Adding System Calls to 0OS/161

CSE 4001 Operating Systems Concepts
E. Ribeiro

January 26, 2022

Outline

© Review: traps and system calls

© Overview of steps to add system calls to 0S/161
o Kernel-level steps
o User-level steps
@ Testing the system call

© Kernel-level steps in detail

@ User-level steps in detail

© Testing steps in detail

Review: System-call trapping mechanism

user process

execute system call

Figure adapted from Silberschatz, Galvin, and Gagne, 2009.

user moqe
user process executing » calls system call return from system call (mode bit = 1)
\ 7
LY 7 4
\ 7
k | trap return
omne mode bit = 0 mode bit = 1
kernel mode
(mode bit = 0)

Review: System-call trapping mechanism in OS/161

Space |exception-mips1.S E

________ s

mips_trap()
Key: t

syscall()

call I return t

———

I
| Assembly | sys__time()

(T T ———

Kernel-level steps

@ Add the prototype of the system-call function to the header file:
kern/include/syscall.h

@ The kernel-level implementation (e.g., newsyscall.c) goes into kern/syscall/

© Add a new ID number for the system call. The new entry goes in the file
kern/include/kern/syscall.h

© Add a new branch in the switch-case statement in:
kern/arch/mips/syscall/syscall.c

© Add file entry definition for syscall/newsyscall.c in kern/conf/conf .kern

User-level steps

@ Add the user-level prototype of the system call to: user/include/unistd.h

@ Add the user-level test function. For this, create a new subdirectory directory
user/testbin/testnewsyscall/ and inside it add the test function (e.g.,
testnewsyscall.c).

© Create a Makefile inside this subdirectory for building the test function. You can use one
of the subdirectories as a template.

@ Add an entry to the new function to the top-level Makefile in user/testbin

Testing the new system call

@ Re-build the kernel
@ Start the new kernel (i.e., run sys161 kernel in the root directory)

© At the OS161 prompt, use the p option (from OS161 menu) to run the test program, i.e.,
p testbin/testnewsyscall

Kernel-level steps

1 Prototype of the system call

© Add the prototype of the system call to the header file: kern/include/syscall.h
@ At the end of the file, you will find prototypes for sys_reboot () and sys__time().

se [k
s % Prototypes for IN-KERNEL entry points for system call
implementations.

x/ int sys_helloworld(void);

¢ int sys_reboot(int code);
int sys time(userptr_t user_seConds, userptr_t user_nanoseconds);
60
1

#endif /x _SYSCALL_H_ x/
62

2 Kernel-level implementation

© The kernel-level implementation goes into kern/syscall. This directory contains an
example of a system call, i.e., time_syscalls.c.

@ Here, create a program called simple_syscall.c, and implement your system call in it.

int sys_helloworld(void){
return kprintf("Hello World!\n");

}

3 Create the ID number for the new system call

@ The OS needs to know the ID number of the system call
@ Add a new entry to the file kern/include/kern/syscall.h

100
101
102
103
104
105
106
107
108
109

110

//#define SYS_setpgid
//#define SYS_getsid
//#define SYS_setsid
//

//#define SYS_ptrace

//

#define SYS_open
#define SYS_pipe
#define SYS_dup

#define SYS dup2

41
42
43

e

45
46
47
48

(userlevel debugging)

—— File-handle-related ——

4 Add a new branch in the switch-case statement in:

kern/arch/mips/syscall/syscall.c

case SYS _helloworld:
err = sys_helloworld();
break;

Note how user-level input parameters are passed to kernel-level functions via the trapframe.

[6) syseall

callno = tf->tf_ve;

7%
* Initialize retval to 0. Many of the system calls don't

* really return a value, just 0 for success and -1 on

* error. Since retval is the value returned on success,

* initialize it to @ by default; thus it's not necessary to
* deal with it except for calls that return other values,
* like write.

*/

retval = 0;

switch (callno) {
case SYS_reboot:
err = sys_reboot(tf->tf_a0);
break;

case SYS__time:

err = sys___time((userptr_t)tf->tf_ao,
(userptr_t)tf->tf_al);

break;

/* Add stuff here x/

default:

kprintf(“Unknown syscall %d\n", callno);
err = ENOSYS;

break;

if (err) {
*

* Return the error code. This gets converted at
* userlevel to a return value of -1 and the error
* code in errno.

*/

5 Add file-entry definition to config.kern

= file vfs/devnull.c

361 #

x # System call layer

% # (You will probably want to add stuff here while doing the basic system
x # calls assignment.)

w5 #

366

w file syscall/loadelf.c

w» file syscall/runprogram.c

w file syscall/time_syscalls.c

370

m #

»2 # Startup and initialization

3 #

7 file startup/main.c

2 file startup/menu.c

e LU0 L L (L L L (A L L L L L L L L L LR L L LR L L LR L L L L LA L L L
v # #

W # Filesystems #

User-level steps

1. Add the user-level prototype of the system call to:
userland/include/unistd.h

[h) unistd.h

< » | [h) unistd.h) No Selection
= % This file is xnot* shared with the kernel, even though in a sense
* the kernel needs to know about these prototypes. This is because,
* due to error handling concerns, the in-kernel versions of these
* functions will usually have slightly different signatures.
*/
#ifdef __GNUC__
/* GCC gets into a snit if _exit isn't declared to not return %/
: #define __DEAD __attribute__((__noreturn__))
= #else
= #define
#endif

DLo®

s
s

7 /* Required. x/

. __DEAD void _exit(int code);
s int execv(const char *prog, char xconst
o pid_t fork(void);

2 [x

2 % Open actually
* arg is the fi
* security and g
*/

int open(const cf
= int read(int file
= int write(int fil
= int close(int filehandle);

= int reboot(int code);

= int sync(void);

= /% mkdir - see sys/stat.h */

= int rmdir(const char *dirname);

Int 0;
int printchar(char c);

= /% Recommended. */
= int getpid(void);

2. Add the user-level test function.

For this, create a new subdirectory directory user/testbin/testnewsyscall/ and inside it
add the test function (e.g., testnewsyscall.c).

L] helloworldtest.c &2

1#include <unistd.h> # Makefile for helloworldtest

2 TOP=././.

-_;in t .include "$(TOP)/mk/os161.config.mk"
ilma]'_n () PROG=helloworldtest

- SRCS=helloworldtest.c

51 BINDIR=/testbin

6 helloworld () ’ .include "$(TOP)/mk/os161.prog.mk"
7 return 0O;

}

3. Modify the top-level makefile.

Add an entry to the new function to the top-level Makefile in user/testbin/

¢ TOP=

Makefile

> Makefile » No Selection

#
: # Makefile for src/testbin (sources for programs installed in /testbin)
#

helloworldtest

omb forktest guzzle \
allelvm psort \
tictac triplehuge \

el
.include "$(TOP)/mk/0s161.config.mk"

SUBDIRS=add argtest badcall bigfile conman crash ctest dirc
dirtest f_test farm faulter fileonlytest filetest f
hash hog huge kitchen malloctest matmult pali
randcall rmdirtest rmtest sink sort st
triplemat triplesort

But not:
userthreads (no support in kernel API in base system)

.include "$(TOP)/mk/0s161.subdir.mk"

Directory tree showing main changes that need to be made

Add
“hellotest”
ent

Make the
directory

2
Make
the file

5

int hello(void); hellotest

7~

4

3[fetos |

#include <unistd. PROG=hello
h> SRC=hello.c
int main(){ BINDIR=/testbin

hello();
return 0;

}

Directory tree showing main changes that need to be made

Kernel Level Changes

Make the
file
1

#include<types.h>
#include<lib.h>
#include<syscall.h>

int sys_hello(void){

return kprintf("Hello

CSE40011n"); 3
}

int sys_hello(void);

#define SYS_hello

case SYS_hello:
err = sys_hello();
break;

Testing the system call

Testing the system call

@ Inside the root folder, run the command sys161 kernel.

@ In the 0s161 terminal, run the command p testbin/[name] where your [name] is the
name of your program.

Hellotest Program:

0S/161 kernel [? for menu]: p testbin/hellotest
Operation took 0.000145920 seconds

0S/161 kernel [? for menu]: syscall: #40, args 0 0 0 O
Hello World!

syscall: #3, args 0 0 0 O
Thread testbin/hellotest exiting due to 0 with value 0

	Review: traps and system calls
	Overview of steps to add system calls to OS/161
	Kernel-level steps
	User-level steps
	Testing the system call

	Kernel-level steps in detail
	User-level steps in detail
	Testing steps in detail

