
Processes
Inter-process communication

Cooperating Processes

• Independent processes: execute independently
of other processes.

• Cooperating processes: depend on the
execution of other processes.

	 	 - 	Cooperation requires inter-process communication.

Models of
IPC

Message-passing Shared memory

Posix Shared Memory
1. Process first creates shared memory segment
segment	id	=	shmget(IPC	PRIVATE,	size,	S_IRUSR	|	
S_IWUSR);

2. Process wanting access to the shared memory must attach to it
shared_memory	=	(char	*)	shmat(id,	NULL,	0);

3. Now the process could write to the shared memory
sprintf(shared_memory,	"Writing	to	shared	memory");

4. When done, a process can detach the shared memory from its
address space
shmdt(shared_memory);

shm_server.c #include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <stdio.h>

#define SHMSZ 27

main()
{
 char c;
 int shmid;
 key_t key;
 char *shm, *s;

 /*
 * We'll name our shared memory segment
 * "5678".
 */
 key = 5678;

 /*
 * Create the segment.
 */
 if ((shmid = shmget(key, SHMSZ,
 IPC_CREAT | 0666)) < 0)
 {
 perror("shmget");
 exit(1);
 }

 /*
 * attach the segment to our data space.
 */
 if ((shm = shmat(shmid, NULL, 0)) ==
 (char *) -1)
 {
 perror("shmat");
 exit(1);
 }

 /* put things into the memory for the
 * other process to read.*/
 s = shm;

 for (c = 'a'; c <= 'z'; c++)
 *s++ = c;
 *s = NULL;

 /* Finally, wait until the other process
 * changes the first character of our
 * memory to '*', indicating that it
 * has read what we put there. */
 while (*shm != '*')
 sleep(1);

 exit(0);
}

shm_client.c #include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <stdio.h>

#define SHMSZ 27

main()
{
 int shmid;
 key_t key;
 char *shm, *s;

 /*
 * We need to get the segment named
 * "5678", created by the server.
 */
 key = 5678;

 /*
 * Locate the segment.
 */
 if((shmid=shmget(key,SHMSZ,0666)) < 0)
 {
 perror("shmget");
 exit(1);
 }

 /*
 * attach the segment to our data space.
 */
 if ((shm = shmat(shmid, NULL, 0)) ==
 (char *) -1)
 {
 perror("shmat");
 exit(1);
 }

 /*
 * read what the server put in
 * the memory.
 */
 for (s = shm; *s != NULL; s++)
 putchar(*s);
 putchar('\n');

 /*
 * Finally, change the first character
 * of the segment to '*', indicating
 * we have read the segment.
 */
 shm = '';

 exit(0);
}

Message Passing

Show programs:

• message_send.c

• message_rec.c

	 	

Processes
Sockets (communicating using the network)

Sockets
A socket is defined as an
endpoint for communication

Concatenation of IP address and
port

The socket 161.25.19.8:1625
refers to port 1625 on host
161.25.19.8

Communication consists between
a pair of sockets

Sockets
• Most interprocess communication uses the client-server

model.

• Client needs to know of the existence of and the address of
the server, but the server does not need to know the address
of (or even the existence of) the client prior to the connection
being established.

• Once a connection is established, both sides can send and
receive information.

• A socket is one end of an interprocess communication
channel. The two processes each establish their own socket.

Socket address domains
Two processes can communicate with each other only if
their sockets are of the same type and in the same
domain.

There are two widely used address domains, each has
its own address format:

• the unix domain: two processes share a common file
system.

• the Internet domain: two processes running on any two
hosts on the Internet.

Sockets

Connection steps on the client side

Connection steps on the server side (single
connection)

Sockets
Connection steps on the client side:
1. Create a socket with the socket() system call.

2. Connect the socket to the address of the
server using the connect() system call.

3. Send and receive data. There are many of
ways to do this. The simplest is to use the
read() and write() system calls.

Sockets
Connection steps on the server side (single connection):

1. Create a socket with the socket() system call

2. Bind the socket to an address using the bind() system
call. For a server socket on the Internet, an address
consists of a port number on the host machine.

3. Listen for connections with the listen() system call

4. Accept a connection with the accept() system call. This
call typically blocks until a client connects with the server.

5. Send and receive data

Socket types
Two widely used socket types:

stream sockets: communicate via a continuous stream of
characters. Stream sockets use TCP (Transmission Control
Protocol), which is a reliable, stream-oriented protocol.

datagram sockets: read entire messages at once. Use UDP
(Unix Datagram Protocol), which can be unreliable and
message oriented.

in CSE4001, we will work with sockets in the Internet domain
using the TCP protocol.

Examples of connecting using sockets

client-server with single connection.

server forking multiple "handler" processes
for each client connection.

Server forking multiple "handler"
processes for each client connection.

while (1)
 {
 newsockfd = accept(sockfd,
 (struct sockaddr *) &cli_addr, &clilen);
 if (newsockfd < 0)
 error("ERROR on accept");
 pid = fork();
 if (pid < 0)
 error("ERROR on fork");
 if (pid == 0)
 {
 close(sockfd);
 dostuff(newsockfd);
 exit(0);
 }
 else
 close(newsockfd);
 } /* end of while */

Accepting connection goes
inside an infinite loop.

http://www.linuxhowtos.org/C_C++/socket.htm

Server forking multiple "handler"
processes for each client connection.

while (1)
 {
 newsockfd = accept(sockfd,
 (struct sockaddr *) &cli_addr, &clilen);
 if (newsockfd < 0)
 error("ERROR on accept");
 pid = fork();
 if (pid < 0)
 error("ERROR on fork");
 if (pid == 0)
 {
 close(sockfd);
 dostuff(newsockfd);
 exit(0);
 }
 else
 close(newsockfd);
 } /* end of while */

Connection is established.
Create new process to
handle the service.

http://www.linuxhowtos.org/C_C++/socket.htm

while (1)
 {
 newsockfd = accept(sockfd,
 (struct sockaddr *) &cli_addr, &clilen);
 if (newsockfd < 0)
 error("ERROR on accept");
 pid = fork();
 if (pid < 0)
 error("ERROR on fork");
 if (pid == 0)
 {
 close(sockfd);
 dostuff(newsockfd);
 exit(0);
 }
 else
 close(newsockfd);
 } /* end of while */

Child process will close
sockfd and call the
handling function passing
newsockfd as argument.

 Once the communication
between client and handler
is completed, child exits.

http://www.linuxhowtos.org/C_C++/socket.htm

Server forking multiple "handler"
processes for each client connection.

while (1)
 {
 newsockfd = accept(sockfd,
 (struct sockaddr *) &cli_addr, &clilen);
 if (newsockfd < 0)
 error("ERROR on accept");
 pid = fork();
 if (pid < 0)
 error("ERROR on fork");
 if (pid == 0)
 {
 close(sockfd);
 dostuff(newsockfd);
 exit(0);
 }
 else
 close(newsockfd);
 } /* end of while */

Parent closes newsockfd
and returns to accept() to
wait for a new connection.

http://www.linuxhowtos.org/C_C++/socket.htm

Server forking multiple "handler"
processes for each client connection.

The return of the zombies

A zombie is a process that has terminated
but but cannot be permitted to fully die
because at some point in the future, the
parent of the process might execute a
wait() and would want information about
the death of the child.

http://www.linuxhowtos.org/C_C++/socket.htm

Fi
gu

re
 fr

om
: h

ttp
s:

//s
co

ttl
in

ux
.c

om
/2

01
2/

01
/1

3/
ho

w
-to

-k
ill-

zo
m

bi
e-

pr
oc

es
se

s/

https://scottlinux.com/2012/01/13/how-to-kill-zombie-processes/

The invasion of the zombies

Problem with the previous code:

Each of these connections will create a zombie
when the connection is terminated.

When a child dies, it sends a SIGCHLD signal to
its parent. But, the handling of this signal is
system dependent.

http://www.linuxhowtos.org/C_C++/socket.htm

void proc_exit() {
int wstat;
union wait wstat;
pid_t pid;

while (TRUE) {
pid = wait3 (&wstat, WNOHANG, (struct rusage *)NULL);
if (pid == 0)

return;
else if (pid == -1)

return;
else

printf ("Return code: %d\n", wstat.w_retcode);
}

}
int main () {

signal (SIGCHLD, proc_exit);
switch (fork()) {

case -1:
perror ("main: fork");
exit (0);

case 0:
printf ("I'm alive (temporarily)\n");
exit (rand());

default:
pause();

}
}

SunOS: Example of catching
SIGCHLD and avoiding zombies

ht
tp

://
g-

ec
x.

im
ag

es
-a

m
az

on
.c

om
/im

ag
es

/G
/0

1/
m

as
/p

ro
d/

im
ag

es
/a

co
nt

en
t/B

00
67

VK
Q

LE
/5

-ri
gh

t1
._

SL
31

2_
V1

62
54

99
86

_.
jp

g

Credits:

Slides on socket communication based on the sockets
tutorial from:

http://www.linuxhowtos.org/C_C++/socket.htm

http://www.linuxhowtos.org/C_C++/socket.htm

