a set of 3-D basis flows using Clifford algebra, and also define
principle orientations by aligning a 3-D flow field to a set of
pre-defined basis flows. In this case, 3-D multi-scale singular-
pattern detection could be achieved by adapting Algorithm 1.
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Figure 15: Singular patterns detected on EUMETSAT satellite images. The
columns from left to right are: the original satellite images, estimated flow
fields with background flow removed, and detected singular patterns.

geometric algebra (Clifford algebra) [12]. A possible direction
can be to try to derive a set of 3-D basis flows represented in
Clifford algebra, and define principle orientations by aligning a
3-D flow field to a set of pre-defined basis flows. In this way,
multi-scale detection in 3-D would be highly similar to its 2-D
counterpart described in Algorithm 1.

We would also like to explore applications of this singular
detector in different applications such as fingerprint [3, 4], flow-
field visualization [10], and biomedical image analysis [32].
The singular-pattern detector may also be integrated into a fluid-
motion estimation method to achieve joint estimation-segmentation.
Finally, a real-time implementation of the algorithm using Graph-
ics Processing Units (GPUs) is also of practical interest.

Appendix

A. Scaling transformation

By substituting the basis vector field in Equation 2 into the
scaling operator in (13), we have:

 s(�k(z,�)) = s �k(s�1z,�)

= s ks�1zk�k exp
 
�ks

�1zk2
�2

!
(s�1z)k

= s kzk�k exp
 
� kzk

2

(s�)2

!
zk

= s �k(z, s�). (19)

We removed the normalization factor 1
Ck

for simplicity.

B. Relationship to Rankine model and phase portrait

We show the connection between our model with the Rank-
ine model [5]) and the linear phase portrait [18, 1]).

B.1. The Rankine model
The Rankine model approximates a vortex as a vector field

of constant curl inside a disk. Beyond this circular domain the
velocity decreases as the inverse squared distance to the disk
center and the vorticity is null. Locally, the complex represen-
tation of this velocity field is given by [5]:

fl(z) =

8>><
>>:

gl(z) = � i�lz
kzk2 , kzk � rl

hl(z) = � i�lz
r2

l
, kzk < rl,

(20)

where rl is the singularity radius, and �l is its strength. The
Rankine model is restricted for vortice representation, and has
been extended in [5] to represent sink/source patterns as fol-
lows:

fl(z) =

8>><
>>:

gl(z) = ↵lz
kzk2 , kzk � rl

hl(z) = ↵lz
r2

l
, kzk < rl.

(21)

Here, ↵l represents the local strength, and the extended Rankine
model represents a source when ↵l > 0, and a sink when ↵l < 0.
In [5], the vortex and sink/source models are linearly combined
to represent more complicated flow fields. The above Rankine
models are based on holomorphic functions and these can be
well approximated by our holomorphic basis flows {�k,i}k�0,i.
However, our model can also represent singular patterns that
are not well represented by the Rankine models, such as the
conjugate and shearing flows.

B.2. Phase portrait models
Phase-portrait methods [18, 1] locally approximate a flow

pattern (ẋ, ẏ)T, ẋ(t) = dx/dt, using 2-D linear differential equa-
tions, and the following affine model:

ẋ = c1,1x + c1,2y + c1,3

ẏ = c2,1x + c2,2y + c2,3, (22)

that can be written in matrix form as v = Cx + b. After lo-
cally fitting this linear model to the flow-field data, the detected
singular pattern is classified according to the eigenvalues of the
coefficient matrix C. Let tr(C) be the trace of C and det(C) its
determinant, the eigenvalues of C are given by [18, 1]:

�1 =
1
2

⇣
tr(C) +

p
�
⌘
, and �2 =

1
2

⇣
tr(C) �

p
�
⌘
, (23)

where � = tr(C)2 � 4 det (C). By substituting x = z+z
2 and

y = z�z
2 i into the affine model in (22), we have:

2ẋ = c1,1(z + z) + c1,2(z � z)i + c1,3

2ẏ = c2,1(z + z) + c2,2(z � z)i + c2,3 (24)
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Figure 15: Singular patterns detected on EUMETSAT satellite images. The
columns from left to right are: the original satellite images, estimated flow
fields with background flow removed, and detected singular patterns.

geometric algebra (Clifford algebra) [12]. A possible direction
can be to try to derive a set of 3-D basis flows represented in
Clifford algebra, and define principle orientations by aligning a
3-D flow field to a set of pre-defined basis flows. In this way,
multi-scale detection in 3-D would be highly similar to its 2-D
counterpart described in Algorithm 1.

We would also like to explore applications of this singular
detector in different applications such as fingerprint [3, 4], flow-
field visualization [10], and biomedical image analysis [32].
The singular-pattern detector may also be integrated into a fluid-
motion estimation method to achieve joint estimation-segmentation.
Finally, a real-time implementation of the algorithm using Graph-
ics Processing Units (GPUs) is also of practical interest.

Appendix

A. Scaling transformation

By substituting the basis vector field in Equation 2 into the
scaling operator in (13), we have:

 s(�k(z,�)) = s �k(s�1z,�)

= s ks�1zk�k exp
 
�ks

�1zk2
�2

!
(s�1z)k

= s kzk�k exp
 
� kzk

2

(s�)2

!
zk

= s �k(z, s�). (19)

We removed the normalization factor 1
Ck

for simplicity.

B. Relationship to Rankine model and phase portrait

We show the connection between our model with the Rank-
ine model [5]) and the linear phase portrait [18, 1]).

B.1. The Rankine model
The Rankine model approximates a vortex as a vector field

of constant curl inside a disk. Beyond this circular domain the
velocity decreases as the inverse squared distance to the disk
center and the vorticity is null. Locally, the complex represen-
tation of this velocity field is given by [5]:

fl(z) =

8>><
>>:

gl(z) = � i�lz
kzk2 , kzk � rl

hl(z) = � i�lz
r2

l
, kzk < rl,

(20)

where rl is the singularity radius, and �l is its strength. The
Rankine model is restricted for vortice representation, and has
been extended in [5] to represent sink/source patterns as fol-
lows:

fl(z) =

8>><
>>:

gl(z) = ↵lz
kzk2 , kzk � rl

hl(z) = ↵lz
r2

l
, kzk < rl.

(21)

Here, ↵l represents the local strength, and the extended Rankine
model represents a source when ↵l > 0, and a sink when ↵l < 0.
In [5], the vortex and sink/source models are linearly combined
to represent more complicated flow fields. The above Rankine
models are based on holomorphic functions and these can be
well approximated by our holomorphic basis flows {�k,i}k�0,i.
However, our model can also represent singular patterns that
are not well represented by the Rankine models, such as the
conjugate and shearing flows.

B.2. Phase portrait models
Phase-portrait methods [18, 1] locally approximate a flow

pattern (ẋ, ẏ)T, ẋ(t) = dx/dt, using 2-D linear differential equa-
tions, and the following affine model:

ẋ = c1,1x + c1,2y + c1,3

ẏ = c2,1x + c2,2y + c2,3, (22)

that can be written in matrix form as v = Cx + b. After lo-
cally fitting this linear model to the flow-field data, the detected
singular pattern is classified according to the eigenvalues of the
coefficient matrix C. Let tr(C) be the trace of C and det(C) its
determinant, the eigenvalues of C are given by [18, 1]:

�1 =
1
2

⇣
tr(C) +

p
�
⌘
, and �2 =

1
2

⇣
tr(C) �

p
�
⌘
, (23)

where � = tr(C)2 � 4 det (C). By substituting x = z+z
2 and

y = z�z
2 i into the affine model in (22), we have:

2ẋ = c1,1(z + z) + c1,2(z � z)i + c1,3

2ẏ = c2,1(z + z) + c2,2(z � z)i + c2,3 (24)
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Figure 15: Singular patterns detected on EUMETSAT satellite images. The
columns from left to right are: the original satellite images, estimated flow
fields with background flow removed, and detected singular patterns.

geometric algebra (Clifford algebra) [12]. A possible direction
can be to try to derive a set of 3-D basis flows represented in
Clifford algebra, and define principle orientations by aligning a
3-D flow field to a set of pre-defined basis flows. In this way,
multi-scale detection in 3-D would be highly similar to its 2-D
counterpart described in Algorithm 1.

We would also like to explore applications of this singular
detector in different applications such as fingerprint [3, 4], flow-
field visualization [10], and biomedical image analysis [32].
The singular-pattern detector may also be integrated into a fluid-
motion estimation method to achieve joint estimation-segmentation.
Finally, a real-time implementation of the algorithm using Graph-
ics Processing Units (GPUs) is also of practical interest.

Appendix

A. Scaling transformation

By substituting the basis vector field in Equation 2 into the
scaling operator in (13), we have:

 s(�k(z,�)) = s �k(s�1z,�)

= s ks�1zk�k exp
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�1zk2
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= s kzk�k exp
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2
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= s �k(z, s�). (19)

We removed the normalization factor 1
Ck

for simplicity.

B. Relationship to Rankine model and phase portrait

We show the connection between our model with the Rank-
ine model [5]) and the linear phase portrait [18, 1]).

B.1. The Rankine model
The Rankine model approximates a vortex as a vector field

of constant curl inside a disk. Beyond this circular domain the
velocity decreases as the inverse squared distance to the disk
center and the vorticity is null. Locally, the complex represen-
tation of this velocity field is given by [5]:

fl(z) =

8>><
>>:

gl(z) = � i�lz
kzk2 , kzk � rl

hl(z) = � i�lz
r2

l
, kzk < rl,

(20)

where rl is the singularity radius, and �l is its strength. The
Rankine model is restricted for vortice representation, and has
been extended in [5] to represent sink/source patterns as fol-
lows:

fl(z) =

8>><
>>:

gl(z) = ↵lz
kzk2 , kzk � rl

hl(z) = ↵lz
r2

l
, kzk < rl.

(21)

Here, ↵l represents the local strength, and the extended Rankine
model represents a source when ↵l > 0, and a sink when ↵l < 0.
In [5], the vortex and sink/source models are linearly combined
to represent more complicated flow fields. The above Rankine
models are based on holomorphic functions and these can be
well approximated by our holomorphic basis flows {�k,i}k�0,i.
However, our model can also represent singular patterns that
are not well represented by the Rankine models, such as the
conjugate and shearing flows.

B.2. Phase portrait models
Phase-portrait methods [18, 1] locally approximate a flow

pattern (ẋ, ẏ)T, ẋ(t) = dx/dt, using 2-D linear differential equa-
tions, and the following affine model:

ẋ = c1,1x + c1,2y + c1,3

ẏ = c2,1x + c2,2y + c2,3, (22)

that can be written in matrix form as v = Cx + b. After lo-
cally fitting this linear model to the flow-field data, the detected
singular pattern is classified according to the eigenvalues of the
coefficient matrix C. Let tr(C) be the trace of C and det(C) its
determinant, the eigenvalues of C are given by [18, 1]:

�1 =
1
2

⇣
tr(C) +

p
�
⌘
, and �2 =

1
2

⇣
tr(C) �

p
�
⌘
, (23)

where � = tr(C)2 � 4 det (C). By substituting x = z+z
2 and

y = z�z
2 i into the affine model in (22), we have:

2ẋ = c1,1(z + z) + c1,2(z � z)i + c1,3

2ẏ = c2,1(z + z) + c2,2(z � z)i + c2,3 (24)
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Figure 15: Singular patterns detected on EUMETSAT satellite images.
Columns from left to right are: the original satellite images, estimated flow
fields with background flow removed, and detected singular patterns.

We plan to explore applications of our detector to differ-
ent problems such as fingerprint [3, 4], flow-field visualization
[10], and biomedical image analysis [32]. Our singular-pattern
detector may also be integrated into a fluid-motion estimation
method to achieve joint estimation and segmentation. Finally, a
real-time implementation of the algorithm using Graphics Pro-
cessing Units (GPUs) is also desirable.

Appendix A. Scaling transformation

By substituting the basis vector field in Equation 2 into the
scaling operator in (13), we have:

 s(�k(z,�)) = s �k(s�1z,�)

= s ks�1zk�k exp
 
�ks

�1zk2
�2

!
(s�1z)k

= s kzk�k exp
 
� kzk

2

(s�)2

!
zk

= s �k(z, s�). (A.1)

We removed the normalization factor 1
Ck

for simplicity.

Appendix B. Relation to Rankine model and phase por-
trait

We show the connection between our model with the Rank-
ine model [5]) and the linear phase portrait [18, 1]).

Appendix B.1. The Rankine model
The Rankine model approximates a vortex as a vector field

of constant curl inside a disk. Beyond this circular domain the
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velocity decreases as the inverse squared distance to the disk’s
center, and the vorticity is null. Locally, the complex represen-
tation of this velocity field is given by [5]:

fl(z) =

8>><
>>:

gl(z) = � i�lz
kzk2 , kzk � rl

hl(z) = � i�lz
r2

l
, kzk < rl,

(B.1)

where rl is the singularity radius, and �l is its strength. The
Rankine model is limited to vortex representation, and has been
extended in [5] to represent sink/source patterns as follows:

fl(z) =

8>><
>>:

gl(z) = ↵lz
kzk2 , kzk � rl

hl(z) = ↵lz
r2

l
, kzk < rl.

(B.2)

Here, ↵l represents the local strength, and the extended Rankine
model represents a source when ↵l > 0, and a sink when ↵l < 0.
In [5], these two models are linearly combined to form other
flow fields. These models are based on holomorphic functions
and these can be well approximated by our holomorphic basis
flows {�k, j}k�0, j. However, our model can also represent singu-
lar patterns that cannot be represented by the Rankine models,
such as the conjugate and shearing flows.

Appendix B.2. Phase portrait models

node saddle star node

�1�2 > 0 �1�2 < 0 �1 = �2

� > 0, det(C) > 0 � > 0, det(C) < 0 � = 0, c1,2 = c2,1
aT = [2, 0, 0, 0, 4, 0] aT = [2, 0, 0, 0, 1, 0] aT = [0, 0, 0, 0, 1, 0]

improper node center spiral

�1 = �2 �1,2 = ↵ ± �i �1,2 = ↵ ± �i
� = 0, c1,2 =, c2,1 � < 0, tr(C) = 0 � < 0, tr(C) , 0

aT = [1, 1, 0, 0, 1,
p

2] aT = [0, 0, 0, 0, 0, 1] aT = [0, 0, 0, 0, 1, 1]

Figure 16: Phase portrait classification based on the eigenvalues of C.

that can be written in matrix form as v = Cx + b. After lo-
cally fitting this linear model to the flow-field data, the detected
singular pattern is classified according to the eigenvalues of the
coefficient matrix C. Let tr(C) be the trace of C and det(C) its
determinant, the eigenvalues of C are given by [18, 1]:

�1 =
1
2

⇣
tr(C) +

p
�
⌘
, and �2 =

1
2

⇣
tr(C) �

p
�
⌘
, (23)

where � = tr(C)2 � 4 det (C). By substituting x = z+z
2 and

y = z�z
2 i into the affine model in (22), we have:

2ẋ = c1,1(z + z) + c1,2(z � z)i + c1,3

2ẏ = c2,1(z + z) + c2,2(z � z)i + c2,3 (24)

To simplify further discussions, we will drop the constant back-
ground flows c1,3 and c2,3 in (24). Eigenvalue calculation is not
affected by these constants. By writing the flow field as a com-
plex number ẋ+ẏ i, and comparing it with the Laurent expansion
to obtain:

ẋ + ẏi =
1
2

[(c1,1 + c2,2)|       {z       }
a1,1

z + (c2,1 � c1,2)|       {z       }
a1,2

zi+

(c1,1 � c2,2)|       {z       }
a�1,1

z + (c1,2 + c2,1)|       {z       }
a�1,2

zi]. (25)

Here, we used the approximation z ⇡ z�1. As a result, we have:
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This shows that the phase-portrait can be approximated using
the first-order coefficients ak,i, kkk  1 from our representation.
Figure 16 shows example of singular patterns of different phase
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can also establish the connection between the higher-order co-
efficients in our model and the non-linear phase portraits [17].
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Figure B.16: Phase portrait classification based on the eigenvalues of C.

Phase-portrait methods [18, 1] locally approximate a flow
pattern (ẋ, ẏ)T, ẋ(t) = dx/dt using 2-D linear differential equa-
tions, and the following affine model:

ẋ = c1,1x + c1,2y + c1,3

ẏ = c2,1x + c2,2y + c2,3, (B.3)

which can be written in matrix form as v = Cx + b. After lo-
cally fitting this linear model to the flow-field data, the detected

singular pattern is classified according to the eigenvalues of the
coefficient matrix C. Let tr(C) be the trace of C and det(C) its
determinant, the eigenvalues of C are given by [18, 1]:

�1 =
1
2

⇣
tr(C) +

p
�
⌘
, and �2 =

1
2

⇣
tr(C) �

p
�
⌘
, (B.4)

where � = tr(C)2 � 4 det (C). By substituting x = z+z
2 and

y = z�z
2 i into the affine model in (B.3), we have:

2ẋ = c1,1(z + z) + c1,2(z � z)i + c1,3

2ẏ = c2,1(z + z) + c2,2(z � z)i + c2,3 (B.5)

To simplify the notation, we drop the constant background flows
c1,3 and c2,3 in (B.5) because they do not affect eigenvalue cal-
culation. We can write the flow field as a complex number ẋ+ẏ i,
and compare it with the Laurent expansion to obtain:

ẋ + ẏi =
1
2

[(c1,1 + c2,2)|       {z       }
a1,1

z + (c2,1 � c1,2)|       {z       }
a1,2

zi+

(c1,1 � c2,2)|       {z       }
a�1,1

z + (c1,2 + c2,1)|       {z       }
a�1,2

zi]. (B.6)

We used the approximation z ⇡ z�1. As a result, we have:
"
c1,1, c1,2
c2,1, c2,2

#
⇡ 1

2

"
a1,1 + a�1,1, a�1,2 � a1,2
a�1,2 + a1,2, a1,1 � a�1,1

#
(B.7)

with

tr(A) = 2a1,1, det(A) = a2
1,1 � a2

�1,1 + a2
1,2 � a2

�1,2,

and

� = 4a2
1,1 � 4

⇣
a2

1,1 � a2
�1,1 + a2

1,2 � a2
�1,2

⌘

= 4
⇣
a2
�1,1 � a2

1,2 + a2
�1,2

⌘
.

This shows that the phase-portrait can be approximated using
the first-order coefficients ak, j for kkk  1 from our representa-
tion. Figure B.16 shows examples of singular patterns of dif-
ferent phase portraits produced using our model. Similarly, we
can also establish the connection between the higher-order co-
efficients in our model and the non-linear phase portraits [17].
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