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name, usually a number of some kind; often, the user is not aware of
this name (as we will see). For historical reasons, the low-level name of a
file is often referred to as its inode number. We’ll be learning a lot more
about inodes in future chapters; for now, just assume that each file has an
inode number associated with it.

In most systems, the OS does not know much about the structure of
the file (e.g., whether it is a picture, or a text file, or C code); rather, the
responsibility of the file system is simply to store such data persistently
on disk and make sure that when you request the data again, you get
what you put there in the first place. Doing so is not as simple as it seems!

The second abstraction is that of a directory. A directory, like a file,
also has a low-level name (i.e., an inode number), but its contents are
quite specific: it contains a list of (user-readable name, low-level name)
pairs. For example, let’s say there is a file with the low-level name “10”,
and it is referred to by the user-readable name of “foo”. The directory
“foo” resides in thus would have an entry (“foo”, “10”) that maps the
user-readable name to the low-level name. Each entry in a directory refers
to either files or other directories. By placing directories within other di-
rectories, users are able to build an arbitrary directory tree (or directory
hierarchy), under which all files and directories are stored.

/

foo

bar.txt

bar

foobar

bar.txt

Figure 39.1: An Example Directory Tree

The directory hierarchy starts at a root directory (in UNIX-based sys-
tems, the root directory is simply referred to as /) and uses some kind
of separator to name subsequent sub-directories until the desired file or
directory is named. For example, if a user created a directory foo in the
root directory /, and then created a file bar.txt in the directory foo,
we could refer to the file by its absolute pathname, which in this case
would be /foo/bar.txt. See Figure 39.1 for a more complex directory
tree; valid directories in the example are /, /foo, /bar, /bar/bar,
/bar/foo and valid files are /foo/bar.txt and /bar/foo/bar.txt.
Directories and files can have the same name as long as they are in dif-
ferent locations in the file-system tree (e.g., there are two files named
bar.txt in the figure, /foo/bar.txt and /bar/foo/bar.txt).
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TIP: THINK CAREFULLY ABOUT NAMING

Naming is an important aspect of computer systems [SK09]. In UNIX

systems, virtually everything that you can think of is named through the
file system. Beyond just files, devices, pipes, and even processes [K84]
can be found in what looks like a plain old file system. This uniformity
of naming eases your conceptual model of the system, and makes the
system simpler and more modular. Thus, whenever creating a system or
interface, think carefully about what names you are using.

You may also notice that the file name in this example often has two
parts: bar and txt, separated by a period. The first part is an arbitrary
name, whereas the second part of the file name is usually used to indi-
cate the type of the file, e.g., whether it is C code (e.g., .c), or an image
(e.g., .jpg), or a music file (e.g., .mp3). However, this is usually just a
convention: there is usually no enforcement that the data contained in a
file named main.c is indeed C source code.

Thus, we can see one great thing provided by the file system: a conve-
nient way to name all the files we are interested in. Names are important
in systems as the first step to accessing any resource is being able to name
it. In UNIX systems, the file system thus provides a unified way to access
files on disk, USB stick, CD-ROM, many other devices, and in fact many
other things, all located under the single directory tree.

39.2 The File System Interface

Let’s now discuss the file system interface in more detail. We’ll start
with the basics of creating, accessing, and deleting files. You may think
this is straightforward, but along the way we’ll discover the mysterious
call that is used to remove files, known as unlink(). Hopefully, by the
end of this chapter, this mystery won’t be so mysterious to you!

39.3 Creating Files

We’ll start with the most basic of operations: creating a file. This can be
accomplished with the open system call; by calling open() and passing
it the O CREAT flag, a program can create a new file. Here is some exam-
ple code to create a file called “foo” in the current working directory.

int fd = open("foo", O_CREAT | O_WRONLY | O_TRUNC);

The routine open() takes a number of different flags. In this exam-
ple, the program creates the file (O CREAT), can only write to that file
while opened in this manner (O WRONLY), and, if the file already exists,
first truncate it to a size of zero bytes thus removing any existing content
(O TRUNC).
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ASIDE: THE CREAT() SYSTEM CALL

The older way of creating a file is to call creat(), as follows:

int fd = creat("foo");

You can think of creat() as open() with the following flags:
O CREAT | O WRONLY | O TRUNC. Because open() can create a file,
the usage of creat() has somewhat fallen out of favor (indeed, it could
just be implemented as a library call to open()); however, it does hold a
special place in UNIX lore. Specifically, when Ken Thompson was asked
what he would do differently if he were redesigning UNIX, he replied:
“I’d spell creat with an e.”

One important aspect of open() is what it returns: a file descriptor. A
file descriptor is just an integer, private per process, and is used in UNIX

systems to access files; thus, once a file is opened, you use the file de-
scriptor to read or write the file, assuming you have permission to do so.
In this way, a file descriptor is a capability [L84], i.e., an opaque handle
that gives you the power to perform certain operations. Another way to
think of a file descriptor is as a pointer to an object of type file; once you
have such an object, you can call other “methods” to access the file, like
read() and write(). We’ll see just how a file descriptor is used below.

39.4 Reading and Writing Files

Once we have some files, of course we might like to read or write them.
Let’s start by reading an existing file. If we were typing at a command
line, we might just use the program cat to dump the contents of the file
to the screen.

prompt> echo hello > foo
prompt> cat foo
hello
prompt>

In this code snippet, we redirect the output of the program echo to
the file foo, which then contains the word “hello” in it. We then use cat
to see the contents of the file. But how does the cat program access the
file foo?

To find this out, we’ll use an incredibly useful tool to trace the system
calls made by a program. On Linux, the tool is called strace; other sys-
tems have similar tools (see dtruss on Mac OS X, or truss on some older
UNIX variants). What strace does is trace every system call made by a
program while it runs, and dump the trace to the screen for you to see.
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TIP: USE STRACE (AND SIMILAR TOOLS)
The strace tool provides an awesome way to see what programs are up
to. By running it, you can trace which system calls a program makes, see
the arguments and return codes, and generally get a very good idea of
what is going on.
The tool also takes some arguments which can be quite useful. For ex-
ample, -f follows any fork’d children too; -t reports the time of day
at each call; -e trace=open,close,read,write only traces calls to
those system calls and ignores all others. There are many more powerful
flags — read the man pages and find out how to harness this wonderful
tool.

Here is an example of using strace to figure out what cat is doing
(some calls removed for readability):

prompt> strace cat foo
...
open("foo", O_RDONLY|O_LARGEFILE) = 3
read(3, "hello\n", 4096) = 6
write(1, "hello\n", 6) = 6
hello
read(3, "", 4096) = 0
close(3) = 0
...
prompt>

The first thing that cat does is open the file for reading. A couple
of things we should note about this; first, that the file is only opened for
reading (not writing), as indicated by the O RDONLY flag; second, that
the 64-bit offset be used (O LARGEFILE); third, that the call to open()
succeeds and returns a file descriptor, which has the value of 3.

Why does the first call to open() return 3, not 0 or perhaps 1 as you
might expect? As it turns out, each running process already has three
files open, standard input (which the process can read to receive input),
standard output (which the process can write to in order to dump infor-
mation to the screen), and standard error (which the process can write
error messages to). These are represented by file descriptors 0, 1, and 2,
respectively. Thus, when you first open another file (as cat does above),
it will almost certainly be file descriptor 3.

After the open succeeds, cat uses the read() system call to repeat-
edly read some bytes from a file. The first argument to read() is the file
descriptor, thus telling the file system which file to read; a process can of
course have multiple files open at once, and thus the descriptor enables
the operating system to know which file a particular read refers to. The
second argument points to a buffer where the result of the read()will be
placed; in the system-call trace above, strace shows the results of the read
in this spot (“hello”). The third argument is the size of the buffer, which
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file descriptor. The fsync() routine returns once all of these writes are
complete.

Here is a simple example of how to use fsync(). The code opens
the file foo, writes a single chunk of data to it, and then calls fsync()
to ensure the writes are forced immediately to disk. Once the fsync()
returns, the application can safely move on, knowing that the data has
been persisted (if fsync() is correctly implemented, that is).

int fd = open("foo", O_CREAT | O_WRONLY | O_TRUNC);
assert(fd > -1);
int rc = write(fd, buffer, size);
assert(rc == size);
rc = fsync(fd);
assert(rc == 0);

Interestingly, this sequence does not guarantee everything that you
might expect; in some cases, you also need to fsync() the directory that
contains the file foo. Adding this step ensures not only that the file itself
is on disk, but that the file, if newly created, also is durably a part of the
directory. Not surprisingly, this type of detail is often overlooked, leading
to many application-level bugs [P+13].

39.7 Renaming Files

Once we have a file, it is sometimes useful to be able to give a file a
different name. When typing at the command line, this is accomplished
with mv command; in this example, the file foo is renamed bar:

prompt> mv foo bar

Using strace, we can see that mv uses the system call rename(char
*old, char *new), which takes precisely two arguments: the original
name of the file (old) and the new name (new).

One interesting guarantee provided by the rename() call is that it is
(usually) implemented as an atomic call with respect to system crashes;
if the system crashes during the renaming, the file will either be named
the old name or the new name, and no odd in-between state can arise.
Thus, rename() is critical for supporting certain kinds of applications
that require an atomic update to file state.

Let’s be a little more specific here. Imagine that you are using a file ed-
itor (e.g., emacs), and you insert a line into the middle of a file. The file’s
name, for the example, is foo.txt. The way the editor might update the
file to guarantee that the new file has the original contents plus the line
inserted is as follows (ignoring error-checking for simplicity):

int fd = open("foo.txt.tmp", O_WRONLY|O_CREAT|O_TRUNC);
write(fd, buffer, size); // write out new version of file
fsync(fd);
close(fd);
rename("foo.txt.tmp", "foo.txt");
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As it turns out, each file system usually keeps this type of information
in a structure called an inode1. We’ll be learning a lot more about inodes
when we talk about file system implementation. For now, you should just
think of an inode as a persistent data structure kept by the file system that
has information like we see above inside of it.

39.9 Removing Files

At this point, we know how to create files and access them, either se-
quentially or not. But how do you delete files? If you’ve used UNIX, you
probably think you know: just run the program rm. But what system call
does rm use to remove a file?

Let’s use our old friend strace again to find out. Here we remove
that pesky file “foo”:

prompt> strace rm foo
...
unlink("foo") = 0
...

We’ve removed a bunch of unrelated cruft from the traced output,
leaving just a single call to the mysteriously-named system call unlink().
As you can see, unlink() just takes the name of the file to be removed,
and returns zero upon success. But this leads us to a great puzzle: why
is this system call named “unlink”? Why not just “remove” or “delete”.
To understand the answer to this puzzle, we must first understand more
than just files, but also directories.

39.10 Making Directories

Beyond files, a set of directory-related system calls enable you to make,
read, and delete directories. Note you can never write to a directory di-
rectly; because the format of the directory is considered file system meta-
data, you can only update a directory indirectly by, for example, creating
files, directories, or other object types within it. In this way, the file system
makes sure that the contents of the directory always are as expected.

To create a directory, a single system call, mkdir(), is available. The
eponymous mkdir program can be used to create such a directory. Let’s
take a look at what happens when we run the mkdir program to make a
simple directory called foo:

prompt> strace mkdir foo
...
mkdir("foo", 0777) = 0
...
prompt>

1Some file systems call these structures similar, but slightly different, names, such as
dnodes; the basic idea is similar however.
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TIP: BE WARY OF POWERFUL COMMANDS
The program rm provides us with a great example of powerful com-
mands, and how sometimes too much power can be a bad thing. For
example, to remove a bunch of files at once, you can type something like:

prompt> rm *

where the * will match all files in the current directory. But sometimes
you want to also delete the directories too, and in fact all of their contents.
You can do this by telling rm to recursively descend into each directory,
and remove its contents too:

prompt> rm -rf *

Where you get into trouble with this small string of characters is when
you issue the command, accidentally, from the root directory of a file sys-
tem, thus removing every file and directory from it. Oops!

Thus, remember the double-edged sword of powerful commands; while
they give you the ability to do a lot of work with a small number of
keystrokes, they also can quickly and readily do a great deal of harm.

When such a directory is created, it is considered “empty”, although it
does have a bare minimum of contents. Specifically, an empty directory
has two entries: one entry that refers to itself, and one entry that refers
to its parent. The former is referred to as the “.” (dot) directory, and the
latter as “..” (dot-dot). You can see these directories by passing a flag (-a)
to the program ls:

prompt> ls -a
./ ../
prompt> ls -al
total 8
drwxr-x--- 2 remzi remzi 6 Apr 30 16:17 ./
drwxr-x--- 26 remzi remzi 4096 Apr 30 16:17 ../

39.11 Reading Directories

Now that we’ve created a directory, we might wish to read one too.
Indeed, that is exactly what the program ls does. Let’s write our own
little tool like ls and see how it is done.

Instead of just opening a directory as if it were a file, we instead use
a new set of calls. Below is an example program that prints the contents
of a directory. The program uses three calls, opendir(), readdir(),
and closedir(), to get the job done, and you can see how simple the
interface is; we just use a simple loop to read one directory entry at a time,
and print out the name and inode number of each file in the directory.
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