
Operating System Concepts with Java – 7th Edition, Nov 15, 2006 Silberschatz, Galvin and Gagne ©2007

File System Implementation

11.2 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

 Chapter 11: File System Implementation

p  File-System Structure
p  File-System Implementation
p  Directory Implementation
p  Allocation Methods

11.3 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

File-System Structure

p  File structure
n  Logical storage unit
n  Collection of related information

p  File system resides on secondary storage (disks)
p  File system organized into layers
p  File control block – storage structure consisting of

information about a file

11.4 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

Layered File System

p  I/O Control: device drivers and
interrupt handlers that talk to the
disk

p  Basic file system: Generic block
reads and writes
n  e.g., read cylinder 73, track 2,

sector 10
p  File organization: Files and logical

blocks
n  Translate logical blocks to

physical
n  Manage free space

p  Logical file system: Metadata
information
n  e.g., owner, permissions, size,

etc.

11.5 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

A Typical File Control Block

p  FCB has all meta-information about a file
n  Linux calls these i-nodes

11.6 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

Implementing File Operations (1)
p  Create a file:

n  Find space in the file system, add directory entry.
p  Open a file:

n  System call specifying name of file.
n  System searches directory structure to find file.
n  System keeps current file position pointer to

the location where next write/read occurs
n  System call returns file descriptor (a handle) to

user process
p  Reading a file:

n  System call specifying file descriptor and number
of bytes to read (and possibly where in memory
to stick contents).

11.7 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

Implementing File Operations (2)
p  Writing in a file:

n  System call specifying file descriptor and information to be
written

n  Writes information at location pointed by the files current pointer
p  Repositioning within a file:

n  System call specifying file descriptor and new location of current
pointer

n  (also called a file seek even though does not interact with disk)
p  Closing a file:

n  System call specifying file descriptor
n  Call removes current file position pointer and file descriptor

associated with process and file
p  Deleting a file:

n  Search directory structure for named file, release associated file
space and erase directory entry

p  Truncating a file:
n  Keep attributes the same, but reset file size to 0, and reclaim file

space.

11.8 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

Other File Operations

p  Most FS require an open() system call before using
a file.

p  OS keeps an in-memory table of open files, so
when reading a writing is requested, they refer to
entries in this table via a file descriptor.

p  On finishing with a file, a close() system call is
necessary. (creating & deleting files typically works
on closed files)

11.9 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

Multiple Users of a File

p  OS typically keeps two levels of internal tables:
p  Per-process table

n  Information about the use of the file by the user (e.g.
current file position pointer)

p  System-wide table
n  Gets created by first process which opens the file
n  Location of file on disk
n  Access dates
n  File size
n  Count of how many processes have the file open

(used for deletion)

11.10 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

In-Memory File System Structures

opening a file

reading a file

11.11 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

Virtual File Systems

p  Virtual File Systems (VFS) provide an object-
oriented way of implementing file systems.

p  VFS allows the same system call interface (the
API) to be used for different types of file systems.

p  The API is to the VFS interface, rather than any
specific type of file system.

11.12 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

Schematic View of Virtual File System

11.13 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

Allocating and Storing Files

p  An allocation method refers to how disk blocks are
allocated for files:

p  Contiguous allocation
n  All bytes together, in order

p  Linked allocation
n  Each block points to the next block

p  Indexed allocation
n  An index block contains pointers to many other

blocks

11.14 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

Contiguous Allocation

p  Allocate files contiguously on disk

11.15 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

Contiguous Allocation of Disk Space

11.16 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

Contiguous Allocation

p  Pros:
n Simple: state required per file is start block

and size
n Performance: entire file can be read with one

seek
p  Cons:

n Files can’t grow
n Fragmentation: external frag is bigger problem
n Wastes space

p  Used in CDROMs, DVDs

11.17 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

Linked List Allocation

p  Each file is stored as linked list of blocks
n  First word of each block points to next block
n  Rest of disk block is file data

11.18 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

Linked Allocation

11.19 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

Linked List Allocation

p  Pros:
n  No space lost to external fragmentation
n  Disk only needs to maintain first block of each file

p  Cons:
n  Random access is costly
n  Overheads of pointers

11.20 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

Example: MS-DOS File System

p  Implement a linked list allocation using a table
n  Called File Allocation Table (FAT)
n  Take pointer away from blocks, store in this table
n  Can cache FAT in-memory

11.21 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

Indexed Allocation

p  Index block contains
pointers to each data
block

p  Pros?
n  Space (max open

files * size per I-
node)

p  Cons?
n  what if file expands

beyond I-node
address space?

11.22 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

Indexed Allocation

p  Brings all pointers to data blocks together into an
index block.

11.23 Silberschatz, Galvin and Gagne ©2007Operating System Concepts with Java – 7th Edition, Nov 15, 2006

Implementing Directories

p  Directory: map ASCII file name to file attributes & location
p  When a file is opened, OS uses path name to find dir

n  Directory has information about the file’s disk blocks
p Whole file (contiguous), first block (linked-list) or I-

node (indexed allocation)
n  Directory also has attributes of each file

p  2 options: entries have all attributes, or point to file I-node

