OS Overview

Contents

What is an operating system?

OS functions

What is an Operating System?

B A program that acts as an intermediary between a
user of a computer and the computer haradware

B Operating system goals:

® EXxecute user programs and simplify solving user
oroblems.

® Make the computer system convenient to use

® Use the computer hardware efficiently

What is an operating system?
Software that provides an elaborate illusion to applications

r e g L0 4

" - -
e | M we . I
R N e

Use rayfﬁ'cajon Use ra};}-aﬁ'ca)on Use ra}a}aﬁ'can

| | e Protection boundary
Kernel
Memory management Process management
Accounting Filesystem TCP/IP stack

Device drivers Disk I/O CPU support

Hardware/software
interface

- —_—

Gnarly world of hardware
R i -

e N
LNy -

\\\\\
-

4

© 2007 Ma* Welsh - Harvard Unive rs 17

One OS Function: Concurrency
Give every application the illusion of having its own CPU!

‘‘‘‘‘‘‘
e

““““

» Summ oe g &
........

-
4 -
Lo -
.\7»0. e (e e e — . — —— - .
'Y S] P L N e D e g -
-I‘
:: .-
— B¢ MRA . WY MY A T e
: e LT S L LI LN B B
M én— W Al SR 100
e Yo SIS IR L AR WY WBERGE EL a eee -
« Vie b L L el b .
3 L Tl M ST DI T)
. xcm
. e - e . »
4 v Ol o B S e e A e
.-
L
o A
e
. ‘0‘0
P W
« NVoan
e
' -
: é:-
. . -
v REP
::-v\
r,b .

.
(& :
) -

© 2007 Matt Wels h - Harvard University_ 6

Another OS Function: Virtual Memory

Give every application the illusion of having infinite memory
- And, that it can access any memory address it likes!
- In reality, RAM is split across multiple applications

Phys ical RAM

Stack

Swap out, dis k

© 2007 Ma* We s h - Harvard Unive rs 7

More OS Functions

Multiprocessor support
* Modern systems have multiple CPUs
* Can run multiple applications (or threads within applications) in parallel
* OS must ensure that memory and cache contents are consistent across CPUs

Filesystems

* Real disks have a hairy, sector-based access model
* User applications see flat files arranged in a hierarchical namespace

Network protocols

* Network interface hardware operates on the level of unreliable packets
* User apps see a (potentially reliable) byte-stream socket

Security and protection

* Prevent multiple apps from interfering with each other and with normal system
operation

O 2007 Matt Welsh - Harvard Unive rsity_

Contents

INnterrupts and system calls

User mode and kernel mode

Operating System basics

The OS kernel is just a bunch of code that sits around in memory,
waiting to be executed

&

Interrupt (disk block read)

% 4

OS is triggered in two ways: system calls and hardware interrupts

System call: Direct “call” from a user program
* For example, open() to open a file, or exec() to run a new program

Hardware interrupt: Trigger from some hardware device

* For example, when a disk block has been read or written © 2007 Matt We s h - Harvand Unive rsity_

Interrupts — a primer

An interrupt is a signal that causes the CPU to jump to a pre-defined
Instruction — called the inferrupt handler
* Interrupt can be caused by hardware or software

Hardware interrupt examples

* Timer interrupt (periodic “tick” from a programmable timer)
* Device interrupts
* e.q., Disk will interrupt the CPU when an I/O operation has completed

Software interrupt examples (also called excepfions)

* Division by zero error

* Access to a bad memory address

* Intentional software interrupt — e.g., x86 “INT" instruction
* Can be used to trap from user program into the OS kernel!
* Why might this be useful?

O 2007 Matt Welsh - Harvard Unive rsity_

User mode vs. kernel mode

What makes the kernel different from user programs?
* Kernel can execute special privileged instructions

Examples of privileged instructions:

* Access I/O devices
* Poll for 10, perform DMA, catch hardware interrupt
* Manipulate memory management
* Set up page tables, load/flush the TLB and CPU caches, etfc.
* Configure various “mode bits”
* Interrupt priority level, software trap vectors, elc.
* Call halt instruction
* Put CPU into low-power or idle state until next interrupt

These are enforced by the CPU hardware itself.

* CPU has at least two protection levels: Kernel mode and user mode
* CPU checks current protection level on each instruction
* What happens if user program tries to execute a privileged instruction?

Adapted from Matt Welsh’s slides (Harvard University)

Transition from user to kernel moge

user process

user process executing

— calls system call

user mode

return from system call

(mode bit= 1)

= s e

kernel

trap return
mode bit =0 mode bit = 1
% / kernel mode
execute system call (mode bit = 0)

Silberschatz, Galvin and Gagne ©2009

[Transition from user to kernel mode: example

77 Mozilla calls read() system call Restore app registers

Trap to kernel mode Return CPU to user mode
User mode Save application registers and state

Kernel mode

Kernel trap handler

Return to trap handler
Lookup read() in system call table P

Invoke internal read() function

read() system call

Perform internal read()

Adapted from Matt Welsh’s slides (Harvard University)

Uniprogramming and Multiprogramming

Uniprogramming
* Only one program can run at a given time on the system
* Like old batch systems, MS-DOS, etc.

Multiprogramming (a.k.a. “multitasking”)

* Multiple programs can run simultaneously
* Although only one program running at any given instant
* (Unless you have multiple CPUSs!!!!)

Tradeoffs
* Writing a uniprogramming OS is simpler
* Why?
* But, multitasking OSs use resources more efficiently
* Why?

Note on terminology:
Multitasking/multiprogramming refer to the number of programs running

Multiprocessing refers to the number of CPUs in the system
Adapted from Matt Welsh’s slides (Harvard University

Process Management

An OS executes many kinds of applications

* Regular user programs

* Emacs, Mozilla, this OpenOffice program, eftc...
* Administrative servers

* Crond: Runs jobs at pre-scheduled times

* Sshd: Manages incoming ssh connections

* [pd: Queues up jobs for the printer

Each of these activities is encapsulated in a process
* A process consists of three main parts:

Processor state
* registers, program counter

OS resources
* open files, network sockets, etc.

Address space:
* The memory that a process accesses — its code, variables, stack, etc.

Adapted from Matt Welsh’s slides (Harvard University)

PID
842
867
873
887
888
1881

1883
1910
1911
1937
2310

TTY
ttyl
ttvyl
ttyl
ttyl
ttyl
ttyl
pts/2
pts/0
pts/0
ttvl
pts/2

S
S
S
S
S
S
S
S
S
S
S
R

TAT

Process Example

A process is an instance of a program being executed
* Use "ps” to list processes on UNIX systems

TIME
: 00
: 00
: 00
: 00
: 02
: 00
: 00
: 00
: 20
: 00
: 00

OOk O O O o o o O 0O

COMMAND

-bash

xinit

fvwm2Z

xload

/usr/local/j2sdkl.4.0/bin/java ApmView 896 243

rxvt -fn fixed -cr red -fg white -bg #586570 -geometr
bash

/bin/sh /home/mdw/bin/ocoffice arch.sxi
/usr/local/OpenOffice.orgl.l.0/program/soffice.bin ar
/bin/sh /home/mdw/bin/set-wlan-OFF

ps -Umdw -X

Adapted from Matt Welsh’s slides (Harvard University)

oxXFFFFFFFF
A

(%[cfre SS SJOCLC@J

\/
0X00000000

What is a process”

e A process s an abstraction of a program in execution.

(ﬁ@ewe cfforOS)

Stack

\
A

Heap

Uninitialize d vars

(CI§SS segme nt)

itialize d vars
(ofata segme nt)

Code

(thsegme nt)

< Stacﬁyointzr

PC —>

< Cﬁmgmm counter

/* Hello World program */
#include<stdio.h>
main ()

1
printf("Hello World");

Multiple

Drocesses

(’ﬁgewe dlfbrOS)

Witialize d vars

(data segment)
Code-

(text se grge nt)
O /

(’ﬁgewec[ﬁ)rOS)

Witialize d vars
(data segment)

(Reserve d for OS)

itialize d vars
(o{ata seqme mj)

C ode-

(text segme nt)

(ﬁQsewe c[ﬁ)rOS)

Witialize d vars
(cfam segme nt)

Code

(text segment)

Code

(text segment)

Virtual memory system

Figure by Matt Welsh, Harvard University.

The OS maintains a
BCP for each
process. It Is a data

structure with many
fields.

Defined In:
/include/linux/sched.h

Process Control Block (BCP

struct task st {

volatile lon ,
unsigned long Fxe cution s tate
int sigpending;

mm segment t addr limit;

struct exec domain *exec domain;
volatile long need resched;
unsigned long ptrace;

int lock depth;

unsigned int cpu;

int prio, static prio;

struct list head run list;

prio array t *array;

unsigned long sleep avg;

unsigned long last run;

unsigned long policy;

unsigned long cpus allowed;
unsigned int time slice, first time slice;
atomic t usage;

struct list head tasks;

struct list head ptrace children;

struct list head Ce list;
struct mm struct , *active_méz::)fh42ﬂ101}/WHéfnltfnfb
struct linux binfmt *Bitrfmts

int exit code, exit signal;

int pdeath signal;

unsigned long personality;

int did exec:1;

uns igned—ta dumpable:1;
P%d_ rocess ID

pid_t pgrp;

pid t tty old pgrp;

pid t session;

pid t tgid;

int leader;

struct task struct *real parent;
struct task struct *parent;

struct list head children;

struct list head sibling;

struct task struct *group leader;
struct pid Tink pids[PIDTYPE MAX];
wait queue head t wait chldexit;
struct completion *vfork done;

int *set child tid;

int *clear chikd<€id;
unsigned lonQ rt priority; ‘j%jb’in.

unsigned long it real value, it prof value, it virt value;
unsigned long it real incr, it prof incr, it virt incr;
struct timer list real timer;

struct tms times; , ,
struct tms group. times: P counting info

ong start time;
long per cpu utime[NR CPUS], per cpu stime[NR CPUS];
signed long min flt, maj flt, nswap, cmin flt, cmaj -

cnswap;

int sweappable:l;

uid (€ uid Puid, suid,fsuid;

gid_gid, sgid,fsqgid; User1D

int ngroups;

gid t groups[NGROUPS];

kernel cap t cap effective, cap inheritable, cap permitted;
int keep capabilities:1;

struct user struct *user;

struct rlimit rlim[RLIM NLIMITS];

unsigned short used math;

char comm[16];

int link count, total 1link count;

struct tty struct *tty;

unsigned int locks;

struct sem undo *semundo;

struct sem queue *s

struct
struct
struct
struct
struct
struct

thread struc
fs struct *fs:

files struc qgﬁ /
namespace * O’Pe Tlﬁ[é S

signal struct *signal;
sighand struct *sighand;

sigset t blocked, real blocked;
struct sigpending pending;
unsigned long sas sSs sSp;
size t sas ss size;
int (*notifier) (void *priv);
void *notifier data;
sigset t *notifier mask;
void *tux info;
void (*tux exit) (void);

u32 parent exec id;

u32 self exec id;
spinlock t alloc lock;

spinlock t switch lock;

void *journal info;
unsigned long ptrace message;
siginfo t *last siginfo;

};

Figure by Matt Welsh, Harvard University.

CPU Virtualization

[11777777 7777777777777 777777777777 777777
// compilation:

// gcc -Wall cpu.c -0 cpu

[1177777 7777777777777 77777777777 77777777

#include <stdio.h>
#include <stdlib.h>
#include "common.h"

int main(int argc, char *argv[])
{
if (argc 1= 2) {
fprintf(stderr, "usage: cpu <string>\n");
exit(1l);
}

char *str = argv[1l];

while (1) {
printf("%s\n", str);
Spin(1);

}

return 9;

prompt>
A

./cpu Uy

CPU Virtualization

prompt> ./cpu A & ; ./cpu B & ; ./cpu C & ; ./cpu D &

1] 7353
2] 71354
3] 7355
41 7356

O mQrrQOoomyr Q00 P ———

Memory Virtualization

#1inc lude
#1inc Lud
#inc luo
#1inc Lud
#inc luo

M MDD @D O

int
main(int

{

<unistd.h>
<stdio.h>

<stdlib.h>
<assert.n>
""common.h"

argc, char xargvl[])

if (argc '= 2) {
fprintf(stderr, "usage: mem <value>\n");
exit(1);

}

int *p;

p = malloc(sizeof(int));

// memory for pointer is on "stack"

assert(p !'= NULL);

// printf("(pid:
printf (" (pid:%c
printf (" (pid:S%oc
= atoi(argvI[l]);

*P

while (1) {
Spin(1);
*p = *p + 1;

printf("(pid:%d) value of p:

}

return 0;

%d) addr of main:
) addr of p:

) addr stored in p:
// assign value to addr stored in p

%LLx\n",
%LLx\n",
%LLx\n",

// malloc'd memory is on "heap"

%d\n'", getpid(), *p);

(int) getpid(), (unsigned long long) main);
(int) getpid(),
(int) getpid(),

(unsigned long long) &p);
(unsigned long long) p);

|_ife cycle of a process

States of a process:

* new. [he process is being
created

* running: Instructions are being
executea

* waiting: The process is waiting
for some event to occur

 ready: [he process is waiting to
be assigned to a processor

 terminated: The process has
finished execution

new admitted

interrupt exit terminated

/0O or event completion

scheduler dispatch

/O or event walit

Adapted from Silberschatz, Galvin, and Gagne, 2009

CPU switch from process to process

process P,

operating system

interrupt or system call

executing /

!

process P,

"i\

save state into PCB,

reload state from PCB,

/-

>idle interrupt or system call

l

save state into PCB;

-

reload state from PCB,

executing '\

\ |

>~ dle

executing

> dle

Adapted from Silberschatz, Galvin, and Gagne, 2009.

':501)1342
State: ‘Runm?ng‘

Currently running process

ﬁID4277 ’ﬁ'ID8109
State ’Read'y_ State: G?eac{y__
PC PC
‘ﬁggt’sters ‘ﬁggtstets

Save current CPU state

Figure by Matt Welsh, Harvard University.

CPU switch from process to process

process P, operating system process P,

interrupt or system call

executin
g / l N PID 1342 'ﬁﬂ)4277 PID 81 09
\ save state into PCBO State: CReac{l_ State: Recwfl State: ?ecwfl
PC PC PC
> |d|e ‘ﬁégisters ‘ﬁégisrers ‘ﬁégiSfeTS
Suspend process
reload state from PCB, 1 -
- idle interrupt or system call executing
™\ ﬁggisms

save state into PCB;

> idle

y reload state from PCB,

executing \

Adapted from Silberschatz, Galvin, and Gagne, 2009. Figure by Matt Welsh, Harvard University.

CPU switch from process to process

process P, operating system process P,

interrupt or system call

executing l / l
- ~ 25@1342 95@4277 CIS‘JD8109

~ save state into PCBO State: ‘Reacfl State: Running_ State: CReacfy.
fC . e
- ldle Registen - Regisers Registen
|
Pick next process
reload state from PCB,] . Restore CPU state of new proce:
-idle interrupt or system call executing

: |

save state into PCB;

> dle

reload state from PCB,

Adapted from Silberschatz, Galvin, and Gagne, 2009. Figure by Matt Welsh, Harvard University.

Ready queue and various |/O queues

ready
queue

mag
tape
unit O

mag
tape
unit 1

disk
unit O

terminal
unit O

/

PCB,,

PCB,
g -
registers
=
PCBg
= O

queue header PCB-
head >
tail registers
tail —
head T—=
— PCBs
/ i
head “
tail ~\
PCB;
head > =
|

Adapted from Silberschatz, Galvin, and Gagne, 2009.

PID 4277 PID 4301
State: Re acfl State: Re adll
Ready queue ——» 76 > PC
ﬁggiswrs ‘ﬁggiswrs
’ﬁCIDzmo CISID4002 ’ﬁf_ID4923
State: Waiﬁng\ State: Waitmg“ State: Waitmg“
Disk I/0 queue > PC R PC R PC
ﬁgﬂistmfs

ﬁggisrers (ﬁggzs‘wrs/

Process waiting

e OS maintains a set of queues

e Fach

PCB is queued on a state queue

based on the process’ current state.

e As processes change states, PCBs are
unlinked from one queue and linked Iinto
another.

Ready queue and various |/O queues

ready
queue

mag
tape
unit O

mag
tape
unit 1

disk
unit O

terminal
unit O

PCB,

o,

registers

/

PCB,,

PCB,

queue header PCB-
head >
tail registers
tail e
head T—=
M PCBs
/ i
head “
tail ~\
PCB;
head > | —
-

Adapted from Silberschatz, Galvin, and Gagne, 2009.

PID 4277 PID 43 91 PID 4923

State: Recwfl_ State: Reac[l State: ?ecwfl_

Ready queue —» PC > PC > PC

ﬁqgis‘wrs ﬁglgiswrs ﬁgogis‘wrs
65@4110 959D4002

State: Waiﬁn& State: Waitm&

Disk I/O queue > PC > PC

ﬁggisters ﬁggis‘wrs

Disk I/0O completes

e OS maintains a set of queues

e Fach

PCB is queued on a state queue

based on the process’ current state.

 As processes cr

ur

dl’

linked from or
other.

ange states, PCBs are
e gueue and linked Into

