CSE4001: Operating Systems Concepts

Processes

How to create and control processes: Process AP

e Create

e Destroy

o Walt

* Miscellaneous control

e Status

Content

o Creating processes with fork ()

In UNIX, use the fork() system call to create a new process

* This creates an exact duplicate of the parent process!!
* Creates and initializes a new PCB

* Creates a new address space

* Copies entire contents of parent's address space into the child
* |nitializes CPU and OS resources to a copy of the parent's

* Places new PCB on ready queue

Process calls fork()

© 2007 Matt We [s h - Harvard Unive rs i%

ﬁIDzu 09
State: Runnm

int main()
{
int X = 0;
=) fork():
X = 13
return 1;
}

In UNIX, use the fork() system call to create a new process

* This creates an exact duplicate of the parent process!!
* Creates and initializes a new PCB
* Creates a new address space
* Copies entire contents of parent's address space into the child
* |nitializes CPU and OS resources to a copy of the parent's

* Places new PCB on ready queue

Process calls fork()

© 2007 Matt We [s h - Harvard Unive s iti_

Cﬁ‘ID4

State: Running‘

109

int main()

{
int X = 0;

=> fork();
X = 1;
return 1;

PID 4110 b
Copy state State: Re aO[%
_——
PC

‘ﬁggistzrs

e Creates and initializes a new PCB

UNIX fork mechanism

In UNIX, use the fork() system call to create a new process
* This creates an exact duplicate of the parent process!!

e Creates a new address space
e Copies entire contents of parent's address space into the child
* |nitializes CPU and OS resources to a copy of the parent's

* Places new PCB on ready queue

Process calls fork()

Ready queue

© 2007 Matt We ls h - Harvard Unive rs itl_

¢h£uﬂ09
State: %nnmg\

PID 4277
State: Re acfl

PC >

int main()
{
int X = 0;
=) fork();
X = 1;
return 1;
¢ﬁD4uu9 }
Copy state State: CReacfl_
> e
Cﬁggiswrs
PID 43 91
State: CReach
PC

Qiggistzrs

e Creates and initializes a new PCB

UNIX fork mechanism

In UNIX, use the fork() system call to create a new process
* This creates an exact duplicate of the parent process!!

e Creates a new address space
e Copies entire contents of parent's address space into the child
* |nitializes CPU and OS resources to a copy of the parent's

* Places new PCB on ready queue

Process calls fork()

Ready queue

© 2007 Matt We ls h - Harvard Unive rs i%

PID 41009
State: %nnmg\

PID 4277
State: Re acfl

PC

4>

int main()
{
int x = 9;
=> fork();
X = 1;
return 1;
PID 4110 }
Copy state State: Re acfl_
> fC
ﬁgg isters
PID 43 o1 Add to end of
State: Ready ready queue
PC

Qiggistzrs

Process API: creation and program execution

paren’[@ resumes
child @ @

paren’[@ resurmes
child @ @

parent

child

parent

int main()

{

int x = 0;
fork();
X = 1;

return 9;

}

parent

int main()

{

int x = 0;
fork();
X = 1;

return 9;

}

parent

int main()

{

int x = 0;
fork();
X = 1;

return 9;

}

parent

int main()

{

int main()

{

int x = 0;

fork(); PCchilg =»|| fork();

int x = 0;

X=1; X=1;

return 9;

}

return 9;

}

int main()

{

int x = 0;
fork();
X = 1;

return 9;

}

parent

int main()

{

int x = 0;

fork();
X = 1;

return 9;

}

The fork() call is

issued. A new
Drocess Is created

(child).

What are the states
of the parent and
child processes?

int main()

{

int x = 0;

fork();
X = 1;

return 9;

}

parent

int main()

{

int x = 0;

fork();
X = 1;

return 9;

}

The fork() call is

issued. A new
Drocess Is created
(child).

Which one of the

WO
sch

first”

Drocess w

eduled tor
7

| be

U

parent

child
After Creation

* After creating the process the Kernel can do
one of the following, as part of the dispatcher
routine:

— Stay in the parent process.
— Transfer control to the child process
— Transfer control to another process.

int main()

{

int x = 0;

fork();
X = 1;

return 9;

}

parent

int main()

{

int x = 0;

fork();
X = 1;

return 9;

}

The fork() call is

issued. A new
Drocess Is created

(child).

Assuming tr

at the

parent gets -

O run,

what happens to it?

parent

int main()

{

int main()

{

int x = 0;

fork(); PCchilg =»|| fork();

int x = 0;

X=1; X=1;

return 9;

}

return 9;

}

parent

Why didn’t the
value of x In the

child process
change”?

int main() int main()

{ {

int x = 0; int x = 0;
fork(); - fork();
X = 1; x =1;

return ©; return ©;

Y }

int main()

{

int x = 0;
fork();
X = 1;

return 9;

}

parent

int main()

{

}

int x = 0;
fork();
X = 1;

return 9;

The parent process
terminates. \What
happens to the
child?

parent

child

The parent process
terminates. \What
int main() happens to the child?
{

int x = 9;

fork(); Who Is the parent of
X = 1; the child now?

return 9;

}

int main()

{

int X = 0;

fork();
X = 1;

return 0;

}

parent

int main()

{

}

int X = 0;

fork();
X = 1;

return 0;

It the child process is
scheduled to run, it
executes Just like the
parent, I.e., It starts
from the next instruction
after the fork(). Then,

t eventually terminates.

int main()

{

int X = 0;
fork();
X = 1;

return 9;

}

parent

int main()

{

int X = 0;
fork();
X = 1;

return 9;

}

't we want the child
process 1o execute
code that is different
from the parent’s, we
can call exec() Inthe

child process.

int main()

{

int X = 0;
fork();
X = 1;

return 9;

}

parent

int main()

{

int X = 0;
fork();
X = 1;

return 9;

}

't we want the child
process 1o execute
code that is different
from the parent’s, we
can call exec() Inthe

child process. But how
can we tell parent
from child?

child

int main()

{

int x = 0;

pid t r = fork();
if(r==0)

exec(1ls);
return 9;

parent

int main()

{

int x = 0;

pid t r = fork();

if(r==0)
exec(1ls);

return 9;

But how can we tell
parent from child?

fork() returns @ to the

child process and a
non-zero value to

parent Process.

child

int main()

{

int x = 0;

pid t r = fork();
if(r==0)

exec(1ls);
return 9;

parent

int main()

{

int x = 0;

pid t r = fork();

if(r==0)
exec(1ls);

return 9;

But how can we tell
parent from child?

To the parent,
fork() returns the

child’s PID or a

negative number
(i.e., child couldn’t
be created).

parent

The exec()

function replaces
the code section of
int main() i int main(args){ the child process

{ struct file *flist= with the code of

int x = 0; nil, **aflist=
pid_t r = fork(); &flist; the new program.
if(r==0) enum depth depth;

retﬁ)r(‘f\CgS); .0 The PC is reset to
} the first instruction.

http://www.cise.ufl.edu/~cop4600/cgi-bin/lxr/http/ident.cgi?i=main
http://www.cise.ufl.edu/~cop4600/cgi-bin/lxr/http/ident.cgi?i=file
http://www.cise.ufl.edu/~cop4600/cgi-bin/lxr/http/ident.cgi?i=nil
http://www.cise.ufl.edu/~cop4600/cgi-bin/lxr/http/ident.cgi?i=depth
http://www.cise.ufl.edu/~cop4600/cgi-bin/lxr/http/ident.cgi?i=depth

int main()

{

}

int x = 9;
pid t r =
if(r==0)
exec(ls);
else
wait()
return 9;

fork();

parent

Parent can issue a
wait(). This will

, , make parent wait
int main(args){ | |
struct file *flist= until the child
nil, **aflist= proceSS

&flist; .
enum depth depth; terminates.

(...
}

http://www.cise.ufl.edu/~cop4600/cgi-bin/lxr/http/ident.cgi?i=main
http://www.cise.ufl.edu/~cop4600/cgi-bin/lxr/http/ident.cgi?i=file
http://www.cise.ufl.edu/~cop4600/cgi-bin/lxr/http/ident.cgi?i=nil
http://www.cise.ufl.edu/~cop4600/cgi-bin/lxr/http/ident.cgi?i=depth
http://www.cise.ufl.edu/~cop4600/cgi-bin/lxr/http/ident.cgi?i=depth

ﬂ parent @ resumes

Parent can issue a
wait(). This will

, , make parent wait
int main(args){ | |
struct file *flist= until the child

nil, **aflist= process
&flist;

int main()

{

int x = 0;
pid t r =
if(r==0)
exec(ls); ,
else (1) enum depth depth; terminates.
wait()
return 9; é. :

fork();

)

}

http://www.cise.ufl.edu/~cop4600/cgi-bin/lxr/http/ident.cgi?i=main
http://www.cise.ufl.edu/~cop4600/cgi-bin/lxr/http/ident.cgi?i=file
http://www.cise.ufl.edu/~cop4600/cgi-bin/lxr/http/ident.cgi?i=nil
http://www.cise.ufl.edu/~cop4600/cgi-bin/lxr/http/ident.cgi?i=depth
http://www.cise.ufl.edu/~cop4600/cgi-bin/lxr/http/ident.cgi?i=depth

ﬂ parent @ resumes

What are the
int main() advantages of this
{ i int main(args){ apparently COmp\eX

int x = 0;

id t r = fork(); struct file *flist= : .
ri)wc(F==@) O nil, **aflist= interface’

&flist;
enum depth depth;

exec(1ls);
else

wait()
return 0; §.)

http://www.cise.ufl.edu/~cop4600/cgi-bin/lxr/http/ident.cgi?i=main
http://www.cise.ufl.edu/~cop4600/cgi-bin/lxr/http/ident.cgi?i=file
http://www.cise.ufl.edu/~cop4600/cgi-bin/lxr/http/ident.cgi?i=nil
http://www.cise.ufl.edu/~cop4600/cgi-bin/lxr/http/ident.cgi?i=depth
http://www.cise.ufl.edu/~cop4600/cgi-bin/lxr/http/ident.cgi?i=depth

Standard fork pattern

resumes
:(wait() : —>

parent

— fork()

1nt main()

{
pid_t pid;
/* fork another process */
pid = fork();
1f (pid < @) { /* error occurred */
fprintf(stderr, "Fork Failed");
ex1t(-1);
5

@) { /* child process */
"Is", NULL);

else 1f (pid ==
execlp("/bin/1s",
¥

else { /* parent process */

/* parent will wait for the child to
complete */

wait (NULL);
printf ("Child Complete");
ex1t(0);

Process Creation in Unix

* Process creation is by means of the system call fork().
 This causes the OS, in Kernel Mode, to:
1. Allocate a slot in the process table for the new process.
2. Assign a unique process ID to the child process.

3. Copy of process image of the parent, with the exception
of any shared memory.

4. Increment the counters for any files owned by the

parent, to reflect that an additional process now also
owns those files.

5. Assign the child process to the Ready to Run state.

Returns the ID number of the child to the parent process,
and a 0 value to the child process.

Why have fork() at all?

Why make a copy of the parent process?

Don't you usually want to start a new program instead?

Where might “cloning” the parent be useful?

* Web server — make a copy for each incoming connection
* Parallel processing — set up initial state, fork off multiple copies to do work

UNIX philosophy: System calls should be minimal.

* Don't overload system calls with extra functionality if it is not always needed.

» Better to provide a flexible set of simple primitives and let programmers
combine them in useful ways.

© 2007 Matt We ls h - Harvard Unive rsity_

Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process

Process
Process
Process
Process

4530:
4530:
4530
4530:

4530
4530:

4530:
4531:
4530

4530
4531:

4530
4531:
4530:
4531:

What determines the order in which
the two processes run???

Output of sample program

value
value
value
value

value
value

About
value
value

value
value

value
value
value
value

1s
1s
1s
1s
1s
1s
to
is
1s
1s
is
1s
is
1s
is

o a fork...

WOWooo=IJgoOoah Uk WNhEFEO

gueue of processes

Parent breaks because when the child process is created,
“ork () returns the PID of the child to the parent process. The

PID of any process is nonzero.

gueue of processes

Child processes run the for-loop because fork () returns O
(zero) to the child process.

fan of processes

int 1,
pid_t pid;
for (i =1; i < n; ++i)

if ((pid = fork()) <= 0)
break;

This time, child processes break, and parent runs the loop.

exit()

-> When calling exit(), a process voluntarily release all its

—;

resources, e.g., address space returned, files closed, etc.
But not everything can be cleaned by the process itself, it
has to be cleaned by someone else.

Also, | should not be all cleaned by the process because
the parent process may be waiting for the return value.
SO0, there is a separate state for the period after the

process calls exit() and before someone else cleans it up.
In Unix, It’s called zombie state.

http://www.cs.toronto.edu/~ylzhang/csc369t15/files/lecO1-intro-processes. pdf

http://www.cs.toronto.edu/~ylzhang/csc369f15/files/lec01-intro-processes.pdf

Zombie

-> When a process exits, almost all of its resources are
deallocated

Address space is returned, files are closed, etc.

PCB retains information about the process’s exit state
The process retains its PID

v b b

The process is a zombie until its parent cleans It up

http://www.cs.toronto.edu/~ylzhang/csc369t15/files/lecO1-intro-processes. pdf

http://www.cs.toronto.edu/~ylzhang/csc369f15/files/lec01-intro-processes.pdf

