
OS Overview

What is an operating system?
OS functions

Contents

■ A program that acts as an intermediary between a
user of a computer and the computer hardware

■ Operating system goals:
● Execute user programs and simplify solving user

problems.
● Make the computer system convenient to use
● Use the computer hardware efficiently

What is an Operating System?

Silberschatz, Galvin and Gagne ©2009

Interrupts and system calls
User mode and kernel mode

Contents

Adapted from Matt Welsh’s slides (Harvard University)

Transition from user to kernel mode

Silberschatz, Galvin and Gagne ©2009

Transition from user to kernel mode: example

Adapted from Matt Welsh’s slides (Harvard University)

Adapted from Matt Welsh’s slides (Harvard University)

Ad
ap

te
d

fro
m

 M
at

t W
el

sh
’s

sl
id

es
 (H

ar
va

rd
 U

ni
ve

rs
ity

)

Ad
ap

te
d

fro
m

 M
at

t W
el

sh
’s

sl
id

es
 (H

ar
va

rd
 U

ni
ve

rs
ity

)

What is a process?
• A process is an abstraction of a program in execution.

© 2007 Ma& We ls h – Harvard Unive rs i9 5

 Process address space

● The range of virtual memory addresses that the process can access

● Includes the code of the running program

● The data of the running program (static variables and heap)

● An execution stack

● Local variables and saved registers for each procedure call

S tack

He ap

Ini%alize d vars
(data s e gme nt)

Code
('xt s e gme nt)

Addre s s s pace

0x00000000

0xFFFFFFFF

S tack po in'r

Program coun'r

Unini%alize d vars
(BS S s e gme nt)

(Re s e rve d fo r OS)

/* Hello World program */

#include<stdio.h>

main()
{
 printf("Hello World");

}

PC

Multiple
processes

© 2007 Ma& We ls h – Harvard Unive rs i9 8

Physical memory

 ?What happens withmultiple processes

Stack

He ap

Ini%alize d vars
(data s e gme nt)

Code
('xt s e gme nt)

Unini%alize d vars
(BSS s e gme nt)

(Re s e rve d for OS)

Stack

He ap

Ini%alize d vars
(data s e gme nt)

Code
('xt s e gme nt)

Unini%alize d vars
(BSS s e gme nt)

(Re s e rve d for OS) Stack

He ap

Ini%alize d vars
(data s e gme nt)

Code
('xt s e gme nt)

Unini%alize d vars
(BSS s e gme nt)

(Re s e rve d for OS)

Stack

He ap

Ini%alize d vars
(data s e gme nt)

Code
('xt s e gme nt)

Unini%alize d vars
(BSS s e gme nt)

(Re s e rve d for OS)

Virtual memory system

Figure by Matt Welsh, Harvard University.

Process Control Block (BCP)

Figure by Matt Welsh, Harvard University.

The OS maintains a
BCP for each
process. It is a data
structure with many
fields.

© 2007 Ma& We ls h – Harvard Unive rs i9 12

struct task_struct {
volatile long state;
unsigned long flags;
int sigpending;
mm_segment_t addr_limit;
struct exec_domain *exec_domain;
volatile long need_resched;
unsigned long ptrace;
int lock_depth;
unsigned int cpu;
int prio, static_prio;
struct list_head run_list;
prio_array_t *array;
unsigned long sleep_avg;
unsigned long last_run;
unsigned long policy;
unsigned long cpus_allowed;
unsigned int time_slice, first_time_slice;
atomic_t usage;
struct list_head tasks;
struct list_head ptrace_children;
struct list_head ptrace_list;
struct mm_struct *mm, *active_mm;
struct linux_binfmt *binfmt;
int exit_code, exit_signal;
int pdeath_signal;
unsigned long personality;
int did_exec:1;
unsigned task_dumpable:1;
pid_t pid;
pid_t pgrp;
pid_t tty_old_pgrp;
pid_t session;
pid_t tgid;
int leader;
struct task_struct *real_parent;
struct task_struct *parent;
struct list_head children;
struct list_head sibling;
struct task_struct *group_leader;
struct pid_link pids[PIDTYPE_MAX];
wait_queue_head_t wait_chldexit;
struct completion *vfork_done;
int *set_child_tid;
int *clear_child_tid;
unsigned long rt_priority;

 ()Linux PCB Structure task_struct
unsigned long it_real_value, it_prof_value, it_virt_value;
unsigned long it_real_incr, it_prof_incr, it_virt_incr;
struct timer_list real_timer;
struct tms times;
struct tms group_times;
unsigned long start_time;
long per_cpu_utime[NR_CPUS], per_cpu_stime[NR_CPUS];
unsigned long min_flt, maj_flt, nswap, cmin_flt, cmaj_flt,
cnswap;
int swappable:1;
uid_t uid,euid,suid,fsuid;
gid_t gid,egid,sgid,fsgid;
int ngroups;
gid_t groups[NGROUPS];
kernel_cap_t cap_effective, cap_inheritable, cap_permitted;
int keep_capabilities:1;
struct user_struct *user;
struct rlimit rlim[RLIM_NLIMITS];
unsigned short used_math;
char comm[16];
int link_count, total_link_count;
struct tty_struct *tty;
unsigned int locks;
struct sem_undo *semundo;
struct sem_queue *semsleeping;
struct thread_struct thread;
struct fs_struct *fs;
struct files_struct *files;
struct namespace *namespace;
struct signal_struct *signal;
struct sighand_struct *sighand;
sigset_t blocked, real_blocked;
struct sigpending pending;
unsigned long sas_ss_sp;
size_t sas_ss_size;
int (*notifier)(void *priv);
void *notifier_data;
sigset_t *notifier_mask;
void *tux_info;
void (*tux_exit)(void);
 u32 parent_exec_id;
 u32 self_exec_id;
spinlock_t alloc_lock;
 spinlock_t switch_lock;
void *journal_info;
unsigned long ptrace_message;
siginfo_t *last_siginfo;
};

Exe cu%on s ta'

Me mory mgmt info

Pro c e s s ID

Prio ri9

Us e r ID

Ac coun%ng info

CPU s ta'
Ope n file s

Defined in:
/include/linux/sched.h

CPU Virtualization
//	
//	compilation:		
//				gcc	-Wall	cpu.c	-o	cpu	
//	

#include	<stdio.h>	
#include	<stdlib.h>	
#include	"common.h"	

int	main(int	argc,	char	*argv[])	
{	
				if	(argc	!=	2)	{	

	 fprintf(stderr,	"usage:	cpu	<string>\n");	
	 exit(1);	

				}	
				char	*str	=	argv[1];	

				while	(1)	{	
	 printf("%s\n",	str);	
	 Spin(1);	

				}	
				return	0;	
}	

INTRODUCTION TO OPERATING SYSTEMS 3

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <sys/time.h>

4 #include <assert.h>
5 #include "common.h"

6

7 int
8 main(int argc, char *argv[])

9 {
10 if (argc != 2) {

11 fprintf(stderr, "usage: cpu <string>\n");
12 exit(1);

13 }
14 char *str = argv[1];
15 while (1) {

16 Spin(1);
17 printf("%s\n", str);

18 }
19 return 0;
20 }

Figure 2.1: Simple Example: Code That Loops and Prints

2.1 Virtualizing the CPU

Figure 2.1 depicts our first program. It doesn’t do much. In fact, all
it does is call Spin(), a function that repeatedly checks the time and
returns once it has run for a second. Then, it prints out the string that the
user passed in on the command line, and repeats, forever.

Let’s say we save this file as cpu.c and decide to compile and run it
on a system with a single processor (or CPU as we will sometimes call it).
Here is what we will see:

prompt> gcc -o cpu cpu.c -Wall

prompt> ./cpu "A"
A
A

A
A

ˆC
prompt>

Not too interesting of a run — the system begins running the program,
which repeatedly checks the time until a second has elapsed. Once a sec-
ond has passed, the code prints the input string passed in by the user
(in this example, the letter “A”), and continues. Note the program will
run forever; only by pressing “Control-c” (which on UNIX-based systems
will terminate the program running in the foreground) can we halt the
program.

Now, let’s do the same thing, but this time, let’s run many different in-
stances of this same program. Figure 2.2 shows the results of this slightly
more complicated example.

c⃝ 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

CPU Virtualization 4 INTRODUCTION TO OPERATING SYSTEMS

prompt> ./cpu A & ; ./cpu B & ; ./cpu C & ; ./cpu D &
[1] 7353

[2] 7354
[3] 7355
[4] 7356

A
B

D
C

A
B
D

C
A

C
B
D

...

Figure 2.2: Running Many Programs At Once

Well, now things are getting a little more interesting. Even though we
have only one processor, somehow all four of these programs seem to be
running at the same time! How does this magic happen?4

It turns out that the operating system, with some help from the hard-
ware, is in charge of this illusion, i.e., the illusion that the system has a
very large number of virtual CPUs. Turning a single CPU (or small set of
them) into a seemingly infinite number of CPUs and thus allowing many
programs to seemingly run at once is what we call virtualizing the CPU,
the focus of the first major part of this book.

Of course, to run programs, and stop them, and otherwise tell the OS
which programs to run, there need to be some interfaces (APIs) that you
can use to communicate your desires to the OS. We’ll talk about these
APIs throughout this book; indeed, they are the major way in which most
users interact with operating systems.

You might also notice that the ability to run multiple programs at once
raises all sorts of new questions. For example, if two programs want to
run at a particular time, which should run? This question is answered by
a policy of the OS; policies are used in many different places within an
OS to answer these types of questions, and thus we will study them as
we learn about the basic mechanisms that operating systems implement
(such as the ability to run multiple programs at once). Hence the role of
the OS as a resource manager.

4Note how we ran four processes at the same time, by using the & symbol. Doing so runs a
job in the background in the tcsh shell, which means that the user is able to immediately issue
their next command, which in this case is another program to run. The semi-colon between
commands allows us to run multiple programs at the same time in tcsh. If you’re using a
different shell (e.g., bash), it works slightly differently; read documentation online for details.

OPERATING

SYSTEMS

[VERSION 0.81] WWW.OSTEP.ORG

Memory Virtualization
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include "common.h"

int
main(int argc, char *argv[])
{
 if (argc != 2) {

 fprintf(stderr, "usage: mem <value>\n");
 exit(1);

 }
 int *p; // memory for pointer is on "stack"
 p = malloc(sizeof(int)); // malloc'd memory is on "heap"
 assert(p != NULL);
 // printf("(pid:%d) addr of main: %llx\n", (int) getpid(), (unsigned long long) main);
 printf("(pid:%d) addr of p: %llx\n", (int) getpid(), (unsigned long long) &p);
 printf("(pid:%d) addr stored in p: %llx\n", (int) getpid(), (unsigned long long) p);
 *p = atoi(argv[1]); // assign value to addr stored in p
 while (1) {

 Spin(1);
 *p = *p + 1;
 printf("(pid:%d) value of p: %d\n", getpid(), *p);

 }

 return 0;
}

Life cycle of a process

Adapted from Silberschatz, Galvin, and Gagne, 2009.

States of a process:

• new: The process is being
created

• running: Instructions are being
executed

• waiting: The process is waiting
for some event to occur

• ready: The process is waiting to
be assigned to a processor

• terminated: The process has
finished execution

CPU switch from process to process

Adapted from Silberschatz, Galvin, and Gagne, 2009. Figure by Matt Welsh, Harvard University.

© 2007 Ma& We ls h – Harvard Unive rs i9 14

 Context Switching
● The act of swapping a process state on or off the CPU is a context switch

PC

Re gis' rs

PC

Re gis' rs

PID 1342
S ta' : Re ady

PC

Re gis' rs

PID 4277
S ta' : Re ady

PC

Re gis' rs

PID 8109
S ta' : Re ady

Suspend process

CPU switch from process to process

Adapted from Silberschatz, Galvin, and Gagne, 2009. Figure by Matt Welsh, Harvard University.

© 2007 Ma& We ls h – Harvard Unive rs i9 15

 Context Switching
● The act of swapping a process state on or off the CPU is a context switch

PC

Re gis' rs

PC

Re gis' rs

PID 1342
S ta' : Re ady

PC

Re gis' rs

PID 4277
S ta' : Running

PC

Re gis' rs

PID 8109
S ta' : Re ady

Restore CPU state of new process

Pick next process

PC

Re gis' rs

CPU switch from process to process

Adapted from Silberschatz, Galvin, and Gagne, 2009. Figure by Matt Welsh, Harvard University.

Ready queue and various I/O queues

Adapted from Silberschatz, Galvin, and Gagne, 2009.

© 2007 Ma& We ls h – Harvard Unive rs i9 21

 State Queues
The OS maintains a set of state queues for each process state

● Separate queues for ready and waiting states

● Generally separate queues for each kind of waiting process

● e.g., One queue for processes waiting for disk I/O

● Another queue for processes waiting for network I/O, etc.

PC

Re gis' rs

PID 4277
S ta' : Re ady

PC

Re gis' rs

PID 4110
S ta' : Wai%ng

PC

Re gis' rs

PID 4002
S ta' : Wai%ng

PC

Re gis' rs

PID 4923
S ta' : Wai%ng

PC

Re gis' rs

PID 4391
S ta' : Re ady

Ready queue

Disk I/O queue

Process waiting
• OS maintains a set of queues

• Each PCB is queued on a state queue
based on the process’ current state.

• As processes change states, PCBs are
unlinked from one queue and linked into
another.

© 2007 Ma& We ls h – Harvard Unive rs i9 22

 State Queue Transitions
PCBs move between these queues as their state changes

● When scheduling a process, pop the head off of the ready queue

● When I/O has completed, move PCB from waiting queue to ready queue

PC

Re gis' rs

PID 4277
S ta' : Re ady

PC

Re gis' rs

PID 4110
S ta' : Wai%ng

PC

Re gis' rs

PID 4002
S ta' : Wai%ng

PC

Re gis' rs

PID 4391
S ta' : Re ady

PC

Re gis' rs

PID 4923
S ta' : Wai%ng

Ready queue

Disk I/O queue

PC

Re gis' rs

PID 4923
S ta' : Re ady

Disk I/O completes

Ready queue and various I/O queues

Adapted from Silberschatz, Galvin, and Gagne, 2009.

• OS maintains a set of queues

• Each PCB is queued on a state queue
based on the process’ current state.

• As processes change states, PCBs are
unlinked from one queue and linked into
another.

