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ABSTRACT

Starting from an object’s location in a video frame, tracking-
by-detection methods find the location of that object in a sub-
sequent video frame. The tracker’s detection step may pro-
duce multiple false positives during short-term occlusions,
which can result in loss of track. We propose a tracking-by-
detection method that is robust to short-term occlusions and
false positives. Here, we extend the Struck tracker, which is
based on structured SVM, to output bounding boxes at mul-
tiple scales. In addition to predicting scale changes, we use
the Robust Kalman filter to decrease false-positive detections
and to increase the tracker resilience to short-time occlusions.
Here, we develop a special strategy for the tracker’s update
step, which is designed to decrease over fitting and to allow
for the tracker to recover from loss of track. We thoroughly
evaluate our method on a publicly available video dataset and
show that it outperforms the state-of-the-art.

Index Terms— Visual tracking, Model-free tracking,
Structured support vector machine, Robust Kalman filter

1. INTRODUCTION

We address the problem of tracking an object in a video
without having a pre-defined appearance model of the object
(i.e., model-free tracking). Problem setting is simple: given a
bounding box enclosing an object in a video frame, find the
object’s position in subsequent frames. However, locating the
object becomes hard as its appearance changes during motion.
In fact, being able to adapt to changes throughout the video
is a common characteristic of state-of-the-art trackers [1, 2].
The tracker by Kalal et al. [3] adds a new appearance patch to
the object model if the label from a nearest-neighbor classifier
differs from temporal and spatial experts. The Struck tracker
[4] incrementally adds new predictions as a support vectors.
The trackers by [5, 6] use kernelized correlation filters.
Although appearance adaptation produces robust object
models, it is insufficient to handle occluded objects. Occlu-
sion handling in trackers present varying degree of success.
Zhong et al. [7] handles occlusion by thresholding the recon-
struction error between the object and a sparse combination
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Fig. 1. Top: Struck with filter. Bottom: Struck without filter-
ing. The green box is filter’s prediction.

of local object patches representing the appearance model.
Patches that are deemed occluded have their associated sparse
coefficient set to zero. Using a different strategy, Kalal et al.
[3] assumes that the object is occluded whenever the error
of forward-backward optical-flow inside the bounding box is
high and a nearest-neighbor classifier returns a value smaller
than a predefined threshold.

In this paper, we argue that threshold-based occlusion de-
tection as employed by the above trackers cannot be made ro-
bust because it is impossible for trackers to distingsh between
novel (and unseen) object appearances and occlusions. There-
fore, we propose to combine the highly discriminative tracker
in [4] with the robust Kalman filter [8] to increase the tracker’s
robustness to both false positives and short-time occlusions.
We achieve that by only updating the tracker if the detector
and the robust Kalman filter agree. If they do not agree, we
look for the object in an extended search region. This strat-
egy allows the tracker to recover from occlusions and incor-
rect detections. We evaluate our tracker on the visual-tracking
benchmark [1], and compare it to the Struck [4] and to other
state-of-the-art trackers [9, 10, 6]. Our results show that our
tracker compares rather favourably the state-of-the-art.

Our contributions are twofold: (i) We extend the struc-
tured tracker to work on multiple scales, (ii) We show how
to combine Robust Kalman filter with the tracker to handle
short-time occlusions and false positives.
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2. METHOD

Modern tracking-by-detection trackers use machine learning
techniques to detect the object of interest in every video frame
(e.g., the structured tracker in Struck [4], the kernelized fil-
ter in [5]). However, a location detected by these trackers in
one frame is independent of the location in previous frames.
This lack of spatio-temporal consistency becomes a problem
when the tracker detects the wrong object at a location that
is far from the correct one (i.e., a false positive). Because
most trackers search for the object only in the neighborhood
of the current detection, those false positives can result in an
unrecoverable loss of track. Here, we solve this problem by
using the Robust Kalman filter built on top of structured SVM
tracker. Our tracker uses the robust Kalman filter to label de-
tections that are inconsistent with the object’s motion model.
Once labeled, these false detections can be properly handled,
which increases the tracker’s recovery capability. The robust
version of the Kalman filter is necessary because false posi-
tives are detected as outliers by the filter.

2.1. Structured tracker

Our work builds on the tracker introduced by [4]. This tracker
trains a structured SVM [11] in an online manner [12]. To
achieve real-time performance, the maximum number of sup-
port vectors at all times is bounded by a threshold known as
a budget [13]. When used for tracking, structured SVM esti-
mates the function f : X — ), which corresponds to find-
ing a transformation of the bounding box in the current frame
given the previous one. Let (x;,y;)Y ; be a sample from N
frames, where x; is a feature vector (e.g., Haar features) and
yj is a translation from the previous frame to the current. For
each pair (x;,y;), the structured SVM estimates the compat-
ibility between translation y; and feature vector x; by calcu-
lating a discriminative function F' : X x ) — R. Prediction
is made by maximizing over all possible translations, );:

Ve = f(x¢) = arg max F(x¢,y). (D

Let ®(-,-) be a feature map, then the discriminative func-
tion in simplified dual variables is given by F(x,y) =
iy BY(®(x;,7), ®(x,y)). Structured SVM then solves
the following convex-optimization problem:

1
méix - ZA(}’ayl)ﬁfj - §ZF(X_]7y)
Ly Y.J
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where 6(y,y) = 1, if y = ¥, and 0 otherwise. Support vec-
tors are defined as pairs (x;, y) for which 37 # 0. Equation
3 is solved by the SMO-step algorithm [14], which monoton-
ically improves the objective function. The budget limits the

number of support vectors. When this number exceeds the
budget, the tracker deletes the support vectors that contribute
the least to the objective function.

2.2. Robust Kalman filter

Drifting is common problem for trackers. It occurs when a
tracker misdetects either due to false positive detection or
occlusion. Drifting especially problematic in tracking-by-
detection trackers as they sample bounding boxes only in the
neighborhood of the current object location. As a result, one
bad detection may lead to loss of track. We observed that
often during false positives, the tracker chooses locations that
are inconsistent with the object’s motion (e.g., a car driving
one way cannot suddenly move in the opposite way). In our
method, we use motion consistency to detect false positives
and occlusions. Here, our method uses a detector to build
the object’s appearance model online and the robust Kalman
filter to spatially smooth detection results.

Unfortunately, the classical Kalman filter’s sensitivity to
outliers results in poor tracking performance in the event of
incorrect detections. Instead, we use the robust Kalman filter,
which is resilient to outliers. We follow the robust Kalman fil-
ter from [8]. Here, the gain step is replaced by a hubernization
of the step. Formally, let y; be the ground-truth unobserved
state at time ¢, which is related to the state at a previous time
by the following equation:

yi = Fy;_1+ v, (3)

where F' is a transition matrix, and v; ~ N (0, Q) is a Gaus-
sian noise. Because y; is unobserved, we only have its noisy
estimate, ¥, and called it an observed state. Noisy estimates
are related to real ones by a linear transformation:

Vi = Hy; + ¢, 4

where H is a matrix that transforms latent variables into ob-
served ones. The noise €; ~ N(0, R) is also assumed to be
Gaussian. Let yy, be the minimum least-square error es-
timate of the location at frame ¢ given locations in frames
1,...,s, while ¥, is the covariance of the error estimate
¥¢|s- Then, the filter’s prediction step is given by:

V-1 = Fyi 1161 )]
Stm1 = FS_ 1 FT + Q. 6)

The current prediction is then updated by the correction step
by taking into account a new measurement, i.e.:

Yijt = Yejt—1 + h(KAY:) (7
Ay =3 — Hyyi-1 (3)
K =Sy HAY ©)
Sy = (I — KH)Sy1 (10)
Ay =HYy, H"+R (11)
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Hubernization is achieved by applying the function hy(z) =
x-min{1, HTI’”} to the correction term. Due to hubernization,
corrections with high norm are multiplied with a value smaller
than 1, which weights down the correction’s contribution to
the result. The robust constant, b, is a threshold that the filter
uses to weight down the correction whenever the correction
departs from the model prediction. When b — oo the robust
Kalman filter approaches the classical Kalman filter.

2.3. Robust Kalman filter for tracking

We combine the structured tracker and the robust Kalman fil-
ter into a single tracking method as follows. In every frame,
the detector locates the best position of the object. Then, we
apply the filter and check if its result overlap significantly
(i.e., more than 50%) with the detector’s. If it does not, we as-
sume that the object location changed unexpectedly according
to the filter’s motion model. In this case, the detector either:
(i) made a mistake during detection (e.g., false positive) or (ii)
the object was partially (or completely) occluded. Regardless
of the reason, the current detection is likely to be incorrect
and should not be used in the tracker’s update step. Thus, for
frames with small overlap, our tracker is not updated.

For the tracker to recover when it disagrees with the fil-
ter in the next frame, we calculate a discriminative function
from bounding boxes sampled around the best predictions
from both filter and detector. Here, we use the robust Kalman
filter’s ability to identify outliers and we do not change filter’s
position by much. As a result, the detector can recover from a
mistake because the object will remain in the neighborhood of
the filter’s prediction. During partial or short-term occlusions,
the detector may make a few consecutive mistakes or it might
be simply unreliable. We consider a detection unreliable if
the overlap between the best detection of both the filter and
the detector is lower then 50%. In this case, we set the value
of the robust constant to half of the value originally set by the
tracker. Once the overlap becomes larger than 50% again, the
robust constant is set back to its original value. While such
a strategy cannot address long-term occlusions, our experi-
ments show that it performs well for short-term occlusions.

3. IMPLEMENTATION

Our tracker implementation is similar to that of Hare et al.
[4], with the same SVM parameters such as budget and soft-
margin constant, C ! In contrast, we use the robust Kalman
filter with a constant-velocity model. Thus, the unobserved
state at frame ¢ is given by y, = [zf!, yi, ab" y2" vF vf],
where [f!,yi'] and [z}",yP"] are pixel locations of the
top-left and bottom-right corners of the bounding box, and

[vf,v{] are velocities. Locations of the two corners of the
bounding box are observed, ¥, = [«i',y;',2t", yi"]. The

'B =100, C =100
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constant-velocity model means that location of the corners in
time change as follows:

0o x 04 y
Ty =x tviy and oy =yl v, (12)

wf" =ty oy and y =yl ol (13)

3.1. Role of the robust constant

The robust constant, b, serves as a threshold for identifying
outlier bounding boxes. If the correction term exceeds the
threshold, its contribution is weighted down, which, in turn
increases the contribution of the filter’s motion model. We set
parameter b = 10 during tracking. However, if tracker and
filter disagree, we decrease b — g to indicate that the detected
outlier cannot be trusted. This is done to avoid fast drifting of
the bounding boxes when the detector makes mistakes for a
few consecutive frames.

3.2. Kernel

Our tracker uses the intersection kernel, which is imple-
mented using a fast, exact algorithm by Maji et al. [15].

3.3. Features

We use a combination of HoG features and histograms, sim-
ilar to the ones used in [4]. HoG features are extracted by
resizing the image such that height and width of the bounding
box are both of 32 pixels. HoG parameters are as follows:
32 x 32 window size, 16 x 16 block size, 4 x 4 cell size,
16 x 16 block stride, and the number of bins per histogram
is 8. Histograms are calculated using 16 bins whereas we set
L = 4. The length of the feature vector is 992, i.e., the sum
of size of HoG features (512) and histogram ones (480).

3.4. Tracker update

The structured tracker in [4] updates for every frame. We ob-
served that this strategy can lead to overfitting because, when
the tracker is updated, a new positive support vector is cre-
ated. As the budget fixes the total number of vectors, this new
support vector can remove an existing one. As a result, a set
of positive support vectors may contain very similar vectors,
which will impair the tracker’s discrimination ability. Instead,
we update the tracker every n frames and only if the tracker
agrees with the filter. This less-frequent updating leads to a
more balanced set of support vectors. In addition, by restrict-
ing the update only when the filter agrees with the tracker
allows for updating to occur only when tracker’s detection is
the most reliable (i.e., it is less likely to make a mistake).

3.5. Speed

RobStruck’s running speed is 1.75 frames per second on a
single-threaded single-core 2.4 GHz processor. The addition
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Fig. 2. (a) Success and precision curves on the dataset [1]. (b) Results on [1] dataset averaged across all tracker runs in all
experiments. [1]. Abbreviations used are from : SAMF [9], TGPR [10], DSST [6]

of the filter requires a constant number of operations per
frame when the filter agrees with the tracker. In cases when
the tracker disagrees with the filter, the running time increases
by a factor of two per frame.

4. RESULTS

Dataset. Dataset [1] contains 50 videos with a total of 29,000
frames. Tracked subjects include humans, cars, animals, and
toys. Benchmark contains an evaluation protocol which is
discussed next.

Evaluation protocol. The two common metrics for track-
ing evaluation are: success rate and precision. Precision mea-
sures the average distance between the track and the ground
truth while success rate measures overlap.

Experiment types. Evaluation protocol includes default,
temporal (TRE) and spatial robustness experiments (SRE). In
SRE, the initial bounding box in the first frame is spatially
perturbed by changing location and it’s dimensions. In TRE,
the bounding box is perturbed temporally. In total, we run the
tracker 32 times on each video.

Results. We evaluated our tracker with and without the
Kalman filter, and compared results to the trackers TGPR
[10], DSST [6] and SAMEF [9] 2. Results in the form of pre-
cision and success plots are shown in Figure 2(a) as well as
averaged histograms in the Figure 2(b).

Our results show that our improved structured tracker
(even without filtering) outperforms existing trackers in all
experiments. This advantage can be partially explained by
the features being used. The best trackers in the VOT2014

2DSST, SAMF took first and second places respectively on VOT2014
benchmark

challenge used HoG features with kernelized correlation fil-
ters. Using HoG features closes the performance gap. In our
experiments, we found that a combination of HoG features
and histograms further improves results.

The tracker with the filter improves tracking accuracy.
The most striking difference is seen in the SRE experiments,
in which the bounding box is moved to emulate “noise” in
the data. Because the initial bounding box is inaccurate, the
tracker is more likely to detect a false positive. Despite the in-
accuracy of the bounding box, our tracker recovers promptly.

5. CONCLUSION

Thresholding is a popular technique for occlusion detection
in visual tracking [7, 3]. Setting a threshold for occlusion
parameter in model-free tracking is hard as little information
about the object being tracked is available. Also, sensitiv-
ity of the threshold to the appearance representation might
hinder tracker’s performance. In this paper, we proposed to
use the robust Kalman filter to detect and recover from short-
time occlusions and incorrect detection. We also extended
the structured tracker to work on multiple scales, and made it
less susceptible to overfitting. We showed that the resulting
trackers (with and without filtering) outperformed the state-
of-the-art trackers on Wu et al. [1] benchmark. We conclude
that adding the robust Kalman filter to tracking-by-detection
allows the tracker to limit appearance updates to happen only
for locations where the tracker’s detection is the most reli-
able. This simple but effective strategy significantly increase
the discriminative power of the appearance model learned by
the tracker. Current limitations of our approach include the
setting of the robust constant b and the filter’s reliance on the
constant-velocity motion model.
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